首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The Middle Devonian to Early Carboniferous Campwyn Volcanics of coastal central Queensland form part of the fore‐arc basin and eastern flank of the volcanic arc of the northern New England Fold Belt. They consist of a complex association of pyroclastic, hyaloclastic and resedimented, texturally immature volcaniclastic facies associated with shallow intrusions, lavas and minor limestone, non‐volcanic siliciclastics and ignimbrite. Primary igneous rocks indicate a predominantly mafic‐intermediate parentage. Mafic to intermediate pyroclastic rocks within the unit formed from both subaerial and ?submarine to emergent strombolian and phreatomagmatic eruptions. Quench‐fragmented hyaloclastite breccias are widespread and abundant. Shallow marine conditions for much of the succession are indicated by fossil assemblages and intercalated limestone and epiclastic sandstone and conglomerate facies. Volcanism and associated intrusions were widely dispersed in the Campwyn depositional basin in both space and time. The minor component of silicic volcanic products is thought to have been less proximal and derived from eruptive centres to the west, inboard of the basin.  相似文献   

2.
The Puy de Dôme volcano is a trachytic lava dome, about 11,000 y old. New pyroclastic layers originating from the volcano itself were discovered covering the summit and the flanks of the volcano. These pyroclastic layers do not fit with the previous interpretation, assuming a non-explosive dome-forming eruption. The tephra display pyroclastic surge features and exhibit fresh trachytic lapilli, basement lithics, allogeneous basaltic lava and clinker fragments requiring an open vent eruption. This ultimate eruption occurred after a period of rest, long enough for vegetation to develop on the volcano, as evidenced by carbonized plant fragments. Radiocarbon dating of some of these fragments gave an age of c.10,700 y also suggesting a significant rest duration.  相似文献   

3.
We report 40Ar–39Ar laser step-heating age determinations on 15 stratigraphically controlled lava flows and intrusive rocks from Heard Island, Central Kerguelen Plateau (Indian Ocean). The island history began with uplift of pelagic limestone intruded by 22 Ma gabbro sills. Subaerial and wave erosion levelled the early island, producing an unconformity onto which pillow lavas, tuffaceous sediments and shallow-water, fossiliferous marine siltstone (Drygalski Formation) were deposited, beginning in late Miocene time. Two volcanic systems then formed in the late Quaternary. Big Ben dominates the larger southeast part of the island, while Mount Dixon occupies the northwest Laurens Peninsula. Feeder dykes and the early lava flows in both systems are 400–200 ka. Lava flows with evolved compositions (trachytes, trachyandesites) erupted 100–20 ka. Well-preserved parasitic cones exposed at low elevations are 15–10 ka and younger. Mawson Peak, near the summit of Big Ben, has erupted lava flows as recently as 2007. Heard Island, and nearby active McDonald Island, are subaerial features of a larger Neogene volcanic region of Central Kerguelen Plateau that includes several large sea knolls and recently identified submarine fields of small cones. This broadly distributed volcanic activity is linked to incubation of plume material at the base of the nearly stationary overlying Central Kerguelen Plateau.  相似文献   

4.
Rhyolite eruptions in Iceland mostly take place at long-lived central volcanoes, examples of which are found associated with each of the present-day rift-zone ice caps. Subglacial eruptions at Kerlingarfjöll central volcano produced rhyolite tuyas that are notable for their exposures of early-erupted pyroclastic material. Observations from a number of these edifices are synthesised into a general model for explosive rhyolite tuya formation. Eruptions begin with violent phreatomagmatic explosions that generate massive tuff (mT), but the influence of water quickly declines, leading to the formation of massive lapilli-tuffs (mLT) containing magmatically-fragmented vesicular pumice and ash. These are deposited rapidly near the vent, probably by moist pyroclastic density currents, confined by ice but not within a meltwater lake. The explosive-effusive transition is controlled by the ascent rate and gas content of the magma. An unusual obsidian-rich massive lapilli-tuff lithofacies (omLT) is identified and interpreted as pyroclastic material that was intruded into gas-fluidised deposits at the explosive-effusive transition. The effusive phase of eruption involves the emplacement of intrusions and lava caps. Intrusions of lava into the early-erupted phreatomagmatic deposits are characterised by peperitic margins and the formation of hyaloclastite. Intrusions into stratigraphically higher levels of the pyroclastic material show more limited interaction with the host tephra and have microcrystalline cores. Large lava bodies with columnar-jointed margins cap the tuyas and have intrusive basal contacts with the tephras. The main influence of the ice is to confine the rhyolite eruptive products to immediately above the vent region. This is in contrast to subglacial basaltic tuya-forming eruptions, which are characterised by the formation of meltwater lakes, phreatomagmatic fragmentation and subaqueous deposition. The lack of meltwater storage may reduce the potential for large jökulhlaups.  相似文献   

5.
乔乐  陈剑  凌宗成 《地质学报》2021,95(9):2678-2691
火山活动是月球最主要的内动力地质作用之一,是研究月球地质历史和热演化的重要窗口,也是月球科学及探测的重点目标.本文概要总结了月球火山作用的基本原理,并重点介绍了"岩墙扩展"模型.基于此模型,列举了由于岩墙在月壳内部上升程度的不同,导致的不同形式的喷发活动,并在月表产生了一系列火山地貌特征:① 当岩墙仅扩展到浅月表、未能穿透月壳并引起喷发活动时,可能会在月表产生坑链构造、地堑或底部断裂型撞击坑;② 当岩墙穿透了整个月壳并引起爆裂式喷发活动时,会在月表产生小型火山锥、区域性火山碎屑堆积物、全月分布的微小火山玻璃、暗晕凹陷构造及环形火山碎屑堆积物;③ 当岩墙穿透了整个月壳并引起溢流式喷发活动时,随着岩浆喷发通量的逐步增高,会在月表产生小型熔岩流、月海穹窿、复合熔岩流、蜿蜒型月溪、巨型熔岩流及火山高原复合体.本文也简要介绍了在月表观测到的若干非典型火山地貌特征,包括不规则月海斑块、环形凹陷穹丘及非月海富硅质穹窿.近年来新的探月数据加深了对这些特殊火山地貌特征的认识,但是更多的地质特征及成因模型细节仍有待未来月球研究及探测去解决.  相似文献   

6.
The volcanic-sedimentary succession of the Ventersdorp Supergroup which is virtually undisturbed tectonically and of low-grade (greenschist facies) metamorphism, affords a unique opportunity for studying the interplay between volcanic and sedimentary processes. The transitional sequence between the Rietgat and Bothaville Formations consists of a number of lithofacies. These are a basal breccia representing pyroclastic and laharic deposits, an overlying breccia—arenite—conglomerate (BAC) which formed by debris flow and fluvial processes, an arenite deposited offshore during a transgression, and an upper conglomerate laid down on a beach. In the volcaniclastic BAC and arenite lithofacies the presence of thin tuff beds, deformed acid lava fragments (bombs?) and glass shards in the arenaceous matrix suggest syndepositional volcanism.Sedimentation took place along the flanks of an asymmetrical, actively volcanic, domal structure which consisted partly of unstable pyroclastic deposits in the east. Resedimentation of the pyroclastic debris by subaerial debris flows and braided streams built a volcaniclastic fan lobe at the foot of the domal structure. As volcanic activity subsided, sands derived from a granitic terrain, mixed with minor air-fall debris to subsequently cover the fan lobe during a regional transgression.  相似文献   

7.
In western Anatolia, a thick volcanic succession of andesitic to rhyolitic lavas and volcaniclastic rocks crops out extensively. On Foça Peninsula, the westernmost part of the region, a dominantly rhyolitic sequence is exposed where massive rhyolites occur as dome or domelike stubby lava flows. These rhyolite domes vertically and laterally pass into blanketing volcaniclastic sequences. The gradational boundary relations and the facies characteristics of the surrounding volcaniclastic sequences indicate that the silicic domes directly intruded a subaqueous environment and were shattered upon sudden contact with water to form hyaloclastic blankets.

In and around these rhyolite domes, we have defined six different volcanic and volcaniclastic facies, consisting of: (1) massive rhyolite; (2) massive perlite; (3) hyaloclastic breccias; (4) rhyolite pumice and lithic fragment-bearing volcaniclastic rocks; (5) subaqueous welded ignimbrites; and (6) brecciated perlite. The massive rhyolite facies have distinct structures from the centers to the peripheries of the domes and stubby lava flows. Massive lava facies gradually pass into hyaloclastic breccias and massive perlite facies, indicating water-magma interaction during the emplacement. Phreatomagmatic explosive activity and doming caused the subaqueous pyroclastic flows on the flanks of the volcanic center. Welding in the upper parts of these pyroclastic flow deposits indicates the high-temperature emplacement of the pyroclastic material and relatively slow cooling caused by the cushioning effect of the gas-vapor mixture and rapid deposition of younger pyroclastic units.  相似文献   

8.
陆上与水下喷发火山岩在岩性、结构构造、蚀变特征、产状、与下伏地层接触关系、孔隙和裂缝发育特点等6方面有显著区别。陆上喷发火山岩包括各种熔岩、碎屑熔岩、火山碎屑岩和沉火山碎屑岩;熔岩流纹构造发育,火山碎屑岩除发育常见层理外,还可见反丘构造;同生蚀变弱;与下伏地层多呈角度不整合接触,古风化壳常见,常含有陆相植物;主要储集空间为原生孔隙和冷凝收缩节理缝、次生溶蚀孔、矿物解理缝和构造裂缝。水下喷发火山岩多为具玻璃质结构的熔岩和含晶屑玻屑的层/沉凝灰岩、膨润土/伊利石岩/蒙脱石岩/沸石岩;常具枕状、球状构造,水平层理、粒序层理、变形层理;蚀变强烈;水下熔岩呈穹隆状、透镜状,凝灰岩为层状,近火山口的膨润土/伊利石岩/蒙脱石岩/沸石岩呈松散团窝状并夹有火山弹;与下伏地层呈整合、假整合或侵蚀接触;原生气孔、杏仁体内溶蚀孔和炸裂纹,岩球岩枕间孔和粒间孔,基质和斑晶蚀变孔缝,后期构造缝是主要储集空间。松辽盆地营城组陆上、水下喷发火山岩均有发育。其陆上喷发火山岩的典型标志为流纹构造、柱状节理,含炭化木/硅化木,与下伏地层呈角度不整合接触。水下喷发火山岩典型标志为珍珠岩、玻璃质结构、枕状构造、纹层状凝灰岩和膨润土。松辽盆地营城组的储层火山岩以陆上喷发火山岩为主;水下喷发火山岩中侵出相内带亚相珍珠岩为优质储层。  相似文献   

9.
Pyroclastic surge is a dilute and turbulent flow of volcanic gas and tephra that is commonly generated during explosive volcanic eruptions and can threaten lives along its flow paths. Assessing its travel distance and delineating future volcanic hazards have therefore been major concerns of volcanologists. Historical eruptions show that most pyroclastic surges travel a few tens of kilometres or less from their sources. Aeolian or aquagene processes have therefore been evoked for the emplacement of supposed surge deposits much beyond this distance. Here we show that a Cretaceous tuff bed in Korea was emplaced by an exceptionally powerful pyroclastic surge that flowed as far as the most powerful pyroclastic flows that formed the low-aspect-ratio ignimbrites (LARI). This has significant implications for interpreting ancient volcanic eruptions and delineating volcanic hazards by pyroclastic surges, and casts intriguing questions on the eruption dynamics and physics of long-runout pyroclastic surges and their distinction from LARI-forming pyroclastic flows.  相似文献   

10.
Extrusive carbonatites: A brief review   总被引:1,自引:0,他引:1  
A.R. Woolley  A.A. Church 《Lithos》2005,85(1-4):1-14
49 known extrusive carbonatite occurrences are listed with brief details of their tectonic setting, structure, lithologies, associated silicate rocks, chemistry and presence or absence of included mantle materials. Half the occurrences appear to be related to tephra cones, tuff rings, diatremes and maars and the rest occur within strato-volcanoes. Pyroclastic carbonatitic rocks are present at all the localities, with carbonatite lava flows occurring at only 14 of them. The pyroclastic rocks, which include fallout tephra and deposits from pyroclastic surges and flows and products of phreatomagmatic eruptions, vary from rocks composed principally of carbonate to varieties with as little as 20% igneous carbonate. The most abundant silicate rocks associated with extrusive carbonatites are melilite-bearing rocks, nephelinite and/or ijolite, and phonolite and/or nepheline syenite; seven occurrences have no associated silicate rocks. 16 occurrences, most of them associated with small extrusive centres, contain mantle xenoliths or megacrysts, details of which are tabulated, with spinel lherzolite the most abundant rock type, but amphibole, phlogopite and garnet are also recorded. The lack of such materials in intrusive carbonatites may reflect their less energetic environment of emplacement. It is proposed that carbonatites are essentially of two types: (a) those rising energetically and rapidly from the mantle, which form small explosion craters, ash or tuff cones, or diatremes, have only low-volume associated silicate rocks, and entrain mantle debris, and (b) those which occur in strato-volcanoes, are associated with large volumes of silicate rocks and follow a more complex genesis, probably involving ponding and differentiation (separation from carbonate-bearing silicate magma) at higher levels in the mantle and/or crust. Most of the classic intrusive carbonatite complexes probably fall into the second category.  相似文献   

11.
The Thalanga volcanic‐hosted massive sulfide deposit occurs in the Cambro‐Ordovician Mt Windsor Subprovince in northern Queensland. The orebody comprises steeply dipping, stratiform, sheet‐like, polymetallic massive sulfide lenses. Overall, the volcanic facies architecture at Thalanga is dominated by quartz‐ and/or feldspar‐phyric lavas and synvolcanic intrusions that comprise coherent facies and in situ and resedimented autoclastic facies. Systematic phenocryst logging (mineralogy, abundance, size) has been used to discriminate separate emplacement units of rhyolite in the footwall and dacite in the hangingwall. Some of the petrographically different rhyolite and dacite types can also be distinguished using immobile‐element geochemistry. Rhyolitic lavas and intrusions in the footwall are weakly to strongly altered. Apparent clastic textures resulting from hydrothermal alteration and metamorphism are widely developed in the coherent facies. Genuine clastic textures are characterised by clasts with randomly oriented internal laminar or banded fabric (e.g. rotated, flow‐laminated clasts), marked and consistent differences in quartz phenocryst abundance and/or size range between clasts and matrix, and normal grading. Mass‐flow‐emplaced, rhyolitic breccia units delineate palaeo‐sea‐floor positions in the footwall that are potentially prospective for exhalative massive sulfide mineralisation. A comparison of the distribution of clastic and coherent facies with the geometry of strongly altered zones in the footwall indicates that intense hydrothermal fluid flow was independent of the facies arrangement. The massive sulfide lenses conformably overly altered footwall rhyolite and occur in a distinctive facies association which includes coarse quartz‐phenocryst‐rich rhyolitic sills with peperitic contacts and crystal‐rich polymictic breccia. The hangingwall to the orebody consists of largely unaltered dacitic lavas and synvolcanic intrusions and minor dacitic pumice breccia, dacitic breccia and polymictic volcanic breccia. The facies architecture shows that the Thalanga massive sulfide deposit formed in a below‐storm‐wave‐base depositional environment on top of an elevated, lava‐dominated, rhyolitic volcanic centre. A modern analogue for the setting of the Thalanga massive sulfide is the PACMANUS hydrothermal field on the crest of the dacite lava‐dominated Pual Ridge in the eastern Manus backarc basin (Papua New Guinea).  相似文献   

12.
Study of komatiites for their structures and textures in cratonic blocks could provide more insights into the early Archaean volcanism, mantle processes and associated metallogeny. Jayachamarajapura (J.C.Pura) belt in Western Dharwar craton is a komatiitc milieu, where outcrop features display several flow characteristics and sub-volcanic emplacement features typical of well known komatiitic areas of the world. In spite of deformation, metamorphism and alterations the komatiites still preserve many of the primary cooling structures, which stand testimony for their extrusive volcanic nature. Distinct features like pillows, flow-top polyhedral joints, ocelli, vesicular, flow-top breccia and cumulate segregations and crude layering are observed. However, massive, undifferentiated nature of komatiitic flows is more predominant. Because of serpentinisation, carbonitization and chloritization, the original mineralogy and textures are obliterated and scantily preserved. Still, these observed features provide vital clues to imply the formation of komatiite sequences in a submarine to subaerial conditions when episodic pulses of komatiite lava piled up (about 3.35 Ga ago) to form the ultramafic milieu of J.C. Pura belt.  相似文献   

13.
辽西义县地区黄花山角砾岩研究的新进展   总被引:3,自引:0,他引:3  
对辽西地区黄花山角砾岩层的研究表明,黄花山角砾岩是一套火山碎屑岩-火山碎屑沉积岩类.黄花山角砾岩的形成大致可分为2个阶段:早期阶段以火山熔岩溢流和剧烈的火山爆发作用为主,不同地区形成了火山角砾岩(火山碎屑岩)或火山熔岩;晚期阶段,黄花山角砾岩成层性较好,以厚-中层为主,并且向上部韵律逐渐发育,表明这个时期渐变为以沉积作用为主,形成了火山碎屑沉积岩.黄花山角砾岩层和义县晚期的酸性火山熔岩同是义县组的顶部层位,二者为同时异相关系(但不是过渡关系).黄花山角砾岩层的定位对正确认识义县组以及研究阜新-义县盆地的演化史有着重要意义.  相似文献   

14.
内蒙锡林浩特鸽子山火山地质研究   总被引:4,自引:3,他引:1  
鸽子山火山位于内蒙古自治区锡林浩特市东南,处于大兴安岭-大同新生代火山喷发带中段,是锡林浩特-阿巴嘎火山群中保存最为完好的一座玄武质火山。火山喷发物的分布面积约55km2,主要为降落火山渣、溅落熔结火山碎屑岩和熔岩流,成分主要为碧玄岩,晚期有少量的橄榄拉斑玄武岩,碧玄岩中含有较多二辉橄榄岩包体和辉石及歪长石巨晶。火山由锥体、熔岩流和火山碎屑席组成,锥体由早期的降落锥和晚期溅落锥复合而成。火山口经历多次塌陷而成为破火口。锥体西侧及北东侧出露两个仍保留了原始形态的熔岩溢出口,熔岩流类型为结壳熔岩,由多个岩流单元组成,局部地区的熔岩流中发育较多保存完好的喷气锥、喷气碟或喷气塔。火山碎屑席主要分布在锥体的东侧,厚度由锥体向外逐渐减薄。火山活动可分为早、晚两个阶段,早期为爆破式喷发,形成火山渣锥和碎屑席,属亚布里尼型喷发,晚期主要为溢流式喷发,形成溅落锥和大规模熔岩流,其活动时代为晚更新世末-全新世。  相似文献   

15.
A. Dem  ny  A. Ahijado  R. Casillas  T. W. Vennemann 《Lithos》1998,44(3-4):101-115
Fuerteventura—the second largest of the Canary Islands consists of Mesozoic sediments, submarine volcanic rocks, dike swarms and plutons of the Basal Complex, and younger subaerial basaltic and trachytic series. Carbonatites are found in two Basal Complex exposures: the Betancuria Massif in the central part of the island and the Esquinzo area in the north. values of the carbonatites increase progressively from south to north of the island. This phenomenon is attributed to different degrees of assimilation of sedimentary carbonate. Homogeneous, typically magmatic values for carbonatites which have preserved primary igneous textures and minerals suggest a well-mixed reservoir where changes in values result from the storage of carbonate magmas at different structural levels. The magma storage allowed assimilation of sediment to varying degrees before final emplacement of carbonatites. Shifts in towards more positive and negative values from presumed primary compositions are observed in the carbonatites. On the basis of the oxygen isotope compositions of calcite, mica and K-feldspar, and the hydrogen isotope compositions of micas, the changes in the values of the carbonatites can be related to fluid/rock interactions.  相似文献   

16.
Kamafugitic rocks intruded the Precambrian basement and Phanerozoic sediments at the northeast border of the Paraná basin as part of the Late Cretaceous Goiás alkaline province (GAP). Plutonic complexes dominate the north of the province, whereas lavas and pyroclastic rocks prevail in the south. The central GAP is characterized by kamafugitic diatremes, which may crop out continuously for up to 850 m and consist of a central breccia body, surrounded and overlain by lava flows and crosscut by dykes. The breccias contain some special spheroidal juvenile fragments—namely, accretionary and armored lapilli, frozen droplets, spinning droplets, and wrapped fragments—whose textural and mineralogical aspects are described in detail. Irregularly shaped tuff pockets that occur within the breccias contain textures and structures similar to those of subaerial surge deposits and formed in confined, high gas to solid+liquid ratio domains in the conduit. Diatreme emplacement affected the country rock through thermal metamorphism, development of columnar jointing, and formation of peperite-like mixtures. There is no evidence of phreatomagmatic activity in the diatremes, and CO2, rather than H2O, seems to have been the major volatile component of the kamafugitic magmas. This finding implies that features such as accretionary lapilli and peperites are not exclusively associated with H2O-dominated processes.  相似文献   

17.
 The study proposes a model by which a thick succession of volcanic tuffs can be zeolitized by alteration of pyroclastic material in the presence of sufficient eruptive water and at temperatures close to water vapour condensation. In the case of phreatomagmatic products, the model simplifies interpretation of problematic deposits that exhibit pronounced vertical and lateral variation in lithification grade. A major feature of the model is that thick zeolitized tuffs can be formed during emplacement of pyroclastic products, in marked contrast to later alteration in an open hydrologic system. Geological, volcanological and mineralogical data for the Neapolitan Yellow Tuff, a widespread trachytic pyroclastic deposit outcropping around Campi Flegrei (Southern Italy), have been used to infer the physico-chemical conditions that determined mineral genesis. This tuff shows a reduction in lithification grade towards the base, top and with distance from the vent and very variable zeolitization within the lithified portion. We suggest that during initial emplacement the erupted products chilled against the ground, inhibiting zeolite crystallization. During rapid deposition of the thick, wet succession thermal insulation allowed the persistence of elevated temperatures for a time sufficient for enhancement of hydration-dissolution processes in the volcanic glass. The highly reactive alkali-trachytic glass quickly buffered the acid pH of the system, favouring phillipsite crystallization followed by chabazite nucleation. The variable zeolite content reflects fluctuating emplacement conditions (e.g. changes in water content and temperature). Cooling of the upper and relatively thin distal deposits inhibited the zeolitization process, thereby preserving the primary unlithified deposit. Received: 25 May 1999 / Accepted: 28 October 1999  相似文献   

18.
Rootless cones, also (erroneously) called pseudocraters, form due to explosions that ensue when a lava flow enters a surface water body, ice, or wet ground. They do not represent primary vents connected by vertical conduits to a subsurface magma source. Rootless cones in Iceland are well studied. Cones on Mars, morphologically very similar to Icelandic rootless cones, have also been suggested to be rootless cones formed by explosive interaction between surface lava flows and ground ice. We report here a group of gentle cones containing nearly circular craters from Mount Pavagadh, Deccan volcanic province, and suggest that they are rootless cones. They are very similar morphologically to the rootless cones of the type locality of Myvatn in northeastern Iceland. A group of three phreatomagmatic craters was reported in 1998 from near Jabalpur in the northeastern Deccan, and these were suggested to be eroded cinder cones. A recent geophysical study of the Jabalpur craters does not support the possibility that they are located over volcanic vents. They could also be rootless cones. Many more probably exist in the Deccan, and volcanological studies of the Deccan are clearly of value in understanding planetary basaltic volcanism.  相似文献   

19.
Al Wahbah Crater is one of the largest and deepest Quaternary maar craters in the Arabian Peninsula. It is NW-SE-elongated, ~2.3 km wide, ~250 m deep and surrounded by an irregular near-perpendicular crater wall cut deeply into the Proterozoic diorite basement. Very few scientific studies have been conducted on this unique site, especially in respect to understanding the associated volcanic eruption processes. Al Wahbah and adjacent large explosion craters are currently a research subject in an international project, Volcanic Risk in Saudi Arabia (VORiSA). The focus of VORiSA is to characterise the volcanic hazards and eruption mechanisms of the vast volcanic fields in Western Saudi Arabia, while also defining the unique volcanic features of this region for use in future geoconservation, geoeducation and geotourism projects. Al Wahbah is inferred to be a maar crater that formed due to an explosive interaction of magma and water. The crater is surrounded by a tephra ring that consists predominantly of base surge deposits accumulated over a pre-maar scoria cone and underlying multiple lava flow units. The tephra ring acted as an obstacle against younger lava flows that were diverted along the margin of the tephra ring creating unique lava flow surface textures that recorded inflation and deflation processes along the margin of the post-maar lava flow. Al Wahbah is a unique geological feature that is not only a dramatic landform but also a site that can promote our understanding of complex phreatomagmatic monogenetic volcanism. The complex geological features perfectly preserved at Al Wahbah makes this site as an excellent geotope and a potential centre of geoeducation programs that could lead to the establishment of a geopark in the broader area at the Kishb Volcanic Field.  相似文献   

20.
The island of Stromboli (Southern Italy) is a 4,000-m-high volcanic edifice about 900 m above sea level. Most of the NW flank is formed by a wide scar (Sciara del Fuoco) filled by irregular alternations of volcaniclastic layers and thin lava flows. Between 29 and 30 December 2002, a submarine and a subaerial landslide involved the northernmost part of the Sciara del Fuoco slope and caused two tsunami waves with a maximum run-up of 10 m. Mechanisms of the rapid submarine landslide and the preceding deformation of the subaerial and submarine slope were investigated using large-scale ring shear tests on the saturated and dry volcaniclastic material. The shear behaviour of the material under different drainage conditions was analysed during tests conducted at DPRI, Kyoto University. Pore pressure generation, mobilised shear strength and grain crushing, within a range of displacements encompassing the different stages of evolution of the slope, were considered. Experimental results suggest that even at larger displacements, shear strength of the dry material explains the virtual stability of the slope. Conversely, full or partial liquefaction can be invoked to explain the submarine failure and the subsequent long runout (more than 1,000 m) of the failed materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号