首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A new assessment system for macrophytes and phytobenthos in German lakes according to the Water Framework Directive of the European Community is described. Based on biological, chemical and hydromorphological data from about 100 lake sites covering the main ecoregions, hydromorphological lake types and degradation forms, biocoenotic types could be defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into two components: macrophytes and benthic diatoms. For macrophytes 4 and for benthic diatoms 4 lake types were identified. The benthic vegetation at reference conditions is described and degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For a few of the described lake types further investigations are necessary before a classification can be developed.  相似文献   

3.
We measured lipid biomarkers (n-alkanes [n-ALKs] and n-alkanoic acids [n-FAs]) and other components of organic matter (total organic carbon [TOC] and total nitrogen [TN]) in a sediment core from Lake Issyk-Kul, Central Asia, to infer environmental changes in and around the lake during the last ∼300 years. Stratigraphic shifts in lipid biomarkers, TOC and TN, indicate three distinct environmental stages in the lake over the past three centuries: (1) Stage I (1670s–1790s, 51–36 cm sediment depth) corresponds to a period of stable hydrology in the lake, reflected by relatively constant concentrations of n-ALKs and n-FAs and values of related indexes. The interval was a period of relatively low trophic state. Natural factors were the main controls on environmental changes in and around the lake. (2) Stage II (1800s–1970s, 35–15 cm sediment depth) was a period when human activities began to exert influence on the environment in and around the lake. Enhanced agricultural exploitation and greater regional rainfall resulted in delivery to the lake of more land-derived lipids. Logging activity around the lake altered the vegetation, as revealed by shifts in C27/C33 ratios and the average chain length (ACL27−33). A significant decline in lake level caused by excessive water consumption impacted aquatic macrophytes, as revealed by a reduction in macrophyte indicators. Lower nutrient concentrations were inferred for this period. (3) Stage III (1980s–present, 14–0 cm sediment depth) corresponds to a period of accelerating eutrophication. Before year 2000, lake level declined steadily as a result of low rainfall (drought) and high evaporation, which exerted a strong influence on the lake condition. In addition, anthropogenic activities contributed to lake eutrophication. After 2000, the lake experienced a dramatic increase in trophic state, characterized by high algal productivity, as indicated by greater TN, short-chain n-ALKs and short-chain n-FAs. The change was probably caused by flourishing tourism around the lake. In summary, environmental changes in and around Lake Issyk-Kul during the past ∼300 years were originally driven largely by natural factors such as shifts in regional precipitation amount. Human activities (e.g. logging, agriculture, water extraction, and more recently, tourism) took on increasingly important roles during the last two centuries, affecting watershed vegetation, the lake primary producer community and lake trophic status. Changes recorded in the lake sediments over the last ∼300 years are in good agreement with historical records.  相似文献   

4.
The results of large-scale studies of water chemistry in small lakes in European Russia were used to characterize the distributions and ratios of biogenic elements and organic matter from the viewpoint of the zonal peculiarities of their turnover rate. Latitudinal regularities were identified in the limiting of lake production with respect to major biogenic elements. A classification of lakes is proposed, where the lakes are regarded as a system based on the percent distribution of organic carbon, nitrogen and phosphorus forms, as well as the trophic status and the totality of indices characterizing the origin of OM and the extent of its transformation.  相似文献   

5.
Indicating the Trophic State of Running Waters by Using TIM (Trophic Index of Macrophytes) – Exemplary Implementation of a New Index in the River Inninger Bach The river Inninger Bach represents the outflow of the lake Wörthsee (Bavaria). The mean pH of the calcareous river has a value of ca. 8 during the vegetation period, the mean conductivity is about 350 to 400 μS/cm. The macrophyte vegetation of the river course was mapped and the nutrient concentrations of both the water body and the sediment were measured. In every mapping section the Trophic Index of Macrophytes (TIM) was calculated. By cluster analysis the mapping sections were grouped into three zones which differed in macrophyte vegetation. These differences are not associated with varying nutrient concentrations but are mainly due to differences in the degree of shading. In spite of the characterisation of the lake Wörthsee as oligo‐mesotrophic the river Inninger Bach, which represents the outflow of the lake Wörthsee, is classified as meso‐eutrophic by the Trophic Index of Macrophytes TIM. The increased trophic state of the river compared to the lake is caused by the river Krebsbach, a small tributary flowing into the river Inninger Bach only a short stretch downstream of its outflow of the lake Wörthsee. The river Krebsbach shows a total phosphorus concentration of about 56 μg/L P. The input of diaspores of submerged macrophytes both from the oligo‐mesotrophic lake Wörthsee and the eutrophic river Krebsbach leads to a submerged vegetation comprising species with different optima in regard to the trophic situation. This is one of the main reasons why many values of the TIM have to be labeled as “not sure”.  相似文献   

6.
We used carbon and nitrogen stable isotope analyses to assess the relative contributions from pelagic and littoral energy sources to higher trophic levels in a lake ecosystem before and after a major food web perturbation. The food web structure of the lake was altered when the population sizes of the most abundant fish species (small perch, roach and bream) were reduced during an attempt to improve water quality by biomanipulation. Fish removal was followed by dense year classes of young fish, which subsequently increased the utilisation of pelagic resources. This was reflected as a decrease in relative energy contribution from littoral sources and also led to more distinct pelagic and littoral food chains after fish removal. Community metrics calculated from stable isotope data indicated increased trophic diversity and occupied niche area, and reduced trophic redundancy in the food web. However, only minor changes were observed in fish trophic positions, although roach and pike occupied slightly lower trophic positions after fish removal. Despite the Jyväsjärvi ecosystem becoming more dependent on pelagic energy after fish removals, the littoral energy contribution was still substantial, particularly to certain fish species. Hence, our results support recent arguments for the importance of benthic production in lake ecosystems. More generally, our results illustrate how large-scale perturbations of food web structure can alter energy flow patterns through an entire ecosystem.  相似文献   

7.
对太湖梅梁湾T0905岩芯摇蚊幼虫亚化石组合进行了分析,探讨了自1940年以来梅梁湾湖区摇蚊幼虫对营养盐演化的响应.结果表明,梅梁湾湖区摇蚊组合变化以1970年为分界点,经历了由Tanytarsus为优势属种向富营养属种Chironomus plumosus-type和Microchironomus为优势组合转变的过程...  相似文献   

8.
Trichonis Lake is the largest natural freshwater body in Greece with a surface area of 97 km2. It receives pollutants from numerous anthropogenic activities, especially from intensive agricultural practices, urban sewages, stock grazing land and small industries. In this study, hydrologic and chemical parameters are assessed during two periods (1990–1991) and (2001–2002) to evaluate the effects of the climatic changes on phosphorous trends and consequently on the trophic status of Trichonis Lake. Even though large quantities of fertilizers are applied in the lake's catchment, phosphorus loads are still in the permissible level as estimated according to Vollenweider's relationship based on total phosphorus concentration. Due to relatively higher rainfall precipitation during the last years, an increased amount of the phosphorus entering into the lake system is flushed out, thus keeping the trophic status of the lake in oligotrophic levels. In contrast, lower rainfall rates during the first period (1990–1991) have led to the decrease in phosphorus flush out and its detainment into the lake water and sediment resulting to mesotrophic conditions. As the trophic status of the lake is mainly hydrologically dependent and thus unpredictable, effective management plans targeting the elimination of nutrient pollution loadings are necessary.  相似文献   

9.
流域植被覆盖状况对于水源地生态环境保护具有重要的指示作用.当前的水质目标管理不仅要着眼于湖库水质参数控制,更应该从整个流域的角度维系生态平衡.在此背景下,依托长时间序列MODIS遥感数据对千岛湖流域2001-2013年植被覆盖状况进行监测,采用最小二乘法趋势分析和Mann-Kendall显著性检验方法分析了千岛湖流域植被的空间分布特征、时间变化特征与长期变化趋势.研究表明该方法能够有效地监测流域植被覆盖的时空动态变化:1)从空间分布上来看,千岛湖流域植被覆盖状况整体较好,但同时也发现受人为干扰较大的地域如河、湖附近的城镇建设用地、农业用地以及园地,其NDVI值明显低于自然林地;2)从时间变化特征上看,2001-2013年千岛湖流域植被年际NDVI在0.69~0.73之间波动,且近年来有增长趋势,年内季节性NDVI动态分析表明高时间分辨率的MODIS数据能够用来区分常绿植被与落叶植被的物候特征,以分析不同植被类型对流域氮、磷流失的风险差异;3)从变化趋势上看,2001-2013年植被覆盖状况改善的区域远大于退化的区域,其中改善区域约占流域面积的55.90%,呈现出一定退化状态的区域约占29.60%(严重退化区域仅占3.97%),而相对稳定不变区域约占14.51%.经与气温与降水等气候因子进行相关性分析表明,植被NDVI与气温呈显著正相关,而降水则不敏感,说明气温是研究区植被生长的主导气候因子.同时发现,人类活动对局部植被变化影响较大.研究结果可为流域水资源与生态环境保护提供空间数据支撑.  相似文献   

10.
Isoetids, as indicators of near-pristine softwater lakes, have a high priority in national and international (European Water Directive Framework) assessments of ecological lake quality. Our main goal was to identify the most important environmental factors that influence the composition of plant communities and specifically determine the presence and abundance of the isoetid Lobelia dortmanna in NW European softwater lakes. Geographical position and composition of surface water, porewater, sediment and plant communities were examined in 39 lakes in four regions (The Netherlands, Denmark, West Norway and East Norway) distributed over a 1,200-km long distance. We confirmed that lake location was accompanied by significant changes in environmental variables between NW European lakes. Lake location was the single most important determinant of vegetation composition and it had significant individual contributions independent of the coupling to environmental variables. This influence of location was supported by a significant decline of community similarity with geographical distance between pairs of lakes at regional, inter-regional and international scales. Combining the geographical position with environmental variables for surface water, porewater and sediment significantly improved prediction of vegetation composition. Specifically, the combination of latitude, surface water alkalinity, porewater phosphate and redox potential offered the highest correlation (BIO ENV correlation 0.66) to vegetation composition. This complex analysis can also account for high sediment variability in the littoral zone of individual lakes, by using site-specific physico-chemical sediment factors, and offer better predictions of vegetation composition when lake water chemistry is relatively homogeneous among lakes within regions.  相似文献   

11.
长江中下游典型湖泊营养盐历史变化模拟   总被引:2,自引:1,他引:1  
郭娅  于革 《湖泊科学》2016,28(4):875-886
湖泊营养盐变化在自然条件下受到气候水文因素控制,同时受到湖泊生态系统生物群落作用和反馈.作为动力机制探讨,本文试图基于水文和生态动力学方法,分别构建气候-流域水文作用于湖泊营养盐的外源模式和湖泊生物群落作用于湖泊营养盐的內源模式.针对长江中下游典型湖泊,经过控制实验和率定,发现营养盐模拟与观测数据在时间序列上达到90%百分位的正相关,因此用来模拟1640 1840 A.D.期间的营养盐演变历史.研究表明:(1)模拟的湖泊营养盐变化与沉积钻孔揭示的历史营养盐变化基本一致,沉积记录与模式模拟的7个湖泊的营养盐变化均显著相关;(2)气候因素是湖泊营养盐历史演变的主控因子,来自于湖泊生物群落的反馈作用贡献约占40%;(3)在温度和降水因子的驱动下,湖泊营养盐历史变化主要受降水控制,在极端干旱时期,60%的营养盐变化同步响应于降水变化.同时,面积在400 km2以下的湖泊营养盐对气候变化的响应比2000 km2以上的大湖更为敏感.研究结果对长江中下游湖泊营养状态的长期变化机理认识和趋势控制提供科学依据.  相似文献   

12.
Species composition, relative abundance and life history of unionid mussels are compared between 1982–86 and 1915–19 in Lake Hallwil and the outflowing brook. The recent samples of unionid mussels were collected by divers, whereas the older ones were from a shell collection. The motivation for the comparison was that the trophic degree of the lake has changed since the beginning of the century from mesotrophic to highly eutrophic. The effects of this increased trophic degree of the lake on the life cycle of unionid mussels is discussed. Predictions are made about species composition and life history in the context of the ongoing lake restoration by the authorities.  相似文献   

13.
近年来云南高原湖泊面临富营养化、渔业活动增强等多重环境压力的叠加影响,对湖泊的有效治理与生态修复急需对多重压力下生态系统的响应模式进行系统了解.现有研究表明在系统生产力和捕食压力的不同配置下,湖泊系统主要组成(如浮游动物)的响应特征可能出现差异且捕食压力可能随营养水平的变化而改变,目前对云南湖泊生态系统的研究主要集中于单一环境压力下的生态响应.本研究以目前分别处于重富营养和中-贫营养水平的滇池和抚仙湖为研究对象,应用湖泊沉积物记录进行多指标分析,探讨受外来鱼类影响下两个大型湖泊浮游动物长期响应模式的异同.通过象鼻溞生物量与个体大小等指标,重建了近百年来滇池与抚仙湖典型浮游动物的变化历史,结果表明随着湖泊生产力水平(如沉积物色素生产量)的增加,2个湖泊中象鼻溞生物量显著增加,同时物种相对组成出现明显变化(如Bosmina longispina被B.longirostris取代),指示湖泊上行效应对浮游动物的控制作用.同时象鼻溞的生物量、壳长与触角长度的变化在1960s与1980s有明显降低的趋势,与同期外来鱼类(如银鱼)引入与渔业产量增加的时间一致.进一步应用多变量回归分析与方差分解方法来定量评价上行与下行效应对象鼻溞生物量变化的驱动强度,结果表明富营养化(沉积物色素)和捕食作用(象鼻溞壳长)对浮游动物长期变化的驱动强度比较相似(分别解释了生物量变化的77.25%和83.59%),然而在滇池下行效应对象鼻溞生物量的独立影响比在贫营养的抚仙湖中更强(分别为15.46%和10.39%),上行效应对象鼻溞生物量的影响在抚仙湖要明显强于滇池(分别为69.74%和19.67%),而在滇池上行与下行效应的相互作用强度明显强于抚仙湖(分别为42.12%和3.46%).结果表明随着湖泊营养水平的升高,浮游动物的生物量在2个湖泊中均显著增加,而外来鱼类(如太湖新银鱼)的引入和经济鱼类数量的增加加剧了对浮游动物的捕食压力,造成了浮游动物的生物量降低和个体减小.但在快速富营养化的滇池,对浮游动物的捕食压力随营养水平的变化出现较强的依赖性,而在总体处于中-贫营养水平的抚仙湖中此相互作用较弱.结果表明在不同营养水平的大型湖泊中,营养水平的变化幅度可以导致鱼类捕食压力的差异性变化,指示了对鱼类捕食压力的评价和浮游动物长期变化的特征分析需要考虑湖泊的营养水平与富营养化过程的差异.总之,富营养化和外来鱼类的引入导致了高原湖泊生态系统的快速响应与结构变化,因此对高原湖泊的生态修复需要考虑湖泊营养水平对生态系统结构与食物链作用的影响.  相似文献   

14.
Loch Vale watershed was instrumented in 1983 with initial support from the National Acid Precipitation Assessment Program to ask whether ecosystems of Rocky Mountain National Park (RMNP) were affected by acidic atmospheric deposition. Research and monitoring activities were expanded in 1991 by the U.S. Geological Survey Water, Energy, and Biogeochemical Budgets program to understand the processes, and their interactions, controlling water, energy, and biogeochemical fluxes. With help from many collaborators we have characterized trends and patterns in atmospheric deposition, climate, and hydrology, including glaciers and other ice features. Instead of acidic deposition, we documented high atmospheric inputs of reactive nitrogen (Nr), and have studied the ecological consequences in soils, surface water, and vegetation. Using paleolimnology, we documented the onset of human-caused change to lake primary producers ca. 1950 in response to increased Nr deposition and warming. Our results provided the basis for the Colorado Nitrogen Deposition Reduction Plan, a state policy that aims to reduce Nr emissions to protect resources in RMNP by 2032. Carbon cycle research revealed mountain wetlands now release more carbon than they store, and respiration and methane flux occurs even during winter through deep snow packs. Trend analyses found export of Nr to be closely tied to atmospheric inputs, but can lag in response to drought. Current research explores consequences of the combination of warming, changes in precipitation dynamics, and atmospheric deposition of Nr and dust on stream and lake CO2 dynamics, lake biology and trophic state, and soil carbon composition. Dramatic increases in park visitors have prompted studies on the effects of recreational use on water quality. New tools such as remote sensing and high frequency instream water quality sensors are being applied to lake and stream studies. Monitoring, combined with experiments, models, and spatial comparisons is an essential foundation for science-based resource management.  相似文献   

15.
Ash Kumar Rai 《湖泊科学》1998,10(S1):181-201
Harnessing the natural resources is one of the basis of natural economy in developing countries. The wise use of such resources is very important to sustain the balance between immediate benefits and maintenance of the ecosystem. In Phewa, Begnas and Rupa lakes of Pokhara Valley, plankton feeding fish farming in net cage,enclosure and open water stocking is one of the effective example of natural resources utilisation which sustains a number of households in surrounding lakes for economic activities. These lakes are also used for drinking water, hydroelectricity, irrigation and recreation etc. However, the understanding of trophic status of the lakes is very important for long term sustainable use of the lakes in harmony with human activities. Here, we present the trophic status of three lakes of Pokhara Valley and discuss the impacts of human and natural activities on the trophic status of the lake. The study shows that heavy rain fall in the valley during monsoon is one of the strongest natural forces which flush out the accumulated nutrients from the lakes and migrate the eutrophication processes. Recommendations for sustainable use of lake water have also been discussed.  相似文献   

16.
The study of the qualitative and quantitative distribution of macrophytic vegetation of Bienne lake is realized with the help of colour aerial photographies and verifications on the field. This distribution is discussed in relation to the trophic level of the lake and compared with that of the Geneva lake and Morat lake.  相似文献   

17.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:29,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

18.
运用湖泊营养状态指数判断湖泊的富营养化状态,并根据湖泊的水质、沉积物和水生生物群落的现状和特点,运用主观赋权法中的层次分析法和客观赋权法中的熵权法结合模糊综合评价法,对长江中游地区江汉湖群37个湖泊的水生态系统进行健康状态评价.对湖泊富营养化的调查结果表明,海口湖处于中营养状态,18个湖泊处于富营养化状态,18个湖泊处于超富营养化状态.湖泊生态系统健康评价的研究结果表明,37个湖泊中,处于健康状况"优"的湖泊只有海口湖,处于健康状况"良"的湖泊有5个,分别为东西汊湖、花马湖、梁子湖、童家湖和涨渡湖,其余31个湖泊均处于健康状况"差"的状态.经过与湖泊营养状态指数的对照,本研究结果表明,由主观赋权的专家评分的层次分析法结合模糊综合评价法对江汉湖群湖泊水生态健康状态的评价效果相比客观赋权的熵权模糊综合评价法更贴合实际.  相似文献   

19.
1960年以来太湖水生植被演变   总被引:9,自引:5,他引:4  
太湖的富营养化污染日益严重,针对太湖水生植被的研究工作非常重要,然而全面的太湖水生植被调查已经有将近二十年未见报道.基于2014年夏季全湖水生植被调查结果,结合历史资料,比较分析1960年以来太湖水生植被演变情况.结果表明,1960年以来,共有23种水生植物从太湖消失,其中1981、1997和2014年分别消失7、4和12种.从分布区面积来看,1960年以来太湖水生植被总体呈北部湖区水生植被消失,东北部、东部及南部湖区水生植被分布区面积持续扩张的态势,1981年全湖水生植被分布区面积占8%,到2014年已经有33.82%的水面有水生植被分布.从生物量组成来看,太湖水生植被先升后降,从1960年的10×104 t,持续上升到1988年的44.72×104 t,1997年下降到36×104 t,2014年进一步下降到29.09×104 t.但挺水植被以外的水生植被,尤其是浮叶植被的生物量一直保持上升态势.总生物量的下降与东太湖挺水植被大面积消失有关,到2014年全湖挺水植被生物量比重仅占5.15%,东太湖沼泽化问题已不复存在.从群落组成变化情况来看,苦草(Vallisneria natans)群落分布区面积锐减,马来眼子菜(Potamogeton malaianus)和荇菜(Nymphoides peltatum)分布区持续扩张.目前太湖水生植被管理面临的主要问题是北部湖区水生植被恢复和东部湖区水生植被过量生长.  相似文献   

20.
湖泊富营养化综合评价方法   总被引:81,自引:9,他引:72  
蔡庆华 《湖泊科学》1997,9(1):89-94
从对湖泊富营养化评价的一般方法入手,综述了国内外有关湖泊富养化综合评价的一些方法,提出:营养状态指数法由于可对湖泊营养状态进行连续的数值化的分级,从而为湖泊富营养化机理的定量研究提供了坚实的基础,应是今后湖泊富营养化评价中的主要方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号