首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Hianana Volcanics consist of bedded tuff and dacitic lava that form a locally mappable unit within the extensive, Late Permian silicic volcanic sequence of northeastern New South Wales. Principal components of the bedded tuff are crystal and volcanic lithic fragments ranging from coarse ash to lapilli, accompanied by variable amounts of fine ash matrix. Well denned plane parallel thin bedding is characteristic. Sandwave bed forms, including low‐angle cross‐beds and wavy beds, are confined to an area of 2–3 km2 coinciding with the thickest sections (70 m) of bedded tuff. A high‐aspect ratio flow of porphyritic dacitic lava overlies the bedded tuff in the same area. The setting, lithofacies, extent and geometry of the bedded tuffs of the Hianana Volcanics are comparable with modern tuff rings which are composed of the deposits from base surges generated by explosive phreatomagmatic eruptions at primary volcanic vents. Many of these have also discharged lava late in their activity. Proximal parts of the Hianana tuff ring were buried by the porphyritic lava after the phreatomagmatic eruptions had ceased. In more distal sections, the bedded tuff is less than 10 m thick and dominantly comprises fine grained, plane parallel, very thin beds and laminae; these features suggest an origin by fallout from ash clouds that accompanied the phreatomagmatic eruptions. The distal ash was covered and preserved from erosion by a layer of welded ignimbrite, the source of which is unknown.  相似文献   

2.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

3.
Sedimentation and welding processes of the high temperature dilute pyroclastic density currents and fallout erupted at 7.3 ka from the Kikai caldera are discussed based on the stratigraphy, texture, lithofacies characteristics, and components of the resulting deposits. The welded eruptive deposits, Unit B, were produced during the column collapse phase, following a large plinian eruption and preceding an ignimbrite eruption, and can be divided into two subunits, Units Bl and Bu. Unit Bl is primarily deposited in topographic depressions on proximal islands, and consists of multiple thin (< 1 m) flow units with stratified and cross-stratified facies with various degrees of welding. Each thin unit appears as a single aggradational unit, composed of a lower lithic-rich layer or pod and an upper welded pumice-rich layer. Lithic-rich parts are fines-depleted and are composed of altered country rock, fresh andesite lava, obsidian clasts with chilled margins, and boulders. The overlying Unit Bu shows densely welded stratified facies, composed of alternating lithic-rich and pumice-rich layers. The layers mantle lower units and are sometimes viscously deformed by ballistics. The sedimentary characteristics of Unit Bl such as welded stratified or cross-stratified facies indicate that high temperature dilute pyroclastic density currents were repeatedly generated from limited magma-water interactions. It is thought that dense brittle particles were segregated in a turbulent current and were immediately buried by deposition of hot, lighter pumice-rich particles, and that this process repeated many times. It is also suggested that the depositional temperature of eruptive materials was high and the eruptive style changed from a normal plinian eruption, through surge-generating explosions (Unit Bl), into an agglutinate-dominated fallout eruption (Unit Bu). On the basis of field data, welded pyroclastic surge deposits could be produced only under specific conditions, such as (1) rapid accumulation of pyroclastic particles sufficiently hot to weld instantaneously upon deposition, and (2) elastic particles' interactions with substrate deformation. These physical conditions may be achieved within high temperature and highly energetic pyroclastic density currents produced by large-scale explosive eruptions.  相似文献   

4.
Montaña Pelada is a basaltic Pleistocene tuff ring located in the SE of Tenerife and it is composed of two edifices each with its distinct internal depositional distribution. A detailed stratigraphic analysis was carried out and ten facies were recognized. Deposits interpretation has revealed that water/magma ratio changes controlled the eruptive evolution, distinguishing three main stages of the eruption. Pyroclastic density currents were formed during the initial phreatomagmatic stages depositing the proximal facies, and transformed into turbulent dry surges during the second stage, indicating a reduction in the water/magma ratio. After deposition of these surges, the opening of an N–S fracture drove the eruption northwards creating a new edifice. The new hydrological conditions allowed the input of phreatic water, which resulted in high proportion of accidental lithics within characteristic of the deposits, increasing the water/magma ratio and reducing the fragmentation degree as can be recognized in the third stage. The evolution of the second tuff was similar, starting with radial-diluted pyroclastic surges and finishing with base surges deposits, suggesting lower water/magma ratio and higher fragmentation degree. Whereas the south cone originates dry pyroclastic surges and many tuff facies, northern one does not go beyond the deposition of a laminated tuff.  相似文献   

5.
Rhyolite eruptions in Iceland mostly take place at long-lived central volcanoes, examples of which are found associated with each of the present-day rift-zone ice caps. Subglacial eruptions at Kerlingarfjöll central volcano produced rhyolite tuyas that are notable for their exposures of early-erupted pyroclastic material. Observations from a number of these edifices are synthesised into a general model for explosive rhyolite tuya formation. Eruptions begin with violent phreatomagmatic explosions that generate massive tuff (mT), but the influence of water quickly declines, leading to the formation of massive lapilli-tuffs (mLT) containing magmatically-fragmented vesicular pumice and ash. These are deposited rapidly near the vent, probably by moist pyroclastic density currents, confined by ice but not within a meltwater lake. The explosive-effusive transition is controlled by the ascent rate and gas content of the magma. An unusual obsidian-rich massive lapilli-tuff lithofacies (omLT) is identified and interpreted as pyroclastic material that was intruded into gas-fluidised deposits at the explosive-effusive transition. The effusive phase of eruption involves the emplacement of intrusions and lava caps. Intrusions of lava into the early-erupted phreatomagmatic deposits are characterised by peperitic margins and the formation of hyaloclastite. Intrusions into stratigraphically higher levels of the pyroclastic material show more limited interaction with the host tephra and have microcrystalline cores. Large lava bodies with columnar-jointed margins cap the tuyas and have intrusive basal contacts with the tephras. The main influence of the ice is to confine the rhyolite eruptive products to immediately above the vent region. This is in contrast to subglacial basaltic tuya-forming eruptions, which are characterised by the formation of meltwater lakes, phreatomagmatic fragmentation and subaqueous deposition. The lack of meltwater storage may reduce the potential for large jökulhlaups.  相似文献   

6.
长白山火山历史上最大火山爆发火山碎屑物层序与分布   总被引:11,自引:0,他引:11  
长白山火山历史时期规模最大的火山喷发发生在1199~1200年。这次大爆发分为两次普林尼(Plinian)式喷发:第一次(早期)喷发称赤峰期,第二次(晚期)喷发称园池期。赤峰期喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)—火山碎屑流(长白火山碎屑流层)—火山泥流(二道白河火山泥流层),主要由火山碎屑流诱发火山泥流;园池期火山喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)—火山碎屑流(冰场火山碎屑流层)。两次普林尼式喷发空落火山碎屑物总量约120 km3,长白火山碎屑流层总量约8 km3,冰场火山碎屑流层总量约0.5 km3,火山泥流堆积总量约为2 km3。主要论述了这次大爆发的火山喷发碎屑堆积物的层序和分布。  相似文献   

7.
The 20–16 ka Monte Guardia sequence of Lipari island, southern Italy, is a complex succession of silicic pyroclastic surge deposits produced, in part, by hydromagmatic explosions near sea level. Most surges were directed to the east, north-east and north of the vent, and climbed the 12° southern slopes of Monte Sant’Angelo in the central part of the island. A series of thin, distinctive key bed-sets containing oxidized ash and accretionary lapilli allow a detailed correlation of sections and the lateral tracing of deposits of single pyroclastic surges across the island. Facies analysis reveals that the proximal-to-distal facies changes are different from those suggested by a previous study based on a statistical approach to lateral facies distribution. Single dry surge deposits evolve downcurrent from (1) beds of disorganized medium- to coarse-grained lapilli containing scattered blocks, to (2) bipartite disorganized/stratified beds of fine- to coarse-grained lapilli with ash matrix, to (3) dunes formed of coarse-grained ash to medium-grained lapilli, to (4) planar beds of fine-grained lapilli. This facies sequence is similar to published models for some Korean surge deposits, and records decelerating surges which experienced a downflow decrease in turbulence, particle concentration and suspended-load fall-out rate, and an increase in traction processes. As the Monte Guardia surges climbed the opposing slopes of Monte Sant'Angelo, they bifurcated into eastern and western tongues, which experienced rapid deceleration leading to a rapid downcurrent thinning and fining of the surge deposits. Two fluid-dynamical approaches suggest that Monte Guardia surges travelled at speeds of more than 75–85 m s -1 before climbing Monte Sant’Angelo. Flows with this vigour and distribution are capable of destroying animal and plant populations on Lipari.  相似文献   

8.
Jeju Island is a Quaternary shield volcano built upon the Yellow Sea continental shelf off the Korean Peninsula. Decades of borehole drilling reveals that the shield‐forming lavas of the island are underlain by extensive hydrovolcanic deposits (the Seoguipo Formation), which are about 100 m thick and show diverse depositional features. This study provides criteria for distinguishing between hydrovolcanic deposits formed by primary (pyroclastic) and secondary (resedimentation) processes in subaerial and submarine settings based on the observations of several selected cores from the formation. Five facies associations are identified, including: (i) primary hydrovolcanic deposits formed by pyroclastic surges and co‐surge fallouts in tuff rings (facies association PHTR); (ii) primary hydrovolcanic deposits formed by Surtseyan fallout and related pyroclastic transport processes in tuff cones (facies association PHTC); (iii) secondary hydrovolcanic deposits formed by debris flows, hyperconcentrated flood flows, sheet floods and rill flows in subaerial settings (facies association RHAE); (iv) secondary hydrovolcanic deposits formed in submarine settings under the influence of waves, tides and occasional mass flows (facies association RHMAR); and (v) non‐volcaniclastic and fine‐grained deposits formed in nearshore to offshore settings (facies association NVMAR). The primary hydrovolcanic facies associations (PHTR and PHTC) are distinguished from one another on the basis of distinct lithofacies characteristics and vertical sequence profiles. These facies differ from the secondary hydrovolcanic and non‐volcaniclastic facies associations (RHAE, RHMAR and NVMAR) because of their distinctive sedimentary structures, textures and compositions. The depositional processes and settings of some massive and crudely stratified volcaniclastic deposits, which occur in many facies associations, could not be discriminated unambiguously even with microscopic observations. Nevertheless, these facies associations could generally be distinguished because they occur typically in packets or sequences, several metres to tens of metres thick and bounded by distinct stratigraphic discontinuities, and comprise generally distinct sets of lithofacies. The overall characteristics of the Seoguipo Formation suggest that it is composed of numerous superposed phreatomagmatic volcanoes intercalated with marine or non‐marine, volcaniclastic or non‐volcaniclastic deposits. Widespread and continual hydrovolcanic activity, together with volcaniclastic sedimentation, is inferred to have persisted for more than a million years in Jeju Island under the influence of fluctuating Quaternary sea‐levels, before effusion of the shield‐forming lavas. Extensive distribution of hydrovolcanic deposits in the subsurface of Jeju Island highlights that there can be significant differences in the eruption style, growth history and internal structure between shelfal shield volcanoes and oceanic island volcanoes.  相似文献   

9.
Pyroclastic surge is a dilute and turbulent flow of volcanic gas and tephra that is commonly generated during explosive volcanic eruptions and can threaten lives along its flow paths. Assessing its travel distance and delineating future volcanic hazards have therefore been major concerns of volcanologists. Historical eruptions show that most pyroclastic surges travel a few tens of kilometres or less from their sources. Aeolian or aquagene processes have therefore been evoked for the emplacement of supposed surge deposits much beyond this distance. Here we show that a Cretaceous tuff bed in Korea was emplaced by an exceptionally powerful pyroclastic surge that flowed as far as the most powerful pyroclastic flows that formed the low-aspect-ratio ignimbrites (LARI). This has significant implications for interpreting ancient volcanic eruptions and delineating volcanic hazards by pyroclastic surges, and casts intriguing questions on the eruption dynamics and physics of long-runout pyroclastic surges and their distinction from LARI-forming pyroclastic flows.  相似文献   

10.
The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.  相似文献   

11.
This paper documents a phreatomagmatic flank eruption that occurred 18 700 ± 100 a BP , on the lower north-eastern slope of Etna during the Ellittico volcano activity, which produced fall and surge deposits. This type of eruption is connected to a sedimentary basement ridge at Etna. The interaction between the rising magma and the shallow groundwater hosted in the volcanic pile overlying the impermeable sediments resulted in phreatomagmatic instead of strombolian activity. Three eruptive phases are distinguished based on field and analytical data: (i) an explosive phreatomagmatic opening, (ii) a main phase producing coarse lithic-rich fallout and a strombolian deposit, and (iii) the final pulsating surge-forming phase. The discovery of this phreatomagmatic flank eruption, which occurred at lower altitude, raises important issues for previous hazard assessments at Etna.  相似文献   

12.
A newly recognized 2-m-thick trachytic volcanic ash deposit from northwestern Greece is dated at 374,000 ± 7000 yr and correlated with the Middle Pleistocene volcanic activity of central Italy. The deposit represents ash fallout from one of the largest volcanic eruptions in Europe of the past 400,000 yr and should provide an important stratigraphic marker within the poorly dated Middle Pleistocene deposits of Italy and Greece.  相似文献   

13.
 The study proposes a model by which a thick succession of volcanic tuffs can be zeolitized by alteration of pyroclastic material in the presence of sufficient eruptive water and at temperatures close to water vapour condensation. In the case of phreatomagmatic products, the model simplifies interpretation of problematic deposits that exhibit pronounced vertical and lateral variation in lithification grade. A major feature of the model is that thick zeolitized tuffs can be formed during emplacement of pyroclastic products, in marked contrast to later alteration in an open hydrologic system. Geological, volcanological and mineralogical data for the Neapolitan Yellow Tuff, a widespread trachytic pyroclastic deposit outcropping around Campi Flegrei (Southern Italy), have been used to infer the physico-chemical conditions that determined mineral genesis. This tuff shows a reduction in lithification grade towards the base, top and with distance from the vent and very variable zeolitization within the lithified portion. We suggest that during initial emplacement the erupted products chilled against the ground, inhibiting zeolite crystallization. During rapid deposition of the thick, wet succession thermal insulation allowed the persistence of elevated temperatures for a time sufficient for enhancement of hydration-dissolution processes in the volcanic glass. The highly reactive alkali-trachytic glass quickly buffered the acid pH of the system, favouring phillipsite crystallization followed by chabazite nucleation. The variable zeolite content reflects fluctuating emplacement conditions (e.g. changes in water content and temperature). Cooling of the upper and relatively thin distal deposits inhibited the zeolitization process, thereby preserving the primary unlithified deposit. Received: 25 May 1999 / Accepted: 28 October 1999  相似文献   

14.

The Middle Devonian to Early Carboniferous Campwyn Volcanics of coastal central Queensland form part of the fore‐arc basin and eastern flank of the volcanic arc of the northern New England Fold Belt. They consist of a complex association of pyroclastic, hyaloclastic and resedimented, texturally immature volcaniclastic facies associated with shallow intrusions, lavas and minor limestone, non‐volcanic siliciclastics and ignimbrite. Primary igneous rocks indicate a predominantly mafic‐intermediate parentage. Mafic to intermediate pyroclastic rocks within the unit formed from both subaerial and ?submarine to emergent strombolian and phreatomagmatic eruptions. Quench‐fragmented hyaloclastite breccias are widespread and abundant. Shallow marine conditions for much of the succession are indicated by fossil assemblages and intercalated limestone and epiclastic sandstone and conglomerate facies. Volcanism and associated intrusions were widely dispersed in the Campwyn depositional basin in both space and time. The minor component of silicic volcanic products is thought to have been less proximal and derived from eruptive centres to the west, inboard of the basin.  相似文献   

15.
The uplifted and deeply eroded volcanic succession of Porto Santo (central East-Atlantic) is the product of a wide spectrum of dynamic processes that are active in shoaling to emergent seamounts. Two superimposed lapilli cones marking the base of the exposed section are interpreted as having formed from numerous submarine to subaerial phreatomagmatic explosions, pyroclastic fragmentation being subordinate. The lower basaltic and the upper mugearitic to trachytic sections are dominated by redeposited tephra and are called 'lapilli cone aprons'. Vertical growth due to accumulation of tephra, voluminous intrusions, and minor pillowed lava flows produced ephemeral islands which were subsequently leveled by wave erosion, as shown by conglomerate beds. Periods of volcanic quiescence are represented by abundant biocalcarenite lenses at several stratigraphic levels. The loose tephra piles became stabilized by widespread syn-volcanic intrusions such as dikes and trachytic to rhyolitic domes welding the volcanic and volcaniclastic ensemble into a solid edifice. Shattering of a submarine extrusive trachytic dome by pyroclastic and phreatomagmatic explosions, accentuated by quench fragmentation, resulted in pumice- and crystal-rich deposits emplaced in a prominent submarine erosional channel. The dome must have produced an island as indicated by a collapse breccia comprising surf-rounded boulders of dome material. Subaerial explosive activity is represented by scoria cones and tuff cones. Basaltic lava flows built a resistant cap that protected the island from wave erosion. Some lava flows entered the sea and formed two distinct types of lava delta: 1. closely-packed pillow lava and massive tabular lava flows along the southwestern coast of Porto Santo, and 2. a steeply inclined pillow-hyaloclastite breccia prism composed of foreset-bedded hydroclastic breccia, variably-shaped pillows, and thin sheet flows capped by subhorizontal submarine to subaerial lava flows along the eastern coast of Porto Santo.The facies architectures indicate emplacement: 1. on a gently sloping platform in southwestern Porto Santo, and 2. on steep offshore slopes along high energy shorelines in eastern Porto Santo.Growth of the pillow-hyaloclastite breccia prism is dominated by the formation of foreset beds but various types of syn-volcanic intrusions contributed significantly. Submarine flank eruptions occurred in very shallow water on the flanks of the hyaloclastite prism in eastern Porto Santo. The island became consolidated by intrusion of numerous dikes and by emplacement of prominent intrusions that penetrate the entire volcanic succession. Volcanic sedimentation ended with the emplacement of a debris avalanche that postdates the last subaerial volcanic activity.  相似文献   

16.
Volcanic activities can create cataclysmic hazards to surrounding environments and human life not only during the eruption but also by hydrologic remobilisation (lahar) processes after the cessation of eruptive activity. Although there are many studies dealing with the assessment and mitigation of volcanic hazards, these are mostly concentrated on primary eruptive processes in areas proximal to active volcanoes. However, the influence of volcaniclastic resedimentation may surpass the impacts of primary eruptive activity in terms of both extent and persistence, and can ultimately result in severe hazards in downstream areas.Examination of the volcaniclastic successions of non-marine Pliocene–Holocene sedimentary basins in Japan has revealed hydrological volcaniclastic sedimentation in fluvial and lacustrine environments hundreds of kilometres from the inferred source volcano. Impacts on these distal and often spatially separated basins included drastic changes in depositional systems caused by sudden massive influxes of remobilised pyroclastic material. Typical volcaniclastic beds comprise centimetre- to decimetre-thick primary pyroclastic fall deposits overlain by metre- to 10s of metres-thick resedimented volcaniclastic deposits, intercalated in sedimentary successions of non-volcanic provenance. The relatively low component of primary pyroclastic fall deposits in the volcaniclastic beds suggests that: 1) potential volcanic hazards would be underestimated on the basis of primary pyroclastic fall events alone; and 2) the majority of resedimented material was likely derived from erosion of non-welded pyroclastic flow deposits in catchment areas rather than remobilisation of local fallout deposits from surrounding hillslopes.The nature, distribution and sequence of facies developed by distal volcaniclastic sediments reflect the influence of: 1) proximity to ignimbrite, but not directly with the distance to the eruptive centre; 2) ignimbrite nature (non-welded or welded) and volume; 3) temporal changes in sediment flux from the source area; 4) the physiography and drainage patterns of the source area and the receiving basin, and any intervening areas; and 5) the formation of ephemeral dam-lakes and intra-caldera lakes whose potential catastrophic failure can impact distal areas. Models of the styles and timing of distal volcaniclastic resedimentation are thus more complicated than those developed for proximal settings of stratovolcanoes and their volcaniclastic aprons and hence present different challenges for hazard assessment and mitigation.  相似文献   

17.
A 4-km thick, vertically dipping, south-facing, homoclinal, intermediate to felsic, volcaniclastic sequence in central Lake of the Woods, is underlain and overlain by subaqueous, tholeiitic basalt flows. Volcaniclastic lithologies comprise a lower tuff-breccia and lapilli-tuff assemblage, an upper turbiditic greywacke formation, and three lenticular, upward-fining, conglomerate formations interspersed within other units. Tuff-breccia and lapilli-tuff are characterized by very thick, poorly defined beds, pronounced heterogeneity, mostly angular blocks and lapilli, and a plagioclase+quartz crystal component that, in places, is incompatible with phenocryst populations in fragments. These appear to be subaqueous debris flow deposits that resulted from multistage mixing, during downslope mass transport, of fragments produced by subaerial phreatomagmatic vulcanian-type eruptions. Anomalous crystal contents represent intermixing of subaerial subplinian or plinian ash. Conglomerate formations comprise very thick, poorly defined beds composed almost entirely of well rounded, fine- to medium-grained trondhjemite. They are also subaqueous debris flow deposits but were apparently derived from wave erosion of large, flank dome complexes that periodically blocked normal transport of volcanic debris from higher on the volcano. The upper greywacke represents a shift in eruptive processes to largely plinian or subplinian eruptions.  相似文献   

18.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   

19.
Basaltic fissure eruptions are the most common eruption type on Earth. They are characterised by linear lava fountains that construct pyroclastic cones and expansive lava flow fields. The histories of these eruptions can be notoriously difficult to interpret due to the geochemical homogeneity of the tephra, and due to the fact that many of the early deposits become buried during later stages of the eruption. Furthermore, observing the construction of the pyroclastic cones is inherently difficult and dangerous due to the presence of active lava fountains. However, glacial outbursts in the north of Iceland have dissected the products of a Holocene fissure eruption. Examination of the pyroclastic cones, tephra deposits and a solidified lava lake along the fissure has allowed us to elucidate the complex eruptive processes that occur during these eruptions.  相似文献   

20.
The majority of the Mio-Pleistocene monogenetic volcanoes in Western Hungary had, at least in their initial eruptive phase, phreatomagmatic eruptions that produced pyroclastic deposits rich in volcanic glass shards. Electron microprobe studies on fresh samples of volcanic glass from the pyroclastic deposits revealed a primarily tephritic composition. A shape analysis of the volcanic glass shards indicated that the fine-ash fractions of the phreatomagmatic material fragmented in a brittle fashion. In general, the glass shards are blocky in shape, low in vesicularity, and have a low-to-moderate microlite content. The glass-shape analysis was supplemented by fractal dimension calculations of the glassy pyroclasts. The fractal dimensions of the glass shards range from 1.06802 to 1.50088, with an average value of 1.237072876, based on fractal dimension tests of 157 individual glass shards. The average and mean fractal-dimension values are similar to the theoretical Koch-flake (snowflake) value of 1.262, suggesting that the majority of the glass shards are bulky with complex boundaries. Light-microscopy and backscattered-electron-microscopy images confirm that the glass shards are typically bulky with fractured and complex particle outlines and low vesicularity; features that are observed in glass shards generated in either a laboratory setting or naturally through the interaction of hot melt and external water. Textural features identified in fine- and coarse-ash particles suggest that they were formed by brittle fragmentation both at the hot melt-water interface (forming active particles) as well as in the vicinity of the interaction interface. Brittle fragmentation may have occurred when hot melt rapidly penetrated abundant water-rich zones causing the melt to cool rapidly and rupture explosively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号