首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The underground railway network of Beijing City, China, which is an important urban infrastructure, has burgeoned with the expansion of the city. However, the influence of subway construction and operation on local subsidence has received minimal attention. By analyzing the Radarsat-2 synthetic aperture radar satellite data, and using persistent scatterer interferometry, we revealed the land subsidence characteristics along the Beijing Subway Line 6. In the context of land subsidence, the expectation (Ex) reflects the overall level of local land subsidence while the entropy (En) reflects the degree of nonuniformity of local land subsidence in time and space. By comparing the changes in Ex and En, we estimated the spatial range of the influence of the subway on local land subsidence. The influenced area was mainly located between 60 m north of the subway line and 80 m south of the subway line. Land subsidence was most strongly altered during subway construction. During operation of the subway, the deformation rates along the subway increased slightly in the first two years and were then stabilized.  相似文献   

2.
The North Peixian mining area of China has rich coal resources, with total proven reserves of 2.37 billion tons. However, the underground coal mining activities have resulted in ground collapse, which has caused serious harm to the environment and threatened the lives and properties of local residents. In this study, 12 Sentinel-1A terrain observation by progressive scans (TOPS) mode acquisitions between 30 July 2015 and 13 May 2016 over the abandoned mining area in North Peixian were analyzed using the interferometric synthetic aperture radar (InSAR) time series method to detect the ground subsidence, with the maximum ground subsidence reaching 83 mm/a and an average value of about 12.7 mm/a. The subsidence results derived from the Sentinel-1A TOPS mode dataset were proven to be effective in investigating and monitoring the ground subsidence in the North Peixian mining area. Compared to the rapid deformation during the ongoing period of mining excavation, the ground subsides slowly in abandoned mining areas and shows a linear relationship with time over a relatively long period of time. Spatial correlation between the subsidence distribution and land cover was found, in that the magnitude of the subsidence in urban areas was smaller than that in rural areas, which is associated with the controlled coal mining activities under buildings, railways, and water bodies. The results demonstrate that Sentinel-1A TOPS SAR images can be used to effectively and accurately detect and monitor ground subsidence in a mining area, which is critically important when investigating land subsidence in a large-scale mining area.  相似文献   

3.
ABSTRACT

Over-exploitation of groundwater has caused severe land subsidence in Beijing during the past two decades. Since the middle route of South-to-North Water Diversion Project (SNWDP), the biggest water diversion project in China, started to deliver water to Beijing in December 2014, the groundwater shortage has been greatly alleviated. This study aims to analyze the impact of SNWDP on the spatiotemporal evolution of land subsidence in Beijing. Change in surface displacement in Beijing after SNWDP was retrieved and the spatiotemporal patterns of the change were analyzed based on long time-series Envisat Advanced Synthetic Aperture Radar (ASAR) (2004–2010), Radarsat-2 (2011–2014), and Sentinel-1 (2015–2017) satellite datasets using Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques. Land subsidence unevenness index (LSUI) was proposed to represent the spatial unevenness of surface displacement. PS-Time approach was then adapted to examine the time series evolution of LSUI. The results showed that the InSAR measurements agree well with leveling measurements with R2 over 0.96. Although the maximum annual displacement rate reached ?159.7 mm/year by 2017, over 57% of the area within 25 mm/year contour line showed decreasing or unchanged displacement rate after the south-north water delivered to Beijing. The settlement rate in Chaoyang-Dongbalizhuang (CD) subsidence center has decreased for 26 mm/year from 2011–2014 to 2015–2017. Only around 15% of the area experienced continued accelerating settlement rate through the three time periods, which was mainly located in the area with the compressible layer thickness over 190 m, while the magnitude of velocity increment considerably decreased after SNWDP. Land subsidence unevenness, represented by LSUI, developed more slowly after SNWDP than that during 2011–2014. However, LSUI at the edge of settlement funnel has kept developing and reached 1.7‰ in 2017. Decreasing groundwater level decline after SNWDP and the positive relationship (R2 > 0.74) between land subsidence and groundwater level clearly showed impacts of SNWDP on the alleviating land subsidence. Other reasons include geological background, increasing precipitation, and strict water management policies implemented during these years.  相似文献   

4.
Land subsidence has been occurring in Beijing since the 1970s. Five major land subsidence areas have been formed: Dongbalizhuang–Dajiaoting, Laiguangying, Changping Shahe–Ba Xianzhuang, Daxing Yufa–Lixian, and Shunyi–Ping Gezhuang. In this paper, we studied on land subsidence in Dongbalizhuang–Dajiaoting and Laiguangying using small baseline subset interferometry and interferometric point target methods of 47 ENVISAT ASAR and 29 RADARSAT-2 data. The results showed that the degree of land subsidence in these areas varied significantly. The mean land subsidence rate ranged from 143.43 to 8.2 mm/a and from 132.11 to 7.3 mm/a during 2005–2010 and 2011–2013, respectively. We correlated the observed settlement with the land use (agricultural, residential, and industrial). Displacement in the agricultural areas was greater than that in the other areas from 2005 to 2013. Moreover, we compared the observed deformation and the groundwater level in phreatic and confined aquifers. There was a strong correlation between ground subsidence and the groundwater level and the ground settlement increased with a decrease in the groundwater level and the maximum correlation coefficient can reach 0.525. Furthermore, subsidence appeared to be associated with compressible deposits, suggesting that for 90–210-m thick compressible deposits, ground settlement is more likely to occur as the thickness of the compressible layer increases.  相似文献   

5.
Land subsidence is rapidly developing across the Beijing Plain, China. Long-term intense overexploitation of groundwater is the main reason for land subsidence in Beijing. In this study, an optimized Small Baseline Subset (SBAS) interferometry method was developed to process 46 RADATSAT-2 images from 2011 to 2015 to investigate the spatial and temporal dynamics of land subsidence in the Beijing Plain. The lag time between land subsidence and groundwater exploitation was first analyzed by the Continuous Wavelet Transform (CWT) and Cross Wavelet Transform (XWT) methods Our study found that the maximum subsidence rate reached 141 mm per year. The analysis of the areas and volumes of the annual subsidence rates indicated that the overall deformation trend slowed down from 2011 to 2015. Our results indicate that the subsidence center is always located in the southeast of Chaoyang District from 2011 to 2015. The lag time between the observed subsidence and the groundwater level drops in the main exploration aquifer layers was 0.57–1.76 months. This information is helpful to reveal the mechanism of land subsidence and build hydrogeological model.  相似文献   

6.
Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析   总被引:1,自引:1,他引:0  
近年来,京津冀地区的不均匀地表沉降日趋严重,对公路、铁路等基础设施安全造成严重威胁,已引起国内外广泛关注。合成孔径雷达时序差分干涉TS-DIn SAR(Time Series Differential Interferometric Synthetic Aperture Radar)作为一种高效的广域形变测量手段,在地面沉降调查监测中已被广泛应用,但如何针对高现势性的影像数据高精准提取大范围区域地表形变是当前深化的热点。本文利用欧洲太空局发布的Sentinel-1A新型数据源,针对TOPS(Terrain Observation by Progressive Scans)模式影像间存在多普勒中心不一致问题,借助外部高精度POD(Precise Orbit Determination)轨道和DSM(Digital Surface Model)数据进行频移滤波迭代配准,并针对Sentinel-1A数据特征集成优化了基于点目标时序分析的大区域地表形变监测方法,以2015年—2016年期间的29景影像为实验数据开展了京津地区沉降监测研究,提取了北京东、廊坊及天津西等地区的沉降结果,并结合区域内典型区域人口密度、产业分布、地表覆盖和线路剖面等信息深入分析了沉降的时空分布特征和成因。结果表明,Sentinel-1A时序干涉结果在大范围地表沉降调查监测上具有可靠的应用精度。  相似文献   

7.
徐州煤矿资源开采已造成了大规模的地面沉陷,为了为矿区安全开采和塌陷区环境综合治理提供科学依据,利用雷达差分干涉测量(DInSAR)技术对ALOS PALSAR数据进行处理,获得徐州张双楼煤矿区2011-01-16至2011-03-03期间的地表形变分布图.结果表明,张双楼煤矿在46 d间隔里出现了3处沉降漏斗区域,漏斗中心最大沉降量达到420mm,并且沉降漏斗区域与矿区分布一致,说明DInSAR能够有效地监测矿区地表形变.  相似文献   

8.
收集了35景C波段ENVISAR ASAR和20景L波段ALOS PALSAR数据,采用时间序列合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)分析技术获取了典型的填海新区-上海临港新区2007年~2010年间的沉降速率场。从空间、时间密度以及监测精度方面,对C和L波段的数据的形变估计结果进行对比,并进而讨论C波段和L波段数据在填海新区地表形变探测差异的原因以及数据在填海新区监测的特性。  相似文献   

9.
Human activities have a large impact on land subsidence in great metropolitan areas. In this study, the RADARSAT-2 observation data over a 4-year period (from November 2010 to September 2014) is used to investigate the trends of land subsidence in the eastern Chaoyang District in Beijing, China, and to analyze the impact of human activities on it. The observation results indicate that the temporal and spatial evolutions trend of land subsidence in this area is uneven, with deformation rates ranging from ??116.52 to 7.1 mm/year. There are two large subsidence areas located in the northern part of the study area, and we find that the groundwater exploitation and deformation rates are strongly linearly correlated. The effect of construction on land subsidence has also been investigated. Over time, land subsidence is generally increased in the study area, with an exception at the Longfor Changying Galleria area, which is under construction during the observation period. Based on the time-series analysis of permanent scattered points in the 200 m buffer area, construction activities are observed to cause both land subsidence and upheaval deformation of the surrounding soil. During the construction period, the displacement of the surrounding soil is disturbed. After completion, the initial displacement of surrounding soil is tended to involve the uplift of the surrounding soil, followed by a gradual subsidence with time.  相似文献   

10.
从2018—2019年欧空局Sentinel-1免费数据中获取陕西省全域垂直形变面状信息,并将其与全球导航卫星系统(global navigation satellite system,GNSS)以及水准点、线垂直形变信息进行对比分析,进一步验证合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)数据反映局部形变的有效性。垂直形变监测结果表明:在陕北榆林、神木地区,地下资源开采诱发的地表沉陷分布广泛、特征明显,地表沉陷速度达60 mm/a;在煤炭产区长武、彬县也出现不同程度的开采沉陷灾害,沉降速度达30 mm/a;西安市、渭南市等关中平原地区由于地下水开采出现不均匀沉降,其中,西安市的局部沉降最为严重,最大沉降速度达60 mm/a;InSAR与GNSS、水准获取的垂直运动趋势在全省范围总体上一致,但由于GNSS监测点、水准监测点一般布测在较稳定区域,其获取的沉降范围、沉降速度与InSAR沉降结果有一定差异。  相似文献   

11.
Excessive groundwater extraction has caused land subsidence in a large rural area located southwest of Tehran, Iran. We used radar images to estimate the temporal and spatial variation in the magnitude of the subsidence. Due to the large perpendicular baselines and rapid temporal decorrelation of the available data, the application of conventional synthetic aperture radar interferometry (InSAR) to monitor the deformation was not possible. Instead, we applied a recently developed Persistent Scatterer InSAR (PSI) method but found that displacements were underestimated in some areas due to high deformation rates that cause temporal aliasing of the signal. We therefore developed a method that combines conventional InSAR and PSI to estimate the high deformation rates in the southwestern Tehran Basin. We used rates estimated from conventional small temporal baseline interferograms to reduce the likelihood of aliasing and then applied PSI to the residual phase. The method was applied to descending and ascending ENVISAT ASAR images spanning from 2003 to 2009. Mean line-of-sight velocities obtained from both orientations that were further decomposed into horizontal and vertical deformation components were highly compatible with each other, indicating the high performance of the applied method. The mean precision of the estimated vertical component is 2.5 mm/yr. We validated our results using measurements from a continuous GPS station located in one of the subsiding areas. The results also compare favourably with levelling data acquired over a different time interval. Finally, we compared the estimated displacements to hydraulic head variations and geologic profiles at several piezometric wells. We found that the geology is the most important factor controlling the subsidence rate in the southwestern Tehran Basin, regardless of the water level decline.  相似文献   

12.
施显健  任超  周吕  黄远林  梁月吉  朱子林 《测绘科学》2021,46(2):146-151,164
为了更好地监测和掌握深圳填海区地铁工程结束后地铁沿线的地面沉降情况,该文利用TS-InSAR技术和20景2017年8月15日—2019年3月14日的Sentinel-1A SAR数据,借助POD精密定轨星历和ASTER GDEM V2分别去除轨道误差和地形相位,反演了深圳填海区2017—2019年地表沉降时间序列,并在此基础上重点分析了填海区地铁沿线地面沉降的时空演变规律以及地面沉降成因。结果显示,填海区各地铁沿线的地面沉降特征较为明显,最大沉降速率为-17.52 mm/a。其中,宝安中心、前海湾、深圳湾区段地铁沿线的地面沉降趋势较为严重,其地面沉降呈现逐渐增强和扩散趋势。  相似文献   

13.
三维相位解缠是时序干涉合成孔径雷达(interferometric synthetic aperture radar,InSAR)技术的关键环节之一,解缠结果直接影响时序InSAR地面沉降监测的精度。针对地面沉降严重、地形坡度变化较大的区域,因相位欠采样引起的整周期解缠误差问题,提出了一种基于频域置信度的加权最小二乘相位解缠算法,并以此替代时空三维相位解缠中空间维以相位梯度为权重的加权最小二乘相位解缠算法。通过提高相位坡度变化估计的准确性,进而提高时空三维相位解缠的精度和稳定性。以北京地区地面沉降监测为例进行了验证,结果表明,与经典的时空三维相位解缠算法相比,改进算法得到的沉降监测结果精度更高,特别是对于坡度变化较大、失相干现象明显的沉降漏斗区,其沉降监测精度有明显改善。  相似文献   

14.
Differential interferometric synthetic aperture radar (DInSAR) is a novel remote sensing technique to measure earth surface deformation. It is capable of obtaining dense information related to the deformation of a large area efficiently, economically and effectively. Therefore, DInSAR is a promising technology for monitoring the earth surface deformation related to some natural hazardous events, such as earthquake, volcano eruption, land subsidence, landslide. In present study, Conventional DInSAR technique have been applied to a mineral rich zone, coming under the Khetri copper belt, a part of Northern Aravali range of hillocks in India, predominant with mining activities since late 1960’s to address the possibility of deformation phenomena due to hard rock underground metal mining. Four interferometric SAR data sets of Radarsat-2 was used for the study area to address the subsidence/uplift phenomena. Further, results obtained from conventional DInSAR technique using Radarsat-2 data sets compared with results obtained from ground based observation technique for its validity. In both the techniques, deformation results obtained in terms of average subsidence rate in mm (quarterly basis) of points under study within mining zone of Mine-A has well agreed to each other. Further, it has been observed that average subsidence rate in mm (quarterly basis) obtained from space based observation and ground based observation are 5.6 and 6.67, respectively over the points under study in mining zone of Mine-A.  相似文献   

15.
城市道路网的持续稳定性监测不仅可以避免重大事故带来的人身财产损失,也有利于经济社会的可持续发展。针对道路网长距离、大跨度的实时监测需求,将永久散射体雷达干涉测量(persistent scatterer synthetic aperture radar interferometry,PSInSAR)技术引入城市道路网的形变监测和预警,处理了上海26景时间序列TerraSAR-X卫星数据,对道路网的沉降进行时空分析。空间上,首先阐述道路网整体的沉降格局,然后探讨局部路段的沉降细节及其驱动力;时间上,分析温度变化对路面沉降时间序列变化的影响,并对实验结果进行精度验证。结果表明,上海道路网沉降主要分布在浦东区,与路网密度相关,新区城市化发展建设已成为道路网主要的沉降原因;沥青路面的沉降时间序列与温度变化存在时间相关性,沉降结果与水准数据基本一致。  相似文献   

16.
土地利用/覆盖变化是目前研究全球及区域环境的一个重要领域,在城镇化加速的今天,城镇的土地利用格局也发生了飞速的变化。本文通过其一研究区内的Landsat TM遥感影像进行处理,获取了2007~2016年10个时相土地利用/覆盖信息,通过不同的预测模型对监测到的数据进行处理及比较,根据相应的最优预测方法预测了2017~2019年南昌市各土地类型的数据,由此研究并探讨了南昌市土地利用/覆盖的时空格局变化。  相似文献   

17.
With the recent progress in synthetic aperture radar (SAR) technology, especially the new generation of SAR satellites (Sentinel-1 and TerraSAR-X), our ability to assess slope stability in open-pit mines has significantly improved. The main objective of this work is to map ground displacement and slope instability over three open-pit mines, namely, Hambach, Garzweiler and Inden, in the Rhenish coalfields of Germany to provide long-term monitoring solutions for open-pit mining operations and their surroundings. Three SAR datasets, including Sentinel-1A data in ascending and descending orbits and TerraSAR-X data in a descending orbit, were processed by a modified small baseline subset (SBAS) algorithm, called coherence-based SBAS, to retrieve ground displacement related to the three open-pit mines and their surroundings. Despite the continuously changing topography over these active open-pit mines, the small perpendicular baselines of both Sentinel-1A and TerraSAR-X data were not affected by DEM errors and hence could yield accurate estimates of surface displacement. Significant land subsidence was observed over reclaimed areas, with rates exceeding 500 mm/yr, 380 mm/yr, and 310 mm/yr for the Hambach, Garzweiler and Inden mine, respectively. The compaction process of waste materials is the main contributor to land subsidence. Land uplift was found over the areas near the active working parts of the mines, which was probably due to excavation activities. Horizontal displacement retrieved from the combination of ascending and descending data was analysed, revealing an eastward movement with a maximum rate of ∼120 mm/yr on the western flank and a westward movement with a maximum rate of ∼ 60 mm/yr on the eastern flank of the pit. Former open-pit mines Fortuna-Garsdorf and Berghein in the eastern part of Rhenish coalfields, already reclaimed for agriculture, also show subsidence, at locations reaching 150 mm/yr. The interferometric results were compared, whenever possible, with groundwater information to analyse the possible reasons for ground deformation over the mines and their surroundings.  相似文献   

18.
提出一种结合子孔径相关测度的时序高相干点探测方法,首先对时序SAR影像进行谱分解获得子孔径视图,通过时序子孔径相关测度进行强散射点筛选,然后分别根据振幅离差和干涉相位空间相关性,对目标点进行相位稳定性分析,探测出既满足强散射且在时间序列上散射稳定的高相干点。利用改进的点探测方法和短基线INSAR技术,对北京2003—2009年间40景ASAR影像进行相位建模,获取地面沉降时空分布特征,分析典型地物时序沉降过程,研究北京地面沉降与地下水开采关系。结果表明:相比已有方法,本文结合子孔径相关测度的高相干点探测结果更准确可靠;利用本文点探测方法反演的历史累积沉降信息,与水准结果一致,平均速率之差在3.69 mm/a以内,中误差为1.36 mm/a;研究区地面沉降最大速率达92.25 mm/a,空间不均匀分布明显,地面沉降量与地下水开采量呈分段的非线性相关。  相似文献   

19.
This paper presents deformation analysis of Lake Urmia causeway (LUC) embankments in northwest Iran using observations from interferometry synthetic aperture radar (InSAR) and finite element model (FEM) simulation. 58 SAR images including 10 ALOS, 30 Envisat and 18 TerraSAR-X are used to assess settlement of the embankments during 2003–2013. The interferometric dataset includes 140 differential interferograms which are processed using InSAR time series technique of small baseline subset approach. The results show a clear indication of large deformation on the embankments with peak amplitude of \(>\) 50 mm/year in 2003–2010, increasing to \(>\!\!80\)  mm/year in 2012–2013 in the line of sight (LOS) direction from ground to the satellite. 2D decomposition of InSAR observations from Envisat and ALOS satellites that overlap in the years 2007–2010 shows that the rate of the vertical settlement and horizontal motion is not uniform along the embankments; Both eastern and western embankments show significant vertical motion, while horizontal motion plays a more significant role in eastern embankment than western embankment. The InSAR results are then used to simulate deformation using FEM at two cross-sections at the distance of 4 and 9 km from the most western edge of the LUC for which detailed stratigraphy data are available. Results suggest that consolidation due to dissipation of excess pore pressure in embankments can satisfactory predict settlement of the LUC embankments. Our numerical modeling indicates that nearly half of the consolidation since the construction time of the causeway 30 years ago has been done.  相似文献   

20.
Land subsidence in densely urbanized areas is a global problem that is primarily caused by excessive groundwater withdrawal. The Kathmandu Basin is one such area where subsidence due to groundwater depletion has been a major problem in recent years. Moreover, on 25 April 2015, this basin experienced large crustal movements caused by the Gorkha earthquake (Mw 7.8). Consequently, the effects of earthquake-induced deformation could affect the temporal and spatial nature of anthropogenic subsidence in the basin. However, this effect has not yet been fully studied. In this paper, we applied the SBAS-DInSAR technique to estimate the spatiotemporal displacement of land subsidence in the Kathmandu Basin before and after the Gorkha earthquake, using 16 ALOS-1 Phased Array L-band Synthetic Aperture Radar (PALSAR) images during the pre-seismic period and 26 Sentinel-1 A/B SAR images during the pre- and post-seismic periods. The results showed that the mean subsidence rate in the central part of the basin was about ?8.2 cm/year before the earthquake. The spatial extents of the subsiding areas were well-correlated with the spatial distributions of the compressible clay layers in the basin. We infer from time-series InSAR analysis that subsidence in the Kathmandu basin could be associated with fluvio-lacustrine (clay) deposits and local hydrogeological conditions. However, after the mainshock, the subsidence rate significantly increased to ?15 and ?12 cm/year during early post-seismic (108 days) and post-seismic (2015–2016) period, respectively. Based on a spatial analysis of the subsidence rate map, the entire basin uplifted during the co-seismic period has started to subside and become stable during the early-post-seismic period. This is because of the elastic rebound of co-seismic deformation. However, interestingly, the localized areas show increased subsidence rates during both the early-post- and post-seismic periods. Therefore, we believe that the large co-seismic deformation experienced in this basin might induce the local subsidence to increase in rate, caused by oscillations of the water table level in the clay layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号