首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orientation, asymmetry and cross-cutting relationships of the structures along the contact zone between the Lycian nappes and the Menderes Massif suggest the presence of three deformation phases in the Milas region of southwest Turkey. The first deformation phase (D1) is characterized by a ductile deformation with top-to-the-NE sense of shear. Structural data of the first deformation measured along the uppermost part of the Menderes Massif and the base of the Lycian nappes suggest that the lowermost unit of the Lycian nappes was emplaced initially from southwest to northeast onto the Menderes Massif during the Early Eocene. The second deformation phase (D2) is also ductile in nature and is characterized by an E–W-trending stretching lineation with a bivergent sense of shear, which is probably related to the load of the overlying nappes. A third deformation phase (D3) is characterized by south-dipping normal faults with top-to-the-S sense of movement. This third deformation phase can be related to southward movement of the Lycian nappes along a low-angle décollement zone. The tectonic contact between the Menderes Massif and the Lycian nappes and their strongly-deformed rocks are unconformably covered by approximately flat-lying, coal-bearing Early–Middle Miocene sedimentary rocks, which constrains the upper time limit for all three deformation phases.  相似文献   

2.
Lycian Nappes (in SW Turkey) lie between the Menderes Massif and Bey Dağları carbonates and comprise thrust sheets (nappes piles) of Paleozoic-Cenozoic rocks, ophiolitic and tectonic mélanges and serpentinized peridodites. This study focuses on identification of rudists and their palaeoenvironmental features observed within the Cretaceous low grade metamorphic successions (dominated by recrystallized limestones) from the Tavas and Bodrum nappes. The study is based on fifteen stratigraphic sections measured from Tavas, Fethiye, Köyceğiz, Bodrum, Ören and Bozburun areas. The Lower Cretaceous successions with rudists are very sparse in the Lycian Nappes and a unique locality including a Berriasian epidiceratid-requieniid assemblage is reported so far. A new requieniid-radiolitid assemblage was found within the pre-Turonian (?Albian-?Cenomanian) limestones. Four different Late Cretaceous rudist assemblages were firstly identified as well: 1) Caprinid-Ichthyosarcolitid assemblage (middle-late Cenomanian); 2) Distefanellid assemblage (late Turonian); 3) Hippuritid-Radiolitid assemblage (late Coniacian-Santonian-Campanian); 4) Radiolitid-Hippuritid assemblage (‘middle’-late Maastrichtian). Microfacies data and field observations indicate that the rudists lived in the inner and outer shelves of the Cretaceous carbonate platform(s) in this critical part of the Neotethys Ocean. Rudists formed isolated patchy aggregations in very shallow palaeoenvironments and deposited as shell fragments particularly on the outer shelf environment, which is characterized by higher energy and platform slope characteristics.  相似文献   

3.
Abstract

The study, explains stratigraphy of the Oligo-Miocene molasse around the Denizli province (SW Anatolia), based on the palynology which is also supported by the detailed mapping and correlation of the measured sections from the coal-bearing sequences of the molasse deposits. For this purpose, two huge depressions named as the Kale-Tavas molasse and Denizli molasse basins were examined. The Kale-Tavas molasse deposits has a basal unconformity with the underlying pre-Oligocene basement and begins with the Chattian Karadere and Mortuma formations which are covered unconformably by the Aquitanian Yenidere formation. An angular unconformity between the Chattian and the Burdigalian is only observed in the middle part of the basin, around Kale, In the Tavas section, the Aquitanian and the Burdigalian are absent. The Denizli molasse is characterized by Chattian-Aquitanian sequence consisting of distinctive sedimentary facies, alluvial fan and deltaic-shallow marine deposits with carbonate patch reefs. Palynostratigraphic studies, which have given the Chattian age, have been carried out from the coal lenses of alluvial fan and delta plain deposits. In addition to the palynological determinations, coral and foraminiferal content of the carbonate patch reefs which rest conformably on the coal-bearing sequences have yielded the Chattian- Aquitanian age. Two different palynomorph associations have been determined from the molasse deposits. The first palynomorph association which is established in the samples from the Sa?dere and Mortuma formations, corresponds to the Chattian age, whilst the second is of the Aquitanian age. The Late Oligocene-Early Miocene which is claimed as the time of N-S-extensional tectonics in western Turkey, is related to the depositional time of the molasse sequences in the study area. Thus, the molasse is older than the basal deposits of the Gediz and Büyük Menderes grabens. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

4.
《Geodinamica Acta》2001,14(1-3):71-93
The study, explains stratigraphy of the Oligo-Miocene molasse around the Denizli province (SW Anatolia), based on the palynology which is also supported by the detailed mapping and correlation of the measured sections from the coal-bearing sequences of the molasse deposits. For this purpose, two huge depressions named as the Kale–Tavas molasse and Denizli molasse basins were examined. The Kale–Tavas molasse deposits has a basal unconformity with the underlying pre-Oligocene basement and begins with the Chattian Karadere and Mortuma formations which are covered unconformably by the Aquitanian Yenidere formation. An angular unconformity between the Chattian and the Burdigalian is only observed in the middle part of the basin, around Kale. In the Tavas section, the Aquitanian and the Burdigalian are absent. The Denizli molasse is characterized by Chattian–Aquitanian sequence consisting of distinctive sedimentary facies, alluvial fan and deltaic-shallow marine deposits with carbonate patch reefs. Palynostratigraphic studies, which have given the Chattian age, have been carried out from the coal lenses of alluvial fan and delta plain deposits. In addition to the palynological determinations, coral and foraminiferal content of the carbonate patch reefs which rest conformably on the coal-bearing sequences have yielded the Chattian–Aquitanian age. Two different palynomorph associations have been determined from the molasse deposits. The first palynomorph association which is established in the samples from the Sağdere and Mortuma formations, corresponds to the Chattian age, whilst the second is of the Aquitanian age. The Late Oligocene–Early Miocene which is claimed as the time of N–S-extensional tectonics in western Turkey, is related to the depositional time of the molasse sequences in the study area. Thus, the molasse is older than the basal deposits of the Gediz and Büyük Menderes grabens.  相似文献   

5.
Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Mu?la–Gökova Gulf region. During the Oligocene–Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale–Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N–S compression/transpression, during which sediments in the Eskihisar–T?naz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene–Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yata?an Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo–Miocene sediments. Plio-Quaternary marked the activation of N–S extension and the development of the E–W-trending Mu?la–Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.  相似文献   

6.
7.
The Menderes Massif and the overlying Lycian Nappes occupy anextensive area of SW Turkey where high-pressure–low-temperaturemetamorphic rocks occur. Precise retrograde PT pathsreflecting the tectonic mechanisms responsible for the exhumationof these high-pressure–low-temperature rocks can be constrainedwith multi-equilibrium PT estimates relying on localequilibria. Whereas a simple isothermal decompression is documentedfor the exhumation of high-pressure parageneses from the southernMenderes Massif, various PT paths are observed in theoverlying Karaova Formation of the Lycian Nappes. In the uppermostlevels of this unit, far from the contact with the MenderesMassif, all PT estimates depict cooling decompressionpaths. These high-pressure cooling paths are associated withtop-to-the-NNE movements related to the Akçakaya shearzone, located at the top of the Karaova Formation. This zoneof strain localization is a local intra-nappe contact that wasactive in the early stages of exhumation of the high-pressurerocks. In contrast, at the base of the Karaova Formation, alongthe contact with the Menderes Massif, PT calculationsshow decompressional heating exhumation paths. These paths areassociated with severe deformation characterized by top-to-the-eastshearing related to a major shear zone (the Gerit shear zone)that reflects late exhumation of high-pressure parageneses underwarmer conditions. KEY WORDS: exhumation; high-pressure–low-temperature metamorphism; multi-equilibrium PT estimates; Lycian Nappes; Menderes Massif  相似文献   

8.
ABSTRACT

In the eastern Mediterranean, the Lycian Nappes are found in the structurally uppermost position in the Anatolide-Tauride belt related to the closure of the Neotethys. In Western Turkey, the Marmaris Ophiolite with the metamorphic sole occupies the uppermost tectonic position in the Lycian belt. The metamorphic sole is represented by discontinuous tectonic slices composed of amphibolites, phyllites, micashists and quartzo-feldspathic micaschists. Zircons from the micashists and quartzo-feldspathic micaschists display dark cores and rims. The cores yield ages between 229 and 175 Ma, inner rims yield ages between 153 and 143 Ma and the outer rims show a concordia age of 96.7 ± 0.79 Ma. In terms of their Th/U ratios, the cores and inner rims indicate igneous origin, whereas the outer rims indicate accretion during metamorphism. By dating of these zircons, the deposition time for the protolith of micaschists and quartzo-feldspathic micaschists could be constrained as the Early Cretaceous. Present-day orientation of the kinematic data from the sole metamorphics and the uppermost part of the Karabörtlen formation clearly suggest a top-to-the NE sense of shear. By taking into account the 25º–30º anticlockwise post-emplacement rotation of Southwest Turkey, it follows that the Lycian Nappes were emplaced eastward onto the Menderes Nappes. This tectonic model disagrees with the previous tectonic models suggesting northward or southward movement of the Lycian Nappes onto Menderes Nappes.  相似文献   

9.
The central Menderes Massif (western Turkey) is characterized by an overall dome-shaped Alpine foliation pattern and a N-NNE-trending stretching lineation. A section through the southern flank of the central submassif along the northern margin of Büyük Menderes graben has been studied. There, asymmetric non-coaxial fabrics indicate that the submassif has experienced two distinct phases of Alpine deformation: a top-to-the N-NNE contractional phase and a top-to-the S-SSW extensional event. The former fabrics are coeval with a regional prograde Barrovian-type metamorphism at greenschist to upper-amphibolite facies conditions. This event, known as the main Menderes metamorphism, is thought to be the result of internal imbrication of the Menderes Massif rocks along south-verging thrust sheets during the collision of the Sakarya continent in the north and the Anatolide-Tauride platform in the south across the Gzmir-Ankara suture during the (?)Palaeocene-Eocene. Top-to-the S-SSW fabrics, represented by a well-developed ductile shear band foliation associated with inclined and/or curved foliation, asymmetric boudins, and cataclasites, were clearly superimposed on earlier contractional fabrics. These fabrics are interpreted to be related to a low-grade (greenschist?) retrogressive metamorphism and a continuum of deformation from ductile to brittle in the footwall rocks of a south-dipping, presently low-angle normal fault that accompanied Early Miocene orogenic collapse and continental extension in western Turkey. A similar tectono-metamorphic history has been documented for the northern flank of the dome along the southern margin of the Gediz graben with top-to-the N-NNE extensional fabrics. The exhumation of the central Menderes Massif can therefore be attributed to a model of symmetric gravity collapse of the previously thickened crust in the submassif area. The central submassif is thus interpreted as a piece of ductile lower-middle crust that was exhumed along two normal-sense shear zones with opposing vergence and may be regarded as a typical symmetrical metamorphic core complex. These relationships are consistent with previous models that the Miocene exhumation of the Menderes Massif and Cycladic Massif in the Aegean Sea was a result of bivergent extension.  相似文献   

10.
《Geodinamica Acta》1999,12(1):25-42
The Early Eocene to Early Oligocene tectonic history of the Menderes Massif involves a major regional Barrovian-type metamorphism (M1, Main Menderes Metamorphism, MMM), present only in the Palaeozoic-Cenozoic metasediments (the so-called “cover” of the massif), which reached upper amphibolite faciès with local anatectic melting at structurally lower levels of the cover rocks and gradually decreased southwards to greenschist facies at structurally higher levels. It is not present in the augen gneisses (the so called “core” of the massif), which are interpreted as a peraluminous granite deformed within a Tertiary extensional shear zone, and lie structurally below the metasediments. A pronounced regional (S1) foliation and approximately N-S trending mineral lineation (L1) associated with first-order folding (F1) were produced during D1 deformation coeval with the MMM. The S1 foliation was later refolded during D2 by approximately WNW-ESE trending F2 folds associated with S2 crenulation cleavage. It is now commonly believed that the MMM is the product of latest Palaeogene collision across Neo-Tethys and the consequent internal imbrication of the Menderes Massif area within a broad zone along the base of the Lycian Nappes during the Early Eocene-Early Oligocene time interval. However, the meso- and micro-structures produced during D1 deformation, the asymmetry and change in the intensity and geometry of the F2 folds towards the Lycian thrust front all indicate an unambiguous non-coaxial deformation and a shear sense of upper levels moving north. This shear sense is incompatible with a long-standing assumption that the Lycian Nappes were transported southwards over the massif causing its metamorphism. It is suggested here that the MMM results from burial related to the initial collision across the Neo-Tethys and Tefenni nappe emplacement, whereas associated D1 deformation and later D2 deformation are probably related to the northward backthrusting of the Lycian nappes.  相似文献   

11.
A palaeomagnetic study has been carried out within the Mesozoic and Tertiary units of the relatively autochthonous carbonate platforms and the allochthonous deep-sea volcanics and sediments of the Antalya Complex, exposed around the Isparta angle, SW Turkey. The Antalya Complex is interpreted as a mosaic of carbonate platforms, basinal sediments, volcanic and ophiolitic rocks which formed within a southerly strand of the Neotethyan ocean, adjacent to Gondwana.

The results indicate a widespread remagnetisation event. Negative fold tests show that the remanence at most sites is of secondary origin (e.g., within the çirali lavas). The magnetisation is carried by magnetite of presumed authigenic origin. The remagnetisation event is believed to have occurred in the Early-Middle Miocene (Burdigalian-Langhian). It was possibly triggered by the migration of orogenic fluids ahead of the advancing Lycian nappes during their emplacement onto the carbonate platforms.

Subsequent to remagnetisation, a large segment of the Isparta angle underwent an anticlockwise rotation of 30°. This rotation is attributed to the overall convergence and bending of the Hellenic arc and the final stages of emplacement of the Lycian Nappes during the Late Miocene, in agreement with previous studies.

Previously, southerly palaeolatitudes were inferred from Late Triassic extrusives of the Gödene Zone ( albali Dag unit). The post-folding magnetisation identified here within the Çirali lavas of the Gödene Zone to the south implies that these low palaeolatitudes result from the inappropriate application of structural tilt corrections. The available data cannot be used to substantiate an origin for the Antalya units south of the equator in the early Mesozoic. Instead, a position close to the northern margin of Gondwana is indicated.  相似文献   


12.
The Alaçam region of NW Turkey lies within the Alpine collision zone between the Sakarya continent and the Menderes platform. Four different tectonic zones of these two continents form imbricated nappe packages (including the Afyon zone), intruded by the Alaçam granite. Newly determined U-Pb zircon ages of this granite are 20.0 ± 1.4 and 20.3 ± 3.3 Ma, indicating early Miocene emplacement. Rb-Sr biotite ages of the granite are 20.01 ± 0.20 and 20.17 ± 0.20 Ma, suggesting fast cooling at a shallow crustal level. Geochemical characteristics show that the Alaçam granite is similar to numerous EW-trending plutons in NW Anatolia.

Gneissic granites of the Afyon tectonic zone were intruded by the Miocene Alaçam granite and have been interpreted in earlier studies as sheared parts of the Alaçam granite, which formed along a crustal-scale detachment zone under an extensional regime. We determined a U-Pb zircon age of 314.9 ± 2.7 Ma for a gneissic granite sample of the Afyon zone, demonstrating that these rocks are unrelated to the Miocene Alaçam granite. The early Miocene granitic plutons bear post-collisional geochemical features and are interpreted as products of Alpine-type magmatism along the Izmir–Ankara suture zone in NW Turkey, and seem to have no genetic relation to the detachment zone.  相似文献   

13.
Abstract

Flysch and molasse are discussed in the light of alpine geodynamics. They are pre-collision and post-collision orogenic clastics which accumulated in basins under different geodynamic controls. We propose that in the case of the Alps, their succession records the change in geodynamics from pre-collision inversion of shallower extensio-nal structures, to post-collision inversion of one or more deep-seated features.

The classical flysch of the Prealps, lying within a pile of nappes at the front of the Western Alps, are invariably turbidite deposits. Flysch has therefore acquired a sedimentological connotation over the years, and this has been emphasized over the last few decades. Turbidite facies were also laid down in marginal and foreland locations during and a little after the collision between the South and North Tethyan Alpine margins, and this has obscured the possible deeper signification of flysch and molasse.

Geodynamic regimes dictate the subsidence behaviour of basins, so by use of geohistory analysis, the time and place of the onset of Molasse basin development may be located. This was at the southern margin of the Helvetic belt, from the start of the Oligocene. Along the Alpine traverse of Western Switzerland, the change in regime from flysch to molasse (i.e. from trench and forearc or retro-arc, to foreland basin deposits) suggests that a major deep-seated inversion structure was situated near the Helvetic-Ultrahelvetic boundary.  相似文献   

14.
《Geodinamica Acta》2013,26(3-4):167-208
The Denizli graben-horst system (DGHS) is located at the eastern-southeastern converging tips of three well-identified major grabens, the Gediz, the Küçük Menderes and the Büyük Menderes grabens, in the west Anatolian extensional province. It forms a structural link between these grabens and the other three NE-NW-trending grabens—the Çivril, the Ac?göl and the Burdur grabens—comprising the western limb of the Isparta Angle. Therefore, the DGHS has a critical role in the evolutionary history of continental extension and its eastward continuation in southwestern Turkey, including western Anatolia, west-central Anatolia, and the Isparta Angle. The DGHS is a 7-28-km wide, 62-km long, actively growing and very young rift developed upon metamorphic rocks of both the Menderes Massif and the Lycian nappes, and their Oligocene-Lower Miocene cover sequence. It consists of one incipient major graben, one modern major graben, two sub-grabens and two intervening sub-horsts evolved on the four palaeotectonic blocks. Therefore, the DGHS displays different trends along its length, namely, NW, E-W, NE and again E-W.

The DGHS has evolved episodically rather than continuously. This is indicated by a series of evidence: (1) it contains two graben infills, the ancient graben infill and the modern graben infill, separated by an intervening angular unconformity; (2) the ancient graben infill consists of two Middle Miocene-Middle Pliocene sequences of 660 m thickness accumulated in a fluvio-lacustrine depositional setting under the control of first NNW-SSE- and later NNE-SSW-directed extension (first-stage extension), and deformed (folded and strike-slip faulted) by a NNE-SSW- to ENE-WSW-directed phase of compression in the latest Middle Pliocene, whereas the modern graben infill consists of 350-m thick, undeformed (except for local areas against the margin-bounding active faults), nearly flat-lying fanapron deposits and travertines of Plio-Quaternary age; (3) the ancient graben infill is confined not only to the interior of the graben but is also exposed well outside and farther away from the graben, whereas the modern graben infill is restricted to only the interior of the graben. These lines of evidence imply an episodic, two-stage extensional evolutionary history interrupted by an intervening compressional episode for the DGHS.

Both the southern and northern margin-bounding faults of the DGHS are oblique-slip normal faults with minor right- and/or left-lateral strike-slip components. They are mapped and classified into six categories, and named the Babada?, Honaz, A?a??da?dere, Küçükmal?da?, Pamukkale and Kaleköy fault zones, and composed of 0.5-36-km long fault segments linked by a number of relay ramps. Total throw amounts accumulated on both the northern and southern margin-bounding faults are 1,050 m and 2,080 m, respectively. In addition, the maximum width of the DGHS and the thickness of the crust beneath it are more or less same (~ 28 km). The total of these values indicate a vertical slip rate of 0.15-0.14 mm/year and averaging 7% extension for the asymmetrical DGHS.

The master faults of the Babada?, Honaz, Küçükmal?da?, Pamukkale and Kaleköy fault zones are still active and have a potential seismicity with magnitudes 6 or higher. This is indicated by both the historical (1703 and 1717 seismic events) to recent (1965, 1976, 2000 seismic events) earthquakes sourced from margin-bounding faults and some diagnostic morphotectonic features, such as deflected drainage system, degraded alluvial fans with apices adjacent to fault traces, back-tilting of fault-bounded blocks, and actively growing travertine occurrences. The kinematic analyses of main fault-slip-plane data, Upper Quaternary fissure ridges and focal-mechanism solutions of some destructive earthquakes clearly indicate that the current continental extension (second-stage extension) by normal faulting in the DGHS continues in a (mean) 026° to 034° (NNE-SSW) direction.

Detailed and recent field geological mapping, stratigraphy of the Miocene-Quaternary basins, palaeostress analysis of fault populations and main margin-bounding faults of these basins, extensional gashes to fissures, and focal-mechanism solutions of destructive earth-quakes that have occurred in last century strongly indicate that extension is not unidirectional and confined only to western Anatolia, but also continues farther east across the Isparta Angle and west-central Anatolia, up to the Salt Lake fault zone in the east and the inönü-Eski?ehir fault zone in the north-northeast. Therefore, the term “southwest Turkey extensional province” is proposed in lieu of the term “west Anatolian extensional province”.  相似文献   

15.
《Geodinamica Acta》2013,26(1-3):101-126
The olistostromes formed in Northern Carpathians during the different stages of the development of flysch basins, from rift trough post-rift, orogenic to postorogenic stage. They are known from the Cretaceous, Paleocene, Eocene, Oligocene and Early Miocene flysch deposits of main tectonic units. Those units are the Skole, Subsilesian, Silesian, Dukla and Magura nappes as well as the Pieniny Klippen Belt suture zone. The oldest olistoliths in the Northern Carpathians represent the Late Jurassic-Early Cretaceous rifting and post-rifting stage of the Northern Carpathians and origin of the proto-Silesian basin. They are known from the Upper Jurassic as well as Upper Jurassic-Lower Cretaceous formations. In the southern part of the Polish Northern Carpathians as well as in the adjacent part of Slovakia, the olistoliths are known in the Cretaceous- Paleocene flysch deposits of the Pieniny Klippen Belt Zlatne Unit and in Magura Nappe marking the second stage of the plate tectonic evolution - an early stage of the development of the accretionary prism. The most spectacular olistostromes have been found in the vicinity of Haligovce village in the Pieniny Klippen Belt and in Jaworki village in the border zone between the Magura Nappe and the Pieniny Klippen Belt. Olistoliths that originated during the second stage of the plate tectonic evolution occur also in the northern part of the Polish Carpathians, in the various Upper Cretaceous-Early Miocene flysch deposits within the Magura, Fore-Magura, Dukla, Silesian and Subsilesian nappes. The Fore-Magura and Silesian ridges were destroyed totally and are only interpreted from olistoliths and exotic pebbles in the Outer Carpathian flysch. Their destruction is related to the advance of the accretionary prism. This prism has obliquely overridden the ridges leading to the origin of the Menilite-Krosno basin.

In the final, postcollisional stage of the Northern Carpathian plate tectonic development, some olistoliths were deposited within the late Early Miocene molasse. These are known mainly from the subsurface sequences reached by numerous bore-holes in the western part of the Polish Carpathians as well as from outcrops in Poland and the Czech Republic.

The largest olistoliths (kilometers in size bodies of shallow-water rocks of Late Jurassic-Early Cretaceous age) are known from the Moravia region. The largest olistoliths in Poland were found in the vicinity of Andrychów and are known as Andrychów Klippen. The olistostromes bear witness to the processes of the destruction of the Northern Carpathian ridges. The ridge basement rocks, their Mesozoic platform cover, Paleogene deposits of the slope as well as older Cretaceous flysch deposits partly folded and thrust within the prism slid northward toward the basin, forming the olistostromes.  相似文献   

16.
Apatite fission-track analyses along a W–E-orientated transect across northern Corsica indicate an important episode of crustal exhumation in late early Miocene time. Samples taken from the Alpine orogenic wedge, from the adjacent foreland basin and from the crystalline basement complex flooring the basin are completely reset. This implies that a ≥ 2.0–2.3-km-thick crustal section made of thrust sheets and/or autochthonous foreland deposits has been removed by erosion since early Miocene time. A geometric projection of this lost cover towards the west indicates that all of northern Corsica was covered either by Alpine nappes or middle Eocene foreland deposits. Fission-track ages are the same across the main boundary fault system separating the Alpine orogenic wedge and the foreland, indicating the absence of significant differential vertical displacement between upper and lower plates during Neogene unroofing.  相似文献   

17.
The Denizli Basin is a fault‐bounded Neogene–Quaternary depression located in the Western Anatolian Extensional Province, Western Turkey. The basin is a unique geological site with abundant active and fossil (Quaternary) travertine and tufa deposits. Fluid inclusion microthermometry and isotopic analysis were applied to study the genesis of the Ball?k fossil travertine deposits, located in the south‐eastern part of the basin. Microthermometry on fluid inclusions indicates that the main travertine precipitating and cementing fluids are characterized by low salinity (<0·7 wt% NaCl equivalent) and variable temperatures that cluster at <50°C and ca 100°C. Fluids of meteoric origin have been heated by migration to the deeper subsurface, possibly in a local high geothermal gradient setting. A later uncommon cementation phase is related to a fluid with a significantly higher salinity (25·5 to 26·0 wt% bulk). The fluid obtained its salinity by interaction with Late Triassic evaporite layers. Strontium isotopes indicate that the parent carbonate source rock of the different travertine precipitates is very likely to be the Triassic limestone of the Lycian Nappes. Carbon isotopes suggest that the parent CO2 gas originated from thermal decarbonation of the Lycian limestones with minor contributions of magmatic degassing and organic soil CO2. Oxygen isotopes confirm the meteoric origin of the fluids and indicate disequilibrium precipitation because of evaporation and degassing. Results were integrated within the available geological data of the Denizli Basin in a generalized travertine precipitation model, which enhanced the understanding of fossil travertine systems. The study highlights the novel application of fluid inclusion research in unravelling the genesis of continental carbonates and provides several recommendations for hydrocarbon exploration in travertine‐bearing sedimentary basins. The findings suggest that travertine bodies and their parent carbonate source rocks have the potential to constitute interesting subsurface hydrocarbon reservoirs.  相似文献   

18.
Provenance analysis of the sediments from foredeep basins is crucial in understanding the contemporaneous orogenic exhumation processes. We report in this paper complex sediment provenance analysis using sandstone petrography and mudstone geochemistry, combined with magnetic susceptibility of the Upper Miocene to Pliocene deposits from Focşani foredeep basin (Romania). Data show a change of source area between 5 and 6 Ma, from an active volcanic arc towards a recycled orogenic belt, concurrent with an important increase of accumulation rate. This change was triggered by exhumation and erosion of the outer nappes from East Carpathians.  相似文献   

19.
The Denizli Basin (southwestern Anatolia, Turkey) contains a record of environmental changes dating since the Early Miocene. Detailed facies analysis of the Neogene formations in this half-graben enables us to document successive depositional regimes and palaeogeographic settings. Sedimentation commenced in the Early Miocene with the deposition of alluvial-fan and fluvial facies (K?z?lburun Formation). At this stage, alluvial fans sourced from elevated areas to the south prograded towards the basin centre. The Middle Miocene time saw the establishment of marginal lacustrine and wetland environments followed by the development of a shallow lake (Sazak Formation). The uppermost part of this unit consists of evaporitic saline lake and saline mudflat facies that grade upward into brackish lacustrine deposits of Late Miocene-Pliocene age (Kolankaya Formation). The lake became shallower at the end of the Pliocene time, as is indicated by expansion shoreface/foreshore facies. In the Early Quaternary, the Denizli Basin was transformed into a graben by the activation of ESE-trending normal faults. Alluvial fans were active at the basin margins, whereas a meandering river system occupied the basin central part.Oxygen isotope data from carbonates in the successive formations show an alternation of wetter climatic periods, when fresh water settings predominated, and very arid periods, when the basin hosted brackish to hypersaline lakes. The Neogene sedimentation was controlled by an active, ESE-trending major normal fault along the basin's southern margin and by climatically induced lake-level changes. The deposition was more or less continuous from the Early Miocene to Late Pliocene time, with local unconformities developed only in the uppermost part of the basin-fill succession. The unconformable base of the overlying Quaternary deposits reflects the basin's transformation from a half-graben into a graben system.  相似文献   

20.
In the Thrace Peninsula, Neogene units were deposited in two areas, the Enez Basin in the south and the Thrace Basin in the north. In the southwesternmost part of the peninsula, upper lower–lower upper Miocene continental to shallow marine clastics of the Enez Formation formed under the influence of the Aegean extensional regime. During the last stage of the transpressional activity of the NW-trending right-lateral strike–slip Balkan–Thrace Fault, which had controlled the initial early middle Eocene deposition in the Thrace Basin, a mountainous region extending from Bulgaria eastwards to the northern Thrace Peninsula of Turkey developed. A river system carried erosional clasts of the metamorphic basement southwards into the limnic depositional areas of the Thrace Basin during middle Miocene time. Deposition of fluvial, lacustrine, and terrestrial strata of the Ergene Formation, which conformably and transitionally overlie the Enez Formation, began in the late middle Miocene in the southwest part and in the late Miocene in the north‐northeast part of the basin. Activity along the NE-trending right-lateral strike–slip faults (the Xanthi–Thrace Fault Zone) extending from northeast Greece northeastwards through the Thrace Peninsula of Turkey to the southern shelf of the western Black Sea Basin began during the middle Miocene in the northern Aegean, at the beginning of the late Miocene in the southwest part, and at the end of the late Miocene in the northeast part of the Thrace region. Although the Neogene deposits in the Thrace Basin were evaluated as the products of a northerly fault, our data indicate that the NW-trending northerly fault zone became effective only during the initial stage of the basin development. The later stage deposition in the basin was controlled by the NE-trending Xanthi–Thrace Fault Zone, and the deposits of this basin progressively evolved north/northeastwards during the late Miocene. During the late early Miocene–late Miocene interval, extension within the Thrace region was part of the more regional Aegean extensional realm, but from latest Miocene time, it has been largely decoupled from the Aegean extensional realm to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号