首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radon daughters are produced as free ions, but they become attached to aerosol particles at a rate depending on the particle concentration. In the lower marine boundary layer, most of those which do not become attached plate out on the ocean surface. In this paper a simple model is used to examine the influence of several parameters on radon/radon daughter disequilibria in maritime air. The model is compared with experimental data from Cape Grim.The radon daughter to radon ratio, f, decreases from 0.86 to 0.1 as the particle concentration falls from 1000 to 10 cm-3. Estimates of radon concentration at sea level, based on daughter measurements may therefore be in error by as much as a factor of 10 unless allowance is made for particle concentration. At 100 cm-3, the standard deviation of the distribution of measured f values is about 30%, indicating that the particle concentration is not the only factor influencing the loss of radon daughters. The implication is that radon daughters can be used to measure radon concentrations at sea level with an accuracy of about 30%, provided the particle concentration is known.The measurements show that there is a very low proportion of unattached daughers in the air between about 30 and 165 m above sea level. According to the model, this implies that mixing of air up to about 200 m is usually rapid enough to result in plate-out of radon daughters on the ocean on a time scale of less than 100 s.  相似文献   

2.
Measurements of atmospheric dimethylsulfide (DMS) and its oxidation products, sulfur dioxide (SO2), methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2-) were monitored during the period June 9–26, 1989 at a coastal site in Brittany. As indicated by the radon (Rn-222) activities and the high concentrations of NOx the air masses, for most of the experiment, were continental in origin. The observed concentrations range from 1.9 to 65 nmol/m3 for DMS (n=157), 0.6 to 94.2 nmol/m3 for SO2 (n=50), 0.6 to 11.6 nmol/m3 for MSA (n=44) and 42 to 350 nmol/m3 for nss-SO4 2- (n=44). Aitken nuclei reached values as high as 4.5 × 105 particles/m3. When continental conditions predominated, the measured SO2 concentrations were lower than those expected from a consideration of the observed DMS concentrations and the existence of SO2 background of the continental air masses. Similarly, compared to the MSA/DMS ratio in the marine atmosphere, higher concentrations of MSA were observed than those expected from the measured levels of DMS. The presence of enhanced levels of MSA was also endorsed by the observation that the measured mean MSA/nss-SO4 2- ratio of 6±3% was similar to the mean value of 6.9% observed in the marine atmosphere. These above observations are in line with recent laboratory findings by Barnes et al. (1988), which show an increase of the MSA/DMS yield with a simultaneous decrease of the SO2/DMS yield in the presence of NOx.  相似文献   

3.
The size-segregated chemical composition of aerosol particles was investigated during 1?year at the puy de D?me (1,465?m?a.s.l.), France. These measurements aimed to a better understanding of the influence of the air mass origin on the size-segregated chemical composition of the aerosol at an altitude site. Mountain site measurements are important because they are representative of long range transport and useful for model validation. PM1 mass concentration exhibits a seasonal variability with a summer maximum. The composition of PM1 did not change significantly in terms of relative contribution of water soluble inorganic ions but is rather variable in term of total mass concentrations. For the PM10-1, a different seasonal behaviour was found with maxima concentrations in autumn-winter. Aerosols were classified into four different categories according to their air mass origin: marine, marine modified, continental and Mediterranean. The PM10 aerosol mass at 50?% relative humidity was close to 2.5???g?m?3 in the marine, 4.3???g?m?3 in the marine modified, 10.3???g?m?3 in the continental and 7.7???g?m?3 in the Mediterranean sectors. We noted that the influence of the air mass origin (on the chemical properties) could be seen especially on the PM10-1. A significant PM10-1 mode was found in marine, modified marine, and Mediterranean air masses, and PM1 dominated in the continental air masses samples. As a result, the aerosol chemical composition variability at the puy de D?me is a function of both the season and air mass type and we provide a chemical composition of the aerosol as a function of each of these environmental factors.  相似文献   

4.
The Petryanov air filters combined into half-year sets were analyzed for the presence of 40K, 137Cs and 22Na by means of low-background gamma rays spectrometry. Each sample contains aerosols from more than 1 Mm3 of air. Samples were collected in ground level air at Kraków (Southern Poland) from 1996 to 2002. Activity concentrations of 40K are almost constant with the mean of 14.7± 4.5 Bq m–3. Activity concentrations of 137Cs, which are on the level of single Bq m– 3 show exponential decrease with effective half-life time of 7.07± 0.77 years. The cosmogenic 22Na shows a strong seasonal variation with significant different mean values activity concentration between 0.333± 0.095 Bq m–3 and 0.137± 0.045 Bq m–3, for summer and winter, respectively. Moreover, the activity ratio for two cosmogenic radionuclides: 22Na and measured previously 7Be show also changes with statistically significant seasonal differences. The lower values were found during winters. The mechanisms which might govern this ratio are discussed. The conclusion is that transport of 22Na during summer seems to be so much effective, that results in kind of relative depletion of stratosphere of this nuclide.  相似文献   

5.
Daily measurements of atmospheric sulfur dioxide (SO2) concentrations were performed from March 1989 to January 1991 at Amsterdam Island (37°50 S–77°30 E), a remote site located in the southern Indian Ocean. Long-range transport of continental air masses was studied using Radon (222Rn) as continental tracer. Average monthly SO2 concentrations range from less than 0.2 to 3.9 nmol m-3 (annual average = 0.7 nmol m-3) and present a seasonal cycle with a minimum in winter and a maximum in summer, similar to that described for atmospheric DMS concentrations measured during the same period. Clear diel correlation between atmospheric DMS and SO2 concentrations is also observed during summer. A photochemical box model using measured atmospheric DMS concentrations as input data reproduces the seasonal variations in the measured atmospheric SO2 concentrations within ±30%. Comparing between computed and measured SO2 concentrations allowed us to estimate a yield of SO2 from DMS oxidation of about 70%.  相似文献   

6.
Dimethylsulfide (DMS), sulfur dioxide (SO2), methanesulfonate (MSA), nonsea-salt sulfate (nss-SO4 2–), sodium (Na+), ammonium (NH4 +), and nitrate (NO3 ) were determined in samples collected by aircraft over the open ocean in postfrontal maritime air masses off the northwest coast of the United States (3–12 May 1985). Measurements of radon daughter concentrations and isentropic trajectory calculations suggested that these air masses had been over the Pacific for 4–8 days since leaving the Asian continent. The DMS and MSA profiles showed very similar structures, with typical concentrations of 0.3–1.2 and 0.25–0.31 nmol m–3 (STP) respectively in the mixed layer, decreasing to 0.01–0.12 and 0.03–0.13 nmol m–3 (STP) at 3.6 km. These low atmospheric DMS concentrations are consistent with low levels of DMS measured in the surface waters of the northeastern Pacific during the study period.The atmospheric SO2 concentrations always increased with altitude from <0.16–0.25 to 0.44–1.31 nmol m–3 (STP). The nonsea-salt sulfate (ns-SO4 2–) concentrations decreased with altitude in the boundary layer and increased again in the free troposphere. These data suggest that, at least under the conditions prevailing during our flights, the production of SO2 and nss-SO4 2– from DMS oxidation was significant only within the boundary layer and that transport from Asia dominated the sulfur cycle in the free troposphere. The existence of a sea-salt inversion layer was reflected in the profiles of those aerosol components, e.g., Na+ and NO3 , which were predominantly present as coarse particles. Our results show that long-range transport at mid-tropospheric levels plays an important role in determining the chemical composition of the atmosphere even in apparently remote northern hemispheric regions.  相似文献   

7.
Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.  相似文献   

8.
Concentrations of natural 7Be in air and rainwater were monitored for one year at Hokitika, New Zealand. The mean airborne concentration was 3.1±1.3 mBq m–3, the mean Hokitika, New Zealand. The mean airborne concentration was 3.1±1.3 mBq m–3, the mean concentration in rainwater was 2600±1200 Bq m–3, and the mean total deposition was estimated to be 130±99 Bq m–2 wk–1. Most of the 7Be was wet deposited and the washout ratio was independent of precipitation amount. A significant linear relationship exists between the weekly wet deposition flux and weekly precipitation at this high-rainfall site.  相似文献   

9.
We investigate dominant processes modulating the coastal West African atmospheric boundary layer during August and September 2006. We evaluated boundary-layer attributes using upper air soundings, tower-based observations, and information from the European Centre for Medium-Range Weather Forecasts reanalyses. Boundary-layer thermodynamics exhibited continental and maritime attributes in response to influences from regional onshore (sea to land) flows and local land–atmosphere exchanges of energy and moisture. Onshore flows transported maritime air inland and gave rise to deep (>1 km) nighttime mixed layers whose heat and moisture content resulted in maximum virtual potential temperatures of 306 K and specific humidities up to 20 g kg−1. The presence of the Saharan Air Layer corresponded with capping inversions greater than 4 K and lapse rates exceeding 7 K km−1 above the mixed layer. Mixed layers at these times became deeper than expected (≈1 km) because dust layer events were often concurrent with strong onshore flows. Despite diurnally variable land–atmosphere fluxes of sensible and latent heat that reached maximum values of 200 and 400 W m−2, respectively, the mixed-layer depth exhibited little diurnal variation due to the influences of onshore flows. Daytime heating of the land, the upward transport of moisture, and onshore flows produced boundary layers with high convective available potential energy that often exceeded 3,000 J kg−1. These results demonstrate that the atmospheric boundary-layer thermodynamics in western Senegal can be favorable for storm development during both day and night. Mesoscale and regional models applied in this region should include several processes controlling the boundary-layer attributes to realistically estimate the energy available for storm development.  相似文献   

10.
BP神经网络法在大气污染预报中的应用研究   总被引:2,自引:2,他引:2  
马雁军  杨洪斌  张云海 《气象》2003,29(7):49-51
近年来将BP网络模型应用到大气污染浓度预报中 ,并建立了大气污染物浓度的神经网络预报模型。将计算结果与监测值进行了验证 ,结果表明 :TSP的计算值与观测值之间的绝对误差为 4× 1 0 - 3~ 3× 1 0 - 2 mg·m- 3,NOX 的计算值与观测值之间的绝对误差为 5× 1 0 - 3~ 2× 1 0 - 2 mg·m- 3;且具有较好的相关性。BP模型是目前最为广泛应用的神经网络模型之一 ,它是一种简单而又非常有效的算法 ,BP神经网络法为城市空气污染预报工作提供了一种全新的思路和方法。  相似文献   

11.
A two-dimensional cloud model with bin microphysics was used to investigate the effects of cloud condensation nuclei (CCN) concentrations and thermodynamic conditions on convective cloud and precipitation developments. Two different initial cloud droplet spectra were prescribed based on the total CCN concentrations of maritime (300 cm− 3) and continental (1000 cm− 3) air masses, and the model was run on eight thermodynamic conditions obtained from observational soundings. Six-hourly sounding data and 1-hourly precipitation data from two nearby weather stations in Korea were analyzed for the year 2002 to provide some observational support for the model results.For one small Convective Available Potential Energy (CAPE) ( 300 J kg− 1) sounding, the maritime and continental differences were incomparably large. The crucial difference was the production of ice phase hydrometeors in the maritime cloud and only water drops in the continental cloud. Ice phase hydrometeors and intrinsically large cloud drops of the maritime cloud eventually lead to significant precipitation. Meanwhile negligible precipitation developed from the continental cloud. For the three other small CAPE soundings, generally weak convective clouds developed but the maritime and continental clouds were of the same phases (both warm or both cold) and their differences were relatively small.Model runs with the four large CAPE ( 3000 J kg− 1) soundings demonstrated that the depth between the freezing level (FL) and the lifting condensation level (LCL) was crucial to determine whether a cloud becomes a cold cloud or not, which in turn was found to be a crucial factor to enhance cloud invigoration with the additional supply of freezing latent heat. For two large CAPE soundings, FL–LCL was so deep that penetration of FL was prohibitive, and precipitation was only mild in the maritime clouds and negligible in the continental clouds. Two other soundings of similarly large CAPE had small FL–LCL, and both the maritime and continental clouds became cold clouds. Precipitation was strong for both but much more so in the maritime clouds, while the maximum updraft velocity and the cloud top were slightly higher in continental clouds. Although limited to small CAPE cases, more precipitation for smaller FL–LCL for a selected group of precipitation and thermodynamic sounding data from Korea was in support of these model results in its tendency.These results clearly demonstrated that the CCN effects on cloud and precipitation developments critically depended on the given thermodynamic conditions and not just the CAPE but the entire structure of the thermodynamic profiles had to be taken into account.  相似文献   

12.
Vertical distributions of dimethylsulfide (DMS), sulfur dioxide (SO2), aerosol methane-sulfonate (MSA), non-sea-salt sulfate (nss-SO4 2-), and other aerosol ions were measured in maritime air west of Tasmania (Australia) during December 1986. A few cloudwater and rainwater samples were also collected and analyzed for major anions and cations. DMS concentrations in the mixed layer (ML) were typically between 15–60 ppt (parts per trillion, 10–12; 24 ppt=1 nmol m–3 (20°C, 1013 hPa)) and decreased in the free troposphere (FT) to about <1–2.4 ppt at 3 km. One profile study showed elevated DMS concentrations at cloud level consistent with turbulent transport (cloud pumping) of air below convective cloud cells. In another case, a diel variation of DMS was observed in the ML. Our data suggest that meteorological rather than photochemical processes were responsible for this behavior. Based on model calculations we estimate a DMS lifetime in the ML of 0.9 days and a DMS sea-to-air flux of 2–3 mol m–2 d–1. These estimates pertain to early austral summer conditions and southern mid-ocean latitudes. Typical MSA concentrations were 11 ppt in the ML and 4.7–6.8 ppt in the FT. Sulfur-dioxide values were almost constant in the ML and the lower FT within a range of 4–22 ppt between individual flight days. A strong increase of the SO2 concentration in the middle FT (5.3 km) was observed. We estimate the residence time of SO2 in the ML to be about 1 day. Aqueous-phase oxidation in clouds is probably the major removal process for SO2. The corresponding removal rate is estimated to be a factor of 3 larger than the rate of homogeneous oxidation of SO2 by OH. Model calculations suggest that roughly two-thirds of DMS in the ML are converted to SO2 and one-third to MSA. On the other hand, MSA/nss-SO4 2- mole ratios were significantly higher compared to values previously reported for other ocean areas suggesting a relatively higher production of MSA from DMS oxidation over the Southern Ocean. Nss-SO4 2- profiles were mostly parallel to those of MSA, except when air was advected partially from continental areas (Africa, Australia). In contrast to SO2, nss-SO4 2- values decreased significantly in the middle FT. NH4 +/nss-SO4 2- mole ratios indicate that most non-sea-salt sulfate particles in the ML were neutralized by ammonium.  相似文献   

13.
A comprehensive study on the chemistry of deposition and the concentration of tropospheric ozone and particulate sulfate in the ocean atmosphere was carried out for the data sets in 1990’s. It is important to study the atmospheric situation over the past years as well as the latest, especially in the East Asian region where emission amount of anthropogenic air pollutants have increased year by year due to rapid economic growth. The survey was conducted for 5 years in East Asia and West Oceania (35°N–35°S, 100–135°E) in August and September in 1990’s. The purpose of the survey was to study and understand the chemistry of deposition and the concentration of tropospheric ozone and particulate sulfate in the ocean atmosphere comprehensively in one project. Rainfall over the ocean was insufficiently neutralized. Gas and aerosol over the ocean were mature, i.e., well-mixed, during the period of the transportation. The characteristic latitudinal dependence was observed in the tropospheric ozone concentration, namely, higher in the southern hemisphere and lower in the northern hemisphere (approximately 25 ppb in the 10–40°S region and 5–15 ppb in the 20–40°N region). On the other hand, high concentrations of tropospheric ozone of over 30 ppb were observed in the northern hemisphere, which was attributable to the long-range transportation. The TSP concentration was approximately under the level of 40 μg m?3 irrespectively of the latitude; in contrast, the nss-SO4 2- concentration showed a clear latitudinal dependence, i.e., higher in the northern hemisphere and lower in the southern hemisphere. The background levels of the nss-SO4 2- concentration were approximately 0.5 μg m?3 in the 10–40°S region and 2–3 μg m?3 and 4–5 μg m?3 in the 0–20°N and 20–40°N regions, respectively.  相似文献   

14.
A preliminary study was carried out toexamine the feasibility of measuring tropospherichydroxyl radicals (OH) by liquidphase scrubbing andhigh performance liquid chromatography (HPLC). Thepotential advantages of this approach are itssimplicity, portability, and low expense. Thesampling system employs glass bubblers to trapatmospheric OH into a buffered solution of salicylicacid (o-hydroxybenzoic acid, OHBA). Rapidreaction of OH with OHBA produces a stable fluorescentproduct, 2,5-dihydroxybenzoic acid (2,5-DHBA), whichis determined by reverse-phase HPLC and fluorescencedetection. Our preliminary field results indicatethat this method is most suitable for OH measurementsin clean tropospheric air, where interferences fromother atmospheric species appear to be negligible orminor relative to polluted air. In clean air, thesampling period is about 45–90 minutes, which yieldsa detection limit of approximately 3–6 ×105 radicalscm-3. During an OHintercomparison experiment at the Caribou samplingsite in Colorado, our liquidphase scrubber method wascompared with the ion-assisted mass spectrometry (MS)method. Our results were within the same range asthose of the ion-assisted MS method (1–5 ×106 radicals cm-3) within our precision atthat time (about ±30–50%). Preliminary testsin Pullman, WA indicated that the method might alsofunction in moderately polluted air by acidifying thescrubbing solution or by adding a scavenger tosuppress interferences. In Pullman, mid-day OHconcentrations were usually in the range of 2–20 ×106 radicals cm-3. Nighttime OHconcentrations were always low, either at or slightlyabove the detection limit.  相似文献   

15.
The forcing mechanisms for Antarctic coastal polynyas and the thermodynamic effects of existing polynyas are studied by means of an air-sea-ice interaction experiment in the Weddell Sea in October and November 1986.Coastal polynyas develop in close relationship to the ice motion and form most rapidly with offshore ice motion. Narrow polynyas occur frequently on the lee side of headlands and with strong curvature of the coastline. From the momentum balance of drifting sea ice, a forcing diagram is constructed, which relates ice motion to the surface-layer wind vector v z and to the geostrophic ocean current vector c g . In agreement with the data, wind forcing dominates when the wind speed at a height of 3 m exceeds the geostrophic current velocity by a factor of at least 33. This condition within the ocean regime of the Antarctic coastal current usually is fulfilled for wind speeds above 5 m/s at a height of 3 m.Based on a nonlinear parameter estimation technique, optimum parameters for free ice drift are calculated. Including a drift dependent geostrophic current in the ice/water drag yields a maximum of explained variance (91%) of ice velocity.The turbulent heat exchange between sea ice and polynya surfaces is derived from surface-layer wind and temperature data, from temperature changes of the air mass along its trajectory and from an application of the resistance laws for the atmospheric PBL. The turbulent heat flux averaged over all randomly distributed observations in coastal polynyas is 143 W/m2. This value is significantly different over pack ice and shelf ice surfaces, where downward fluxes prevail. The large variances of turbulent fluxes can be explained by variable wind speeds and air temperatures. The heat fluxes are also affected by cloud feedback processes and vary in time due to the formation of new ice at the polynya surface.Maximum turbulent fluxes of more than 400 W/m2 result from strong winds and low air temperatures. The heat exchange is similarly intense in a narrow zone close to the ice front, when under weak wind conditions, a local circulation develops and cold air associated with strong surface inversions over the shelf ice is heated above the open water.  相似文献   

16.
The global heat balance: heat transports in the atmosphere and ocean   总被引:10,自引:0,他引:10  
The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m–2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30°N. Comparable values are achieved in the Pacific at 20°N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20°S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.  相似文献   

17.
The dynamics and the aerosol chemistry of the air masses reaching the free troposphere of the subtropical Northeast Atlantic region during the period 1995–98 have been studied. Seven days backward trajectories were calculated daily with HYSPLIT-4 model for Izaña Global Atmospheric Watch (GAW) Observatory (28.3°N 16.5°W, 2367 m a.s.l.). These back-trajectories were classified by means of a k-means clustering strategy. The daily air masses have been coded using 16 variables to detect the aerosol load of each one of them. Four clusters were found: Cluster 1, representative of Atlantic oceanic middle troposphere air masses, (OMT), has an average frequency of occurrence of 50.6%. Cluster 2, which includes air masses originated in the African continent (AfD), has been recorded in a 19.8% of time. Cluster 3 represents a mixture at least of two of the next sources: Europe, Africa and Ocean, (EAM), with a frequency of 12.7%. Finally, Cluster 4 includes air masses with a high load of maritime aerosols, (MaA), and it has been detected in a 16.9%. An analysis of four aerosol components: NO3 ?, NH4 +, non-sea-salt-SO4 2?, and mineral dust and its relation with the origin and transport of the air masses have been done. The highest quantities of mineral dust and nss-SO4 2? are linked with African air masses with a mean value of 86.5 and 1.9 μg/m3 respectively. Whereas the highest levels of NO3 ?, 1.0 μg/m3, and NH4 +, 0.4 μg/m3, were obtained for AfD and EAM. The lowest levels were associated with OMT and MaA air masses types: 12.7, 0.6, 0.2, and 0.5 μg/m3 for dust, NO3 ?, NH4 +, and nss-SO4 2? in average for the four studied years. However, it is remarkable that the values of the median for dust are 2.2 and 3.5 μg/m3 in clusters MaA and OMT respectively. Using non-parametric statistical tests the distributions of concentrations in each cluster by year have been compared in order to detect similarities. The results show that the aerosol loads of OMT and MaA air masses are quite similar and the same occurs for AfD and EAM air masses. However, the correlation analysis between the levels of anions and ammonium evidenced important differences among the air mass types. In AfD air masses is clear a low correlation between levels of nss-SO4 2? and NH4 + (r 2 = 0.08) suggesting that the sulfate speciation was dominated by sulfate species others than ammonium sulfate, such as calcium sulfate. CaSO4 ?2H2O (gypsum) is mainly present in the coarse mode, where the radiative effects of sulfate are less important that in the accumulative mode. For OMT air masses is noticeable an important increasing on the correlation between the levels of anions and those of NH4 + for the two last years of the study period (1997–1998, r 2 = 0.61 –0.85%) with respect to the first ones (1995–1996, r 2 = 0.25–0.49%), coinciding with the second strongest ENSO (El Niño Southern Oscillation) event recorded. This behavior indicates a change in the speciation of the aerosol component.  相似文献   

18.
In this study, a regional air quality model system (RAQMS) was applied to investigate the spatial distributions and seasonal variations of atmospheric aerosols in 2006 over East Asia. Model validations demonstrated that RAQMS was able to reproduce the evolution processes of aerosol components reasonably well. Ground-level PM10 (particles with aerodynamic diameter ≤10 μm) concentrations were highest in spring and lowest in summer and were characterized by three maximum centers: the Taklimakan Desert (~1000 μg m-3), the Gobi Desert (~400 μg m-3), and the Huabei Plain (~300 μm-3) of China. Vertically, high PM10 concentrations ranging from 100 μg m-3 to 250 μg m-3 occurred from the surface to an altitude of 6000 m at 30o--45oN in spring. In winter, the vertical gradient was so large that most aerosols were restricted in the boundary layer. Both sulfate and ammonium reached their highest concentrations in autumn, while nitrate reached its maximum level in winter. Black carbon and organic carbon aerosol concentrations reached maximums in winter. Soil dust were strongest in spring, whereas sea salt exerted the strongest influence on the coastal regions of eastern China in summer. The estimated burden of anthropogenic aerosols was largest in winter (1621 Gg) and smallest in summer (1040 Gg). The sulfate burden accounted for ~42% of the total anthropogenic aerosol burden. The dust burden was about twice the anthropogenic aerosol burden, implying the potentially important impacts of the natural aerosols on air quality and climate over East Asia.  相似文献   

19.
Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2–3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032–3.2 cm2 V− 1 s− 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4–7.5 nm. The measurement noise of a fraction concentration is typically about 5 cm− 3 and the time resolution is about 10 min when measuring simultaneously both positive and negative ions in atmospheric air.  相似文献   

20.
The major components of the marine boundary layer biogeochemical sulfur cycle were measured simultaneously onshore and off the coast of Washington State, U.S.A. during May 1987. Seawater dimethylsulfide (DMS) concentrations on the continental shelf were strongly influenced by coastal upwelling. Concentration further offshore were typical of summer values (2.2 nmol/L) at this latitude. Although seawater DMS concentrations were high on the biologically productive continental shelf (2–12 nmol/L), this region had no measurable effect on atmospheric DMS concentrations. Atmospheric DMS concentrations (0.1–12 nmol/m3), however, were extremely dependent upon wind speed and boundary layer height. Although there appeared to be an appreciable input of non-sea-salt sulfate to the marine boundary layer from the free troposphere, the local flux of DMS from the ocean to the atmosphere was sufficient to balance the remainder of the sulfur budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号