首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2013,26(3-4):317-331
The Küçük Menderes Graben (KMG) is part of the horst-graben system of southwestern Anatolia (Turkey), bounded by the Bozda? horst in the north and the Ayd?n horst in the south. The Plio-Quaternary evolution of the KMG has been evaluated using the nature of the Miocene-Quaternary fill sediments and palaeostress analysis of slip data measured in different parts of the graben.

The graben is composed of five subbasins—the Kiraz, Ödemi?, Bay?nd?r, Da?k?z?lca-Torbal? and Selçuk—that are connected to each other through narrow Quaternary troughs. The Da?k?z?lca, Kiraz and Selçuk basins bear Miocene and younger sequences whereas the other subbasins are largely filled by Quaternary sediments. The maximum thickness of the Quaternary fill reaches about 270 m in the Ödemi? and Bay?nd?r subbasins.

The calculated slip results indicate multidirectional extension, three successive deformational periods, and possible counterclockwise rotation in the KMG during the post-Miocene period. The first phase was a strike-slip regime under N-S compression, followed by a second phase of deformation which resulted in ENE-WSW extension with strike-slip components. The final phase of deformation was NE-SW extension which constituted the final evolution of the KMG.

The graben gained its present morphological configuration via the onset of E-W-trending, high-angle normal faulting imposed on the regionwide synformal structure during the Plio-Quaternary. The KMG evolved as a result of rifting during the Plio-Quaternary which followed Late Miocene unroofing of the Menderes Massif and the evolution of the Büyük Menderes and Gediz grabens.  相似文献   

2.
《Geodinamica Acta》2013,26(3-4):299-316
Western Anatolia (Turkey) is a region of widespread active N-S continental extension that forms the eastern part of the Aegean extensional province. The extension in the region is expressed by two distinct/different structural styles, separated by a short-term gap: (1) rapid exhumation of metamorphic core complexes along presently low-angle ductile-brittle normal faults commenced by the latest Oligocene-Early Miocene period, and; (2) late stretching of crust and, consequent graben evolution along Plio-Quaternary high-angle normal faults, cross-cutting the pre-existing low-angle normal faults. However, current understanding of the processes (tectonic quiescence vs N-S continental compression) operating during the short-time interval is incomplete. This paper therefore reports the results of recent field mapping and structural analysis from the NE of Küçük Menderes Graben—Kiraz Basin—that shed lights on the processes operating during this short-time interval. The data includes the thrusting of metamorphic rocks of the Menderes Massif over the Mio-Pliocene sediments along WNW-ESE-trending high-angle reverse fault and the development of compressional fabrics in the metamorphic rocks of the Menderes Massif. There, the metamorphic rocks display evidence for four distinct phases of deformation: (1) southfacing top-N ductile fabrics developed at relatively high-grade metamorphic conditions, possibly during the Eocene main Menderes metamorphism (amphibolite facies) associated with top-N thrust tectonics (D1); (2) top-S and top-N ductile gentle-moderatley south-dipping extensional fabrics formed at relatively lower-grade metamorphic (possibly greenschist facies) conditions associated with the exhumation of Menderes Massif along presently low-angle normal fault plane that accompanied the first phase of extension (D2); (3) moderately north-dipping top-S ductile-brittle fabrics, present configuration of which suggest a thrust-related compression (D3); and (4) south-facing approximately E-W-trending brittle high-angle normal faults (D4) that form the youngest structures in the region. It is interpreted that D4 faults are time equivalent of graben-bounding major high-angle normal faults and they correspond to the second phase of extension in western Anatolia. The presence of thrust-related D3 compressional fabrics suggests N-S compression during the time interval between the two phases of extension (D2 and D4). The results of the present study therefore support the episodic, two-stage extension model in western Anatolia and confirm that a short-time, intervening N-S compression separated the two distinct phases.  相似文献   

3.
《Geodinamica Acta》2001,14(1-3):57-69
There is a N–S lying narrow strip of Neogene outcrop between the towns of Kuşadası and Söke in western Anatolia. It contains remnants of successive Neogene graben basins. The first graben began to form under the control of a N40–70°E-trending oblique fault system during the Early Miocene. At the initial phase of the opening coarse clastic rocks were deposited in front of the fault-elevated blocks as scree deposits and fanglomerates. Later the graben advanced into a large lake basin. Towards the end of the Middle Miocene the lacustrine sediments of the Early–Middle Miocene age underwent an approximately N–S compressional deformation and elevated above the lake level, and were partly eroded. During the Late Miocene a new graben basin began to form as a consequence of the development of E–W-trending normal faults, formed under the N–S extensional regime. This graben also turned later into a lake environment. The lake extended far beyond the limits of the fault zones, and covered the entire regions stretching from the south of Bafa Lake in the south to Kuşadası and beyond in the north. Micritic clayey limestones were predominantly deposited in the lake. A severe erosional phase followed the termination of the lake basin. This corresponds to the cessation of the N–S extension. When the N–S extension regenerated during the Pliocene(?)–Pleistocene, the Büyük Menderes graben system began to form. In the western part of the graben, a conjugated pair of oblique faults, the Priene–Sazlı fault and the Kuşadası fault, have formed. The faults having important strike-slip components, bounded a tectonic wedge, which began to move westward into the Aegean Sea region. Major morphological features of the region were formed under the effective control of these fault zones.  相似文献   

4.
The Büyük Menderes and Gediz (Ala?ehir) grabens are two significant segments of the Western Anatolian extensional province. They merge around Buldan-Sar?caova in the east. Outcropping Neogene sedimentary units in this area display a rather complex structure. This paper summarizes the importance and meaning of the data obtained during a detailed investigation of the Neogene units and aims to improve our understanding of the neotectonic evolution of Western Anatolia. The Buldan-Sar?caova Neogene sequence is composed of three different sedimentary units: (1) the Lower Unit, (2) the Middle Unit, and (3) the Upper Unit. The Lower Unit crops out on the Buldan horst which is located between the Büyük Menderes and Ala?ehir grabens. The sequence starts as a coarse conglomerate and sandstone (?salar Formation) and continues as lagoonal-lacustrine mudstone, interbedded with coal seams and shales (Bostanyeri Formation) and also with lacustrine limestones. The age of this succession is Lower-Middle Miocene. The development of the basin is structurally controlled by NNW-trending normal faults. The Middle Unit begins with a conglomerate–mudstone sequence (K?z?lburun Formation), followed by a sandstone–mudstone–marl sequence (Sarayköy Formation). A lacustrine limestone–marl unit occurs at the top (Aktepe Formation). Some thin gypsum lenses and layers are observed in the Sarayköy Formation. The unit contains some brackish-water fossils. The rocks of the Middle Unit crop out mostly at the low altitudes of the Buldan horst, i.e. the southeast piedmont, around the junction of the Büyük Menderes and the Gediz grabens. The Middle Unit was deposited in fluvial and lacustrine environments during the Late Miocene–Pliocene period. These rocks were formed in response to the uplift of the Buldan horst. The Upper Unit, which is composed of conglomerates, was deposited within the Büyük Menderes Graben–Gediz Graben depressions as alluvial fill.  相似文献   

5.
《International Geology Review》2012,54(14):1803-1821
ABSTRACT

In the Central Anatolia, the style of neotectonic regime governing the region has been a controversial issue. A tectonic study was carried out in order to contribute to this issue and better understand the neotectonic stress distribution and style of deformation in the west-southwest of the Konya region. From Middle Miocene to Recent time, Konya region was part of the Central Anatolia extensional province. The present-day topography in the west-southwestern part of Konya is characterized by alternating elongate grabens and horsts trending E-W and NW-SE. The grabens were developed upon low-grade metamorphic rocks of Palaeozoic and Mesozoic ages and ophiolite slabs of possibly Late Cretaceous age. The evolutionary history of grabens is episodic as evidenced by two graben infills; older and younger graben infills separated by an angular unconformity. The older infill consists of fluviolacustrine sequence intercalated with calc-alkaline lavas and pyroclastic rocks. This infill is folded; thrust faulted and Middle Miocene-Early Pliocene in age. The younger and undeformed basin fill comprises mainly of Plio-Quaternary conglomerates, sandstone-mudstone alternations of alluvial fan and recent basin floor deposits. Three major tectonic phases were differentiated based on the detailed mapping, morphological features and kinematic analysis. Approximately N-S trending extension began in the Middle Miocene-Early Pliocene in the region with the formation of E-W and NW-SE-trending grabens. Following NE-SW-directed compression which deformed the older basin fill deposits by folding and thrusting, a second period of ENE-WSW-trending extension began in the late Pliocene and continued to the present. The west-southwestern margin of the Konya depression is bounded by the Konya Fault Zone. It is an oblique-slip normal fault with a minor dextral strike-slip component and exhibits well-preserved fault slickensides and slickenlines. Recent seismicity and fault-related morphological features reveal that the Konya Fault Zone is an active neotectonic structure.  相似文献   

6.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

7.
The main exhumation of the Menderes massif, western Turkey, occurred along an originally N‐dipping Datça–Kale main breakaway fault that controlled depositions in the Kale and the Gökova basins during the Oligocene – Early Miocene interval. The isostatically controlled upward bending of the main breakaway fault brings the lower plate rocks to the surface. In the Early Miocene, E–W‐trending N‐ and S‐dipping graben‐bounding faults fragmented the exhumed, dome‐shaped massif. The development of half grabens by rolling master fault hinges has allowed further exhumation of the central Menderes massif. After the Pliocene, high‐angle normal faults cut all of the previous structures. This model suggests that the Menderes massif is a single large metamorphic core complex that has experienced a two‐stage exhumation process.  相似文献   

8.
Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Mu?la–Gökova Gulf region. During the Oligocene–Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale–Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N–S compression/transpression, during which sediments in the Eskihisar–T?naz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene–Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yata?an Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo–Miocene sediments. Plio-Quaternary marked the activation of N–S extension and the development of the E–W-trending Mu?la–Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.  相似文献   

9.
《International Geology Review》2012,54(12):1401-1418
The Neogene–Quaternary succession in the Kütahya region is of importance in the neotectonic evolution of western Anatolia because the strata contain clear evidence of compression and extension. During the early-middle Miocene, N–S compression/transpression as well as NE–SW- and NW–SE-oriented oblique conjugate faults formed. NE–SW-oriented horsts and grabens developed, controlled by the dominant NE–SW faults. The Seyitömer and Sabuncup?nar grabens were filled primarily by terrestrial clastic sedimentary and volcanic rocks. At the end of the middle Miocene, the graben fill was locally folded and reverse faulted, reflecting reactivation of compression. Between the late Miocene and the middle Pliocene, the region underwent erosion and lacustrine sediments accumulated in topographic lows. Between the middle and late Pliocene, compression in the region was again reactivated and basal units were thrust over the pre-upper Pliocene units. The late Plio-Quaternary marked the onset of N–S extension and development of the NW–SE-oriented Kütahya Graben, co-genetic equivalents of which are common throughout western Anatolia. This study indicates that tectonic evolution of western Anatolia involved multiple stages of contraction and extension.  相似文献   

10.
The northern Menderes metamorphic core complex has complex exhumation history and is one of the key localities to investigate the spatial and temporal relationships of extensional and compressional structures. Detachment faults and syn-extensional plutons are linked to a series of antiforms and synforms and the denudation of the northern Menderes Massif occurred in three stages. The first stage is related to the development of detachment faults under the consistent NE–SW-directed extension. The second stage is represented by a series of elongated magmatic domes that were oriented parallel, oblique and perpendicular to the regional extension direction. Emplacement of these asymmetrical magmatic domes appears to have been controlled by heterogeneous extension and post-dates the extensional Simav detachment fault. On the third stage, progressive heterogeneous extension that led to updoming of plutons has been finally accommodated by a localised and short-lived transfer zone, which was described as the Gerni shear zone for the first time in this study. The transfer zone is formed by a NE-striking, dextral ductile/brittle shear zone that accommodated the propagation of folds, conjugated strike-slip faults and normal- and oblique-slip faults. Mylonites associated with the transfer zone are related to the localisation of strain along the thermally weakened strike-slip fault systems by short-lived intrusions rather than to the development of regional-scale detachment faults. These structures are consistent with a transtensional simple shear model, which properly explains the evolution of extensional and compressional structures exposed in the northern Menderes core complex. Structural setting of the E?rigöz region is somewhat similar to that of the NE-trending gneiss domes in the northern Menderes Massif and updoming of magma during late stages of detachment faulting appears to have played an important role in the exhumation of lower and upper plate rocks.  相似文献   

11.
《Geodinamica Acta》2001,14(1-3):45-55
Field studies on the Neogene successions in south of İzmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the Early–Middle Miocene period. The lacustrine sediments underwent an approximately N–S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N–S-trending, fault-bounded graben basin, the Çubukludağ graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukludağ graben began to work as a cross graben between the E–W grabens, since that period.  相似文献   

12.
The Isparta Angle (IA) is a reverse Λ-shaped morphotectonic structure located to the north of Antalya Gulf in the Eastern Mediterranean Sea. It resulted from the northward curvature of the originally E–W-trending Tauride orogenic belt owing to the nappe emplacements and related clockwise and anti-clockwise rotations in a time period of Early Paleocene to Early Pliocene. The IA is included in the southwest Anatolian tensional neotectonic domain and characterized by a series of grabens and horsts bounded by active normal faults of dissimilar length and trend. The evolutionary history of the graben-horst system is episodic. It is evidenced by two graben fills. These are older and modern (younger) graben fills separated by an intervening angular unconformity. The modern graben fill is nearly flat-lying (non-deformed) whereas older graben fill was deformed into a series of anticlines and synclines with ENE-trending curvi-linear axes by a short-term compressive tectonic regime operated in NNW–SSE direction during Late Pliocene. The diagnostic structures taking a part in the development of grabens and shaping the northern section of the IA are the margin-boundary normal faults. They occur in numerous single and several fault zones displaying a basin ward facing step-like land shape. Most of fault segments, particularly the master faults, are active and have a capacity of creating destructive earthquakes with a magnitude (up to Mw?=?7.0). This is evidenced by both the historical and instrumental period earthquakes. Both the focal mechanism solution of earthquakes and the stereographic plots of slip-plane data, measured on the active margin-boundary faults of various grabens comprising the IA, on the Schmidt lower hemisphere net obviously reveal that the IA is under the influence of the tensional neotectonic regime, not a compressive tectonic regime, i.e. the sinistral strike-slip shearing along the Pliny arc has not propagated yet onshore, and its commencement age is Early Quaternary.  相似文献   

13.
Western Anatolia is one of the world’s most seismically active regions. A nearly N–S-oriented extension caused the formation of E–W- and NE–SW-trending major grabens, creating the potential for earthquakes with magnitudes ≥ 5. The fault segments of the NE-trending Çameli Basin were evaluated using geomorphic indices, common tools for assessment of relative tectonic activity in such areas. Quantitative measurement of geomorphic indices including mountain-front sinuosity (Smf; 1.35–2.39), valley floor width-to-height ratios (Vf; 0.08?0.37), and hypsometric integral (HI; 0.31–1.05) suggest relatively higher tectonic activity along western and southern part of the basin. Hypsometric curves for all segments of the faults mostly exhibit concave or straight profiles, signifying existence of young mountain fronts in the Çameli Basin. These calculations indicate that the Çameli Basin is tectonically active and, southern/south-western areas of this depression have earthquake potential, consistent with epicentres of recent earthquakes, occurred along some fault segments. Possible reason of this activity seems to be related to the E–W-trending corridor lying between the Gulf of Gökova and south-eastern part of the Çameli Basin, represented by active normal faults. These findings should be valid beyond the Çameli Basin for similar situations along the Isparta Angle’s western margin.  相似文献   

14.
《International Geology Review》2012,54(12):1129-1144
Groups of grabens in west Anatolia have contrasting E-W and NE-SW orientations and are the subject of debate as to their relative ages and relationships. We investigated the E-W-trending Gediz graben and its neighboring NE-SW-trending Gördes, Demirci, and Selendi grabens, which form an important graben system representative of the region. We studied gravity data from one profile and magnetotelluric (MT) data from two profiles, 73 km and 93 km long. The data supports the hypothesis that the Gediz graben was superimposed onto the (older) NE-SW grabens. 2D gravity and MT modelling revealed an undulating graben floor, varying in depth between 500 and 3000-4000 m (gravity-MT); within the graben two apparent basins 3–4 and 1.5-2.5 km deep (gravity-MT) are separated by a subsurface horst. The residual gravity map appears to indicate the continuation of NE-SW grabens from north of Gediz graben to beyond its southern border.

The MT model revealed three main zones of varying thickness within the crust. The britde upper crust comprises two zones: sedimentary fill (apparent resistivity 15-50 ohm.m) and Menderes massif basement (200 ohm.m). The third zone is highly conductive lower crust (10 ohm.m), identified by our MT modeling at an average depth of 10 km. This conductive layer was considered in conjunction with two other regional features, high heat flow values and shallow earthquake focal depths. A heat flow map shows a very high average value of 108 mWm?2 for west Anatolia and 120-300 mWm?2 for the Gediz graben area specifically, compared with the world average of 80 mWm?2. Seismological records showing shallow earthquake focal depths together with the high conductivity zone were taken to indicate a partially melted, viscoelastic lower crust.  相似文献   

15.
Extension in the Afar depression occurs on steeply dipping normal faults of many scales. An estimate for cumulative extension can be derived by summing the heave of these faults using digital topographic data, supplemented by field observations of fault dip. If it can be established that the distribution of faults exhibits self-similarity, an estimate of the contribution from faults too small to appear on the digital imagery can be incorporated into the integrated estimate for cumulative extension. A field study of faulting was undertaken within the Dobe and Guma grabens of Central Afar. A fractal dimension of 0.48 was obtained for the measured population of fault throws (n = 92) in 3 traverses totaling 42 km, a value interpreted to represent the dominant contribution to extension from faults with large throw. The local extension rate across Guma graben is estimated to be between 0.06 and 0.24 mm/year. The higher topographic position of the floor of Guma graben, relative to the sediment filled, adjacent floors of Dobe and Immino grabens is perhaps an indication of a slower rate of extension across Guma graben as compared to Dobe and Immino grabens, assuming they all initiated at the same time.  相似文献   

16.
Apatite fission-track analyses indicate that the Kazda? Massif in northwestern Anatolia was exhumed above the apatite partial annealing zone between 20 and 10 Ma (i.e. early-middle Miocene), with a cluster of ages at 17–14 Ma. The structural analysis of low-angle shear zones, high-angle normal faults and strike-slip faults, as well as stratigraphic analysis of upper-plate sedimentary successions and previous radiometric ages, point to a two-stage structural evolution of the massif. The first stage -encompassing much of the rapid thermal evolution of the massif- comprised late Oligocene-early Miocene low-angle detachment faulting and the associated development of small supradetachment grabens filled with a mixture of epiclastic, volcaniclastic and volcanic rocks (Küçükkuyu Fm.). The second stage (Plio-Quaternary) has been dominated by (i) strike-slip faulting related to the westward propagation of the North Anatolian fault system and (ii) normal faulting associated with present-day extension. This later stage affected the distribution of fission-track ages but did not have a component of vertical (normal) movement large enough to exhume a new partial annealing zone. The thermochronological data presented here support the notion that Neogene extensional tectonism in the northern Aegean region has been episodic, with accelerated pulses in the early-middle Miocene and Plio-Quaternary.  相似文献   

17.
《Geodinamica Acta》2013,26(3-4):283-297
Western Turkey is a place of active continental extension, characterized by the occurrence of several WNW-ESE-trending major grabens. The central part of the northern edge of the Edremit Graben is delineated by various geological units, namely the metamorphic Kazda? Massif, the Mid-Cretaceous Çetmi mélange, the sedimentary Küçükkuyu formation, and loose Plio-Quaternary deposits. Detailed structural and sedimentological study suggests a two-stage extensional evolution of the area, separated by a short break in the tectonic regime. The first stage, possibly related to back-arc extension and/or orogenic collapse, is marked by the activity of a newly described low-angle detachment fault, the ?elale detachment fault, from the latest Oligocene onward. The fault plane, separating the mylonitized rocks of the Kazda? Massif in the footwall from the unmetamorphosed Çetmi mélange and Küçükkuyu formation in the hanging wall, must have played a significant role in the initial exhumation processes of the Kazda? Massif at that time. The Lower Miocene syntectonic Küçükkuyu formation has recorded the initiation and filling up of a small basin, which has developed in a typical supra-detachment basin, above the detachment fault. After a short phase of possible compression and erosion, the second stage—which marks the onset of neotectonic activity—is marked by the development of Plio-Quaternary step-like normal faults, which cut through all the previous units. Coarse, loose sediments were deposited following the fault activity. These local results are extrapolated to apply to the entire Edremit Graben. In that case, its evolution is seen as the succession of two extensional stages, characterized by distinct structural and sedimentological patterns, and possibly separated by a short compressional phase.  相似文献   

18.
West Anatolia, together with the Aegean Sea and the easternmost part of Europe, is one of the best examples of continental extensional tectonics. It is a complex area bounded by the Aegean–Cyprus Arc to the south and the North Anatolian Fault Zone (NAFZ) to the north. Within this complex and enigmatic framework, the Sandıklı Graben (10 km wide, 30 km long) has formed at the eastern continuation of the Western Anatolian extensional province at the north‐northwestward edge of the Isparta Angle. Recent studies have suggested that the horst–graben structures in West Anatolia formed in two distinct extensional phases. According to this model the first phase of extension commenced in the Early–Middle Miocene and the last, which is accepted as the onset of neotectonic regime, in Early Pliocene. However, it is controversial whether two‐phase extension was separated by a short period of erosion or compression during Late Miocene–Early Pliocene. Both field observations and kinematic analysis imply that the Sandıklı Graben has existed since the Late Pliocene, with biaxial extension on its margins which does not necessarily indicate rotation of regional stress distribution in time. Although the graben formed later in the neotectonic period, the commencement of extension in the area could be Early Pliocene (c. 5 Ma) following a severe but short time of erosion at the end of Late Miocene. The onset of the extensional regime might be due to the initiation of westward motion of Anatolian Platelet along the NAFZ that could be triggered by the higher rate of subduction at the east Aegean–Cyprus Arc in the south of the Aegean Sea. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
长江源地区近南北走向的地堑构造是该区现今最为显著的构造现象,也是青藏高原迄今发现的同类构造发育的最北部地区。长江源地区地堑构造包括温泉、常错、当拉错纳玛和沱沱河4个规模较大的近南北向地堑。断层年代学和断陷盆地沉积作用研究结果表明,研究区伸展变形至少自中新世末—上新世初就已开始,对长江源地区现今的地貌格局、水系型式具有显著的制约作用。长江源区主要水系是沿南北走向的地堑构造和正断层侵蚀发育而成的。青藏高原新生代伸展地堑构造是高原经历早期地壳强烈缩短变形之后,在深部动力学机制作用下快速隆升的产物。  相似文献   

20.
长江源区新生代地堑的构造特征与形成机制   总被引:1,自引:2,他引:1  
长江源地区近南北走向的地堑构造是该区现今最为显著的构造现象,也是青藏高原迄今发现的同类构造发育的最北部地区.长江源地区地堑构造包括温泉、常错、当拉错纳玛和沱沱河4个规模较大的近南北向地堑.断层年代学和断陷盆地沉积作用研究结果表明,研究区伸展变形至少自中新世末-上新世初就已开始,对长江源地区现今的地貌格局、水系型式具有显著的制约作用.长江源区主要水系是沿南北走向的地堑构造和正断层侵蚀发育而成的.青藏高原新生代伸展地堑构造是高原经历早期地壳强烈缩短变形之后,在深部动力学机制作用下快速隆升的产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号