首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
T形截面柱的非线性分析   总被引:6,自引:0,他引:6  
编制了适用于任意截面的钢筋混凝土压弯构件截面的弯矩—曲率非线性分析程序。在此基础上,计算了考虑非线性变形的异形柱弯矩—曲率关系,并研究了翼缘、轴压比等因素对异形柱强度和延性的影响,可作为异形柱研究的参考依据。  相似文献   

2.
进行了9个钢纤维高强混凝土框架边节点的抗震试验.通过测试钢纤维高强混凝土框架边节点梁端的荷载-变形滞回曲线和梁相关截面的横向变形,研究了钢纤维体积率、掺加范围和轴压比等因素对高强混凝土框架边节点梁截面曲率延性和滞回曲线的影响.结果表明,钢纤维能改善高强混凝土框架边节点梁截面延性,显著提高高强混凝土框架节点的抗震延性和耗能能力,对解决节点箍筋密集、改善施工条件具有明显效果.  相似文献   

3.
The seismic damages commonly observed on beam–column joints of old reinforced concrete structures, built with plain bars and without proper detailing, justifies the need to further study the behaviour of this type of structures. The response of these structures when loaded cyclically, as occurs during the earthquakes, is partially controlled by the bond properties between the reinforcing bars and the surrounding concrete. This paper presents the results of an experimental campaign of unidirectional cyclic tests carried out on six full‐scale beam–column joints built with plain bars. These joint specimens are representative of existing reinforced concrete structures, that is, built without adequate reinforcement detailing for seismic demands. For comparison, an additional specimen is built with deformed bars and tested. The seven specimens are designed and detailed to allow the investigation of the influence of bond properties, lapping of the longitudinal bars in columns and beams, bent‐up bars in the beams, slab contribution and concrete strength. The lateral force–drift relationships, global dissipated energy evolution, contribution of the joint, beams and columns to the global dissipated energy, ductility, equivalent damping, final damage observed, homogenized reinforced concrete damage index, displacement components, curvature evolutions and Eurocode requirements are presented and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The theoretical background and capabilities of a program for stochastic analysis of plane frames of reinforced concrete, under seismic excitation with emphasis on the analysis of stiffness degradation due to severe plastic deformations, are presented. As a constitutive moment-curvature relation an extended version of the model of Roufaiel-Meyer, taking into account the transition from uncracked to cracked sections, has been applied. Further, a different mechanism for the strength deterioration is utilized.Different positive and negative yield moments for unsymmetrical cross-sections may be specified, as well as moments and axial forces due to gravity loads or due to residual stresses from plastic deformations during previous earthquake excitations. The effect of axial forces on the moment-curvature relationship is taken approximately into account through a modified initial yield moment. The P − σ effect of the axial force is considered by the introduction of a global geometrical stiffness matrix. The finite length of plastic length of plastic end zones is taken into account, controlling the plasticity at the end sections and at three internal cross-sections of the member. Incremental bending stiffness between these control sections is determined by linear interpolation. The stochastic earthquake excitation may be specified either as a standardized acceleration time-series, applied at the earth-surface and scaled with stochastically varying maximum acceleration and duration, or as an intensity modulated Gaussian white noise process filtered through a Kanai-Tajimi filter. Based on Monte-Carlo simulation the program calculates the mean values and the standard deviations of storey displacements and bending moments in critical sections, as well as the mean values, standard deviations and correlation coefficients of various maximum softening damage indicators, defined from time-averaged first and second eigen-periods.In order to reduce the calculation time during extensive simulations, a system reduction scheme has been implemented, based on a truncated expansion of external nodal point degrees-of-freedom in the linear eigenmodes of the initial undamaged structure. Further, only beam-elements, with non-linear behaviour are treated as nonlinear elements. These elements are identified adaptively during the simulation process. In order to demonstrate the ability of the program to predict the actual seismic response of reinforced concrete structures, computed results have been successfully compared to the experimentally recorded results of a 10-storey 4-bay reinforced concrete model.  相似文献   

5.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
型钢高强混凝土柱抗震性能的试验研究   总被引:5,自引:3,他引:5  
通过14根型钢高强混凝土柱的低周反复加载试验,得到了型钢高强混凝土柱在压、弯、剪共同作用下的主要破坏形态,并探讨了剪跨比、配箍率、混凝土强度对型钢高强混凝土柱滞回曲线、耗能能力以及延性的影响。试验结果表明,型钢高强混凝土柱具有抵御二次地震作用的能力,其抗震性能优于钢筋混凝土柱。  相似文献   

7.
The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement-driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment–curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper proposes an enhancement to the current strength and confinement‐based design of transverse reinforcement in rectangular and circular reinforced concrete members to ensure that the flexural strength of reinforced concrete sections does not degrade excessively due to buckling of longitudinal bars until the desired level of plastic deformation is achieved. Antibuckling design criteria are developed based on a popular bar buckling model that uses a bar buckling parameter (combining the bar diameter, yield strength, and buckling length) to solely describe the bar buckling behavior. The value of buckling parameter that limits the buckling‐induced stress loss to 15% in compression bars at the strain corresponding to the design ductility is determined. For a bar of known diameter and yield strength, the maximum allowable buckling length can then be determined, which serves as the maximum limit for the tie/stirrup/hoop spacing. Lateral stiffness required to restrain the buckling tendency of main bars at the locations of the ties/stirrups/hoops depends on the flexural rigidity of the main bars and the buckling length (equal to or multiple of tie/hoop/stirrup spacing), whereas the antibuckling stiffness (ie, resistance) provided by the ties/stirrups/hoops depends on their size, number, and arrangement. Using the above concept, design recommendations for the amount, arrangement, and spacing of rectangular and circular ties/stirrups/hoops are then established to ensure that the antibuckling stiffness of the provided transverse reinforcement is greater than the stiffness required to restrain the buckling‐prone main bars. Key aspects of the developed method are verified using experimental tests from literature.  相似文献   

9.
圆钢管混凝土压弯构件荷载一位移滞回性能分析   总被引:6,自引:1,他引:6  
在空钢管中填充混凝土可以避免或延缓钢管过早地发生局部屈曲,并有效地提高构件的延性,从而增强构件的抗震性能,本文在对圆钢管混凝土构件弯矩-曲率关系分析的基础上,分析了圆钢管混凝土压弯构件P-△滞回关系曲线,理论计算结果得到国内外大量结果的验证,基于理论分析模型,分析了各参,如构件轴压比,长细比,截面含钢率和材料强度等因素对圆钢管混凝土压变变构件P-△滞回关系曲线的影响,最后,确定了圆钢管混凝土压弯构件P-△恢复力学模型和延性系数的简化计算方法。  相似文献   

10.
方钢管混凝土柱的延性系数   总被引:13,自引:1,他引:12  
在空钢管中填充混凝土可以避免或延缓钢管早地发生局部屈曲,可以有效地提高构件的延性,从而增强构件的抗震性能,本文研究钢管混凝土桩的延性性能,本文首先提出方钢管混凝土柱延性系数的计算方法,然后,在大规模参数分析结构的基础上,考察了轴压比,长细比,含钢率,钢材屈服极限和混凝土抗压强度等参数对延性系数的影响规律,本文的研究成果可供有关工程实践参考。  相似文献   

11.
This paper examined the statistical relationship between the curvature ductility demands of columns and the global displacement ductility demands of reinforced concrete (RC) frame structures when subjected to earthquakes. Elements with a designated moment–curvature relationship were adopted for both beam and column elements, and five-story and ten-story RC frame numerical structures were established. Using pushover analysis and earthquake nonlinear dynamic time-history analysis, the maximum global displacement ductility demands of the structure and the maximum curvature ductility demands of the columns were determined. The effects of the spectral acceleration and the strong column factor on ductility demands were analyzed, and the quantitative relationship between the curvature ductility demands of columns and the global displacement ductility demands of frame structures were established. Moreover, the validity of the established relationship was further tested and verified through a real-world application. The results show that the maximum curvature ductility demands of the columns and the maximum displacement ductility demands of the structure were positively associated with the spectral acceleration and negatively associated with the strong column factor. A proposed first-degree linear relationship between curvature ductility of columns and structural displacement ductility in RC frame structures with two parameters was obtained by curve fitting, while considering the effect of the strong column factor. The model was highly correlated with the sampling analysis data. Applying the empirical model established in this study is a simple and effective means to guide the design of ductility and the assessment of RC frame columns.  相似文献   

12.
通过5个高延性混凝土(HDC)加固震损混凝土短柱偏心受压性能试验,研究了HDC对加固震损混凝土短柱的偏压承载能力和变形能力的影响程度.试验结果表明,采用HDC加固震损偏心混凝土短柱,可有效改善小偏心受压构件的脆性破坏,且受压承载能力有明显提高,峰值荷载提高了49%~63%,与峰值荷载对应地位移增大了34%~39%,极限...  相似文献   

13.
应用碳纤维布增强钢筋混凝土柱抗震能力的研究   总被引:20,自引:5,他引:15  
本文通过8根钢筋混凝土柱在周期反复荷载作用下受力性能的试验研究,验证了使用碳纤维布包裹钢筋混土柱来提高其延性这种补强加固方法的有效性,本文分析了轴压比,混凝土强度,碳纤维布强度以及碳纤维布的包裹范围,包裹层数等因素对抗震加固效果的影响,最后,还对碳纤维布加固钢筋混凝土柱使其延性提高的机理进行了分析。  相似文献   

14.
混凝土挡块震害是桥梁震害的主要形式之一,型钢挡块具有塑性耗能和方便修复的特点。为便于工程设计计算,针对新型H型钢弹塑性挡块的力学性能,从H型钢截面的截面应力入手,利用应力弯矩关系,采用弯矩曲率分析方法,建立了H型钢弹塑性挡块弯矩-曲率和力-位移的计算公式,进而建立了H型钢挡块屈服前刚度、屈服荷载、屈服位移和屈服后刚度等关键力学参数的计算公式,并推导了H型钢挡块简化双线性滞回曲线。同时将上述建立的参数理论公式计算结果与有限元纤维模型法分析结果进行了对比,验证了所提出的计算方法的可靠性。  相似文献   

15.
A framed tube, consisting of closely spaced columns connected by deep spandrel beams, is designed in reinforced concrete for building code loads. The members of the frame are proportioned using strength concepts. A planar model of the tube is developed and its behaviour is compared to that of the three-dimensional structure. The planar model is then used to evaluate the inelastic behaviour of the framed tube when subjected to strong ground motion. The effects of the finite element discretization and the ground motion characteristics are investigated. Results show that ductility requirements of the spandrel beams are minimum at the top and maximum at the bottom of the tube. Ductility requirements in the columns are well controlled and are within acceptable limits. Participation of the higher modes of vibration is significant and requires increasing damping. It also is shown that the increased stiffness due to finite member sizes at a joint cannot be neglected.  相似文献   

16.
为探究部分预制型钢混凝土梁的抗震性能,进行了7个部分预制型钢混凝土梁试件的拟静力试验,研究了试件的裂缝开展过程、破坏形态、承载能力、延性、耗能能力和刚度退化情况,探究预制截面模式、剪跨比和后浇混凝土强度等对其抗震能力的影响。结果表明:地震作用下,该7个试件力学性能较好,剪跨比是影响试件抗震性能的首要要素,剪跨比大的试件耗能能力强,型钢约束部分混凝土可以提高试件的耗能能力,截面模式和后浇混凝土强度对抗震性能影响不大。  相似文献   

17.
钢管混凝土桥墩抗震性能试验研究   总被引:1,自引:0,他引:1  
臧华  刘钊  李红英  涂永明 《地震学刊》2010,(4):442-446,451
为研究钢管混凝土桥墩的抗震性能,对钢管混凝土桥墩和钢筋混凝土桥墩进行了拟静力对比试验研究。根据试件的破坏发展过程以及各试件的滞回曲线和骨架曲线,分析了其滞回性能、耗能能力、延性、强度退化及刚度退化等抗震性能。试验结果表明,钢管混凝土桥墩的抗震性能明显好于钢筋混凝土桥墩。在含钢率和轴力相同的情况下,钢管混凝土桥墩的滞回曲线比钢筋混凝土桥墩丰满得多,前者的耗能能力约为后者的4.46倍,钢管混凝土桥墩的延性大于钢筋混凝土桥墩;随着轴压比的增大,钢管混凝土桥墩延性有所下降,强度退化加快,但对其刚度退化的影响不大。  相似文献   

18.
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.  相似文献   

19.
钢筋混凝土核心筒体抗震性能试验研究   总被引:17,自引:5,他引:17  
本文对两组五个钢筋混凝土核心筒试件进行了低周反复荷载试验,研究了不同轴压比和剪跨比的核心筒破坏机理、承载能力、延性和耗能能力等方面的抗震性能。结果表明,轴压比对核心筒的抗震性能有较大影响。  相似文献   

20.
The present study focuses on the influence of repeated earthquakes on the maximum story ductility demands of three-dimensional inelastic concrete frames. A comprehensive assessment is conducted using generic frames with 3-, 6-, 12-, and 18-story structures. Each is assumed to have behaviour factors of 1.5, 2, 4, and 6 referring to Eurocode 8. Stiffness and strength degrading hysteresis rule to represent reinforced concrete structure is considered in the plastic hinge of members. Twenty ground motions are selected, and single, double, and triple events of synthetic repeated earthquakes are considered. Some interesting findings are provided showing that repeated earthquakes significantly increase the story ductility demand of inelastic concrete frames. On average, relative increment of maximum story ductility demand is experienced 1.4 and 1.3 times when double and triple events of repeated earthquakes are induced, respectively. Empirical relationships are also provided to predict these increments where their efficiency is presented examining characteristic 3- and 8-story reinforced concrete buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号