首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, Bam post-seismic deformations during 7 years after earthquake have been extracted using persistent scatterer interferometry technique. The results illustrate that the maximum amount of uplift and subsidence displacements along line of sight direction during 2004–2010 after the earthquake are 4.5 ± 0.5 and ? 4.3 ± 0.5 cm, respectively. The results of displacement field indicate that an exponential function with the relaxation time of 2.5 years can be fitted to the corresponding process. The estimated inter-seismic slip value by the inversion of SAR line-of-sight data after relaxation time is 6.35 ± 0.05 mm. Mechanical time dependent processes in the post-seismic relaxation typically rely on models of poroelastic rebound, afterslip fault dilatancy recovery and viscoelastic relaxation to explain surface displacements field. The time series are inverted for the afterslip distribution on an extension of the co-seismic rupture. The estimated post-seismic slip value is 20.45 ± 0.38 cm. Most of the post-seismic displacement field can be explained in terms of fault slip. The results of post-seismic motion modeling indicate that the poroelastic rebound can be detected using the line-of-sight data and the effect of viscoelastic relaxation in post-seismic displacement is negligible.  相似文献   

2.
王海艳  冯光财  苗露  谭佶  熊志强 《遥感学报》2020,24(10):1233-1242
抽取地下水进行农业灌溉是导致地下水位快速下降的重要因素,而长期过度开采地下水往往会引发地面沉降灾害,这种现象在干旱和半干旱地区非常普遍。为了研究农业灌溉超采引发的地表形变特征和演化规律,本文以准噶尔盆地南缘、天山北麓地带为研究区域,利用SBAS-InSAR技术对2003年—2009年覆盖呼图壁县的ENVISAT/ASAR升、降轨数据进行处理,获取了该地区的地表形变场,并结合研究区的农业灌溉方式、水资源补给和季节变化等资料对地面沉降的时空变化特征进行分析,为水资源和农业可持续发展提供参考意义。实验表明,研究区内主要有两个沉降幅度较大的漏斗,且都位于农田区域。2007年以前,研究区地表没有显著形变,之后发生了较大量级的沉降。采用传统灌溉方式和时针式灌溉系统的农业区平均沉降速率最高分别可达50 mm/a和30 mm/a,前者在时间上呈线性变化,而后者具有显著的周期性变化特征。在冬季时,采用时针式灌溉系统的地区地面抬升量可达40 mm,远大于传统灌溉方式的农田区域,而夏季地面沉降速率可达200 mm/a。对研究区农业灌溉活动进行分析后发现,农业灌溉造成的地下水超采是该地区地面沉降的主要影响因素,其形变机制与季节变化具有较高的相关性,在灌溉活动休止期内地表形变取决于地下水的补给量。研究区内的形变特征和影响因素分析将为地下水资源的充分利用和农业的可持续发展提供有效的信息。  相似文献   

3.
Land subsidence has been occurring in Beijing since the 1970s. Five major land subsidence areas have been formed: Dongbalizhuang–Dajiaoting, Laiguangying, Changping Shahe–Ba Xianzhuang, Daxing Yufa–Lixian, and Shunyi–Ping Gezhuang. In this paper, we studied on land subsidence in Dongbalizhuang–Dajiaoting and Laiguangying using small baseline subset interferometry and interferometric point target methods of 47 ENVISAT ASAR and 29 RADARSAT-2 data. The results showed that the degree of land subsidence in these areas varied significantly. The mean land subsidence rate ranged from 143.43 to 8.2 mm/a and from 132.11 to 7.3 mm/a during 2005–2010 and 2011–2013, respectively. We correlated the observed settlement with the land use (agricultural, residential, and industrial). Displacement in the agricultural areas was greater than that in the other areas from 2005 to 2013. Moreover, we compared the observed deformation and the groundwater level in phreatic and confined aquifers. There was a strong correlation between ground subsidence and the groundwater level and the ground settlement increased with a decrease in the groundwater level and the maximum correlation coefficient can reach 0.525. Furthermore, subsidence appeared to be associated with compressible deposits, suggesting that for 90–210-m thick compressible deposits, ground settlement is more likely to occur as the thickness of the compressible layer increases.  相似文献   

4.
Land subsidence is rapidly developing across the Beijing Plain, China. Long-term intense overexploitation of groundwater is the main reason for land subsidence in Beijing. In this study, an optimized Small Baseline Subset (SBAS) interferometry method was developed to process 46 RADATSAT-2 images from 2011 to 2015 to investigate the spatial and temporal dynamics of land subsidence in the Beijing Plain. The lag time between land subsidence and groundwater exploitation was first analyzed by the Continuous Wavelet Transform (CWT) and Cross Wavelet Transform (XWT) methods Our study found that the maximum subsidence rate reached 141 mm per year. The analysis of the areas and volumes of the annual subsidence rates indicated that the overall deformation trend slowed down from 2011 to 2015. Our results indicate that the subsidence center is always located in the southeast of Chaoyang District from 2011 to 2015. The lag time between the observed subsidence and the groundwater level drops in the main exploration aquifer layers was 0.57–1.76 months. This information is helpful to reveal the mechanism of land subsidence and build hydrogeological model.  相似文献   

5.
Land subsidence induced by excessive groundwater withdrawal has caused serious social, geological, and environmental problems in Beijing. Rapid increases in population and economic development have aggravated the situation. Monitoring and prediction of ground settlement is important to mitigate these hazards. In this study, we combined persistent-scatterer interferometric synthetic aperture radar with Grey system theory to monitor and predict land subsidence in the Beijing plain. Land subsidence during 2003–2014 was determined based on 39 ENVISAT advanced synthetic aperture radar (ASAR) images and 27 RadarSat-2 images. Results were consistent with global positioning system, leveling measurements at the point level and TerraSAR-X subsidence maps at the regional level. The average deformation rate in the line-of-sight was from ?124 to 7 mm/year. To predict future subsidence, the time-series deformation was used to build a prediction model based on an improved Grey-Markov model (IGMM), which adapted the conventional GM(1,1) model by utilizing rolling mechanism and integrating a k-means clustering method in Markov-chain state interval partitioning. Evaluation of the IGMM at both point level and regional scale showed good accuracy (root-mean-square error <3 mm; R2 = 0.94 and 0.91). Finally, land subsidence in 2015–2016 was predicted, and the maximum cumulative deformation will reach 1717 mm by the end of 2016. The promising results indicate that this method can be used as an alternative to the conventional numerical and empirical models for short-term prediction when there is lack of detailed geological or hydraulic information.  相似文献   

6.
Ground subsidence, mainly caused by over exploitation of groundwater and other underground resources, such as oil, gas and coal, occurs in many cities in China. The annual direct loss associated with subsidence across the country is estimated to exceed 100 million US dollar. Interferometric SAR (InSAR) is a powerful tool to map ground deformation at an unprecedented level of spatial detail. It has been widely used to investigate the deformation resulting from earthquakes, volcanoes and subsidence. Repeat-pass InSAR, however, may fail due to impacts of spatial decorrelation, temporal decorrelation and heterogeneous refractivity of atmosphere. In urban areas, a large amount of natural stable radar reflectors exists, such as buildings and engineering structures, at which radar signals can remain coherent during a long time interval. Interferometric point target analysis (IPTA) technique, also known as persistent scatterers (PS) InSAR is based on these reflectors. It overcomes the shortfalls in conventional InSAR. This paper presents a procedure for urban subsidence monitoring with IPTA. Calculation of linear deformation rate and height residual, and the non-linear deformation estimate, respectively, are discussed in detail. Especially, the former is highlighted by a novel and easily implemented 2-dimensional spatial search algorithm. Practically useful solutions that can significantly improve the robustness of IPTA, are recommended. Finally, the proposed procedure is applied to mapping the ground subsidence in Suzhou city, Jiangsu province, China. Thirty-four ERS-1/2 SAR scenes are analyzed, and the deformation information over 38,881 point targets between 1992 and 2000 are generated. The IPTA-derived deformation estimates correspond well with leveling measurements, demonstrating the potential of the proposed subsidence monitoring procedure based on IPTA technique. Two shortcomings of the IPTA-based procedure, e.g., the requirement of large number of SAR images and assumed linear plus non-linear deformation model, are discussed as the topics of further research.  相似文献   

7.
Human activities have a large impact on land subsidence in great metropolitan areas. In this study, the RADARSAT-2 observation data over a 4-year period (from November 2010 to September 2014) is used to investigate the trends of land subsidence in the eastern Chaoyang District in Beijing, China, and to analyze the impact of human activities on it. The observation results indicate that the temporal and spatial evolutions trend of land subsidence in this area is uneven, with deformation rates ranging from ??116.52 to 7.1 mm/year. There are two large subsidence areas located in the northern part of the study area, and we find that the groundwater exploitation and deformation rates are strongly linearly correlated. The effect of construction on land subsidence has also been investigated. Over time, land subsidence is generally increased in the study area, with an exception at the Longfor Changying Galleria area, which is under construction during the observation period. Based on the time-series analysis of permanent scattered points in the 200 m buffer area, construction activities are observed to cause both land subsidence and upheaval deformation of the surrounding soil. During the construction period, the displacement of the surrounding soil is disturbed. After completion, the initial displacement of surrounding soil is tended to involve the uplift of the surrounding soil, followed by a gradual subsidence with time.  相似文献   

8.
Land subsidence in the Bandung basin, West Java, Indonesia, is characterized based on differential interferometric synthetic aperture radar (DInSAR) and interferometric point target analysis (IPTA). We generated interferograms from 21 ascending SAR images over the period 1 January 2007 to 3 March 2011. The estimated subsidence history shows that subsidence continuously increased reaching a cumulative 45 cm during this period, and the linear subsidence rate reached ∼12 cm/yr. This significant subsidence occurred in the industrial and densely populated residential regions of the Bandung basin where large amounts of groundwater are consumed. However, in several areas the subsidence patterns do not correlate with the distribution of groundwater production wells and mapped aquifer degradation. We conclude that groundwater production controls subsidence, but lithology is a counteracting factor for subsidence in the Bandung basin. Moreover, seasonal trends of nonlinear surface deformations are highly related with the variation of rainfall. They indicate that there is elastic expansion (rebound) of aquifer system response to seasonal-natural recharge during rainy season.  相似文献   

9.
日本3·11特大地震的GPS震时和震后响应   总被引:1,自引:1,他引:0  
借助PPP软件,利用位于日本及周边国家的IGS跟踪站和国家海洋局GPS业务观测站数据,提取2011年3月11日日本里氏9.0级特大地震的震时、震后地表震动信息和水汽信息。首先采用动态PPP方法得到GPS站点的震时水平运动轨迹、震时三维坐标时间序列以及站点上空大气可降水量的动态变化;然后采用静态PPP方法得到GPS站点震前和震后的单天解坐标。通过对计算结果进行分析和比较,揭示了GPS站点的震时地表三维形变过程和震后地表永久性形变,验证了日本震后灾区的降雪过程,为GPS技术用于地震监测和灾害预警提供有价值的基础资料。  相似文献   

10.
Jakarta is the capital city of Indonesia with a population of about 12 million people, inhabiting an area of about 625 km2. It is well known that several areas in Jakarta are subsiding rapidly. There are four different types of land subsidence that can be expected to occur in the Jakarta basin, namely: subsidence due to groundwater extraction, subsidence induced by the load of constructions (i.e., settlement of high compressibility soil), subsidence caused by natural consolidation of alluvial soil and tectonic subsidence. In addition to the leveling method, Global Positioning System (GPS) survey methods have been used to study land subsidence in Jakarta. In this paper, we characterize subsidence in the Jakarta basin using eight episodic/campaign GPS surveys between 1997 and 2005. The estimated subsidence rates are 1–10 cm/year. The observed subsidence rates in several locations show a positive correlation with known abstraction volumes of groundwater extraction. These basin-wide series of GPS measurements show how this type of measurement can play an important role in multiple public policy decision making in this rapidly growing area.  相似文献   

11.
2015年4月25日尼泊尔地区发生了Mw 7.9级地震,发震断层位于印度板块与欧亚板块碰撞边界带,此次地震是一次典型的板块逆冲型事件。利用中国境内加密的GPS同震观测资料,融合ALOS-2卫星L波段的InSAR(interferometric synthetic aperture radar)同震形变数据,基于最小二乘方法获得了此次地震的同震垂直位移场。同震垂直位移结果表明,此次地震造成尼泊尔加德满都地区抬升约0.95 m,珠穆朗玛峰地区受地震的影响有所下降,其主峰的沉降量为2~3 cm,中国境内的希夏邦马主峰沉降约为20 cm。地区利用改进的二维弹性半空间位错模型反演了发震断层运动参数,本文模型显示此次地震的断层面破裂宽度约为60 km,平均滑动量达到4 m,相当于Mw 7.89级。  相似文献   

12.
采用双轨处理模式对8景ENVISAT降轨数据进行永久散射体(PS)时间序列处理,获得了2009年4月6日意大利拉奎拉(L’Aquila)Mw 6.3级地震区域的PS时序差分干涉图和形变场。结合Delaunay三角形剖分算法对破裂区的形变过程进行数值分析,结果表明:①本次地震变形最强烈、地表破裂发生的区域是一个地势相对较低的椭圆形洼地。破裂主要沿震中的东南方向传播,面积约22×14km2,方向约135°。②地震产生的形变量集中在破裂区,主要在震时及震后形成,位移场视线向下沉量达150mm。③破裂区位移场数值分析表明,本文提出的数据处理策略较完整地揭示了此次地震位移场变化的全过程,在8景雷达数据所跨时间段内,震前2008年4月与2009年2月两景资料显示,研究区位移场变化不明显,2009年2月至震后的2009年4月的图像显示,震中区形变场快速变化,沉降量达130mm;6~7月,形变场的沉降速度明显减缓,8月30日最后一景资料显示,沉降速度出现加速,破裂区总下沉量达150mm。  相似文献   

13.
为了获取2019年6月17日发生的四川宜宾Ms6.0地震引起的地表形变情况,该文利用欧空局宽幅模式的高分辨率新型Sentinel-1A卫星获取了此次地震的第一对同震干涉像对数据,使用D-InSAR技术获取宜宾市长宁县地区的同震形变场。结果显示,本次地震在震中西北方向分别形成了1个明显的沉降区和抬升区,在雷达视线方向上的最大沉降量为7.9 cm,最大抬升量为8.1 cm。通过与同一时间内的GPS高程测量形变量相比,D-InSAR解算的地表形变量与GPS监测点形变量基本一致,均不超过3 mm,表明了本文的D-InSAR形变解算结果的可靠性,体现了新型Sentinel-1A雷达卫星在地震形变监测领域有着很高的应用价值和潜力。  相似文献   

14.
Excessive groundwater extraction has caused land subsidence in a large rural area located southwest of Tehran, Iran. We used radar images to estimate the temporal and spatial variation in the magnitude of the subsidence. Due to the large perpendicular baselines and rapid temporal decorrelation of the available data, the application of conventional synthetic aperture radar interferometry (InSAR) to monitor the deformation was not possible. Instead, we applied a recently developed Persistent Scatterer InSAR (PSI) method but found that displacements were underestimated in some areas due to high deformation rates that cause temporal aliasing of the signal. We therefore developed a method that combines conventional InSAR and PSI to estimate the high deformation rates in the southwestern Tehran Basin. We used rates estimated from conventional small temporal baseline interferograms to reduce the likelihood of aliasing and then applied PSI to the residual phase. The method was applied to descending and ascending ENVISAT ASAR images spanning from 2003 to 2009. Mean line-of-sight velocities obtained from both orientations that were further decomposed into horizontal and vertical deformation components were highly compatible with each other, indicating the high performance of the applied method. The mean precision of the estimated vertical component is 2.5 mm/yr. We validated our results using measurements from a continuous GPS station located in one of the subsiding areas. The results also compare favourably with levelling data acquired over a different time interval. Finally, we compared the estimated displacements to hydraulic head variations and geologic profiles at several piezometric wells. We found that the geology is the most important factor controlling the subsidence rate in the southwestern Tehran Basin, regardless of the water level decline.  相似文献   

15.
Coalbed methane (CBM) exploration generally refers to a technique that extracts natural gas from coal beds. The development of CBM in Liulin, China, has experienced a significantly growth period during the past two decades. Previous research mainly focused on the coal geological background or CBM technique itself, while time series InSAR (TS-InSAR) technique was conducted in this work to study the potential land deformation induced by CBM extraction from 2003 to 2011. In total, 21 ALOS-1 PALSAR images (acquired from 22 December 2006 to 2 January 2011) and 14 ENVISAT ASAR scenes (captured between 29 October 2003 and 7 November 2007) were used. The TS-InSAR outcome revealed that the annual deformation rates were ranging from 15 to ?40?mm?yr?1 over the study region. Then the time series deformation evolutions were analysed over 8 CBM sites (No. 4 coal seam) out of 20, and the subsidence rates between 1.9 and ?6.5?mm?yr?1 were derived. In addition, the average subsidence rate and standard deviation among these eight measurements were ?3.0 and 2.6?mm?yr?1 respectively, suggesting that these CBM extraction sites were quite stable and no obvious subsidence had been observed during this eight-year period.  相似文献   

16.
利用2015-05—2016-02获取的天津地区23景哨兵-1A(Sentinel-1A)卫星IW模式影像,进行基于地面散射特性保持稳定的高相干点永久散射体干涉测量处理(PSIn SAR),获取了地面沉降速率,分析了重点沉降区域时序形变特征和成因。实验结果表明,天津地区沉降严重区域主要集中在北辰区和大寺镇,结合北辰区沉降速率图和第2、3承压含水组水位降落漏斗等值线图,分析发现地面沉降中心和地下水位漏斗大致吻合,呈现整体向东北方向偏移的趋势,得出造成地面沉降的主导因素可能为超量开采地下水的结论。  相似文献   

17.
基于德国地学中心(GFZ)发布的GRACE RL05月重力场模型数据,考虑全球陆地同化系统陆地水储量的影响,采用300 km的扇形滤波,利用叠积法提取了日本Mw9.0地震的同震和震后重力时变信号,并利用最小二乘拟合的方法计算了两个同震重力变化极值点在地震前后85个月的重力年变率。结果表明:土壤水分和雪水引起的重力变化为-0.34~0.09 μgal;利用GRACE数据检测到的同震重力变化为-5.3~4.2 μgal,与基于PSGRN/PSCMP模型计算的结果在空间分布和量级上具有较好的一致性;震后5 a震中附近区域的重力整体上呈现增加趋势,断层上盘所在的日本海域与下盘所在的太平洋区域重力增加的最大值分别为2.6、4.5 μgal,下盘重力增加较大,可能与断层下盘所在地层的黏滞性相对较低有关。  相似文献   

18.
本文提出了一种基于时序合并的PS-InSAR(TSC-PS-InSAR)监测方法,提取雄县及周边区域地表形变信息。形变区域最大沉降速率为-79 mm/a,沉降原因为地下水超采。结果表明,TSC-PS-InSAR方法在无需先验模型的条件下,能显著提高PS目标数量,且监测结果与StaMPS方法提取的形变信息在沉降趋势及沉降量级上保持了良好的一致性,验证了本文方法在实际应用中的可靠性和可行性。  相似文献   

19.
2009年4月6日发生的意大利拉奎拉Mw6.3地震造成了地表的严重破坏,为了解地震引起的地表变化情况,本文利用ALOS/PALSAR影像数据,采用二轨差分干涉测量技术提取了该次地震的地表同震形变场。通过分析可知:地表在西北-东南方向上发生错动,形变主要发生在40×30 km的范围内,西南部出现了沿视线方向的下降,东北部出现了沿视线方向的抬升,最大值分别为0.337 m和0.122 m。结果表明,获得的同震形变场与地震地质调查的结果一致。  相似文献   

20.
瞿伟  徐超  张勤 《测绘工程》2016,25(2):6-10
利用西安市地下水位监测资料,基于水文地质三维结构模型,在不考虑粘土层滞后压缩变形的理想情况下,采用压密方程计算获得西安市抽取地下水可引起的理论地面沉降量及沉降分布特征,结果表明:计算所得沉降显著区位于西安市西南部的高新区及东南部的曲江新区,沉降量呈由北向南递增的特征,与InSAR监测结果整体趋势具有较好的一致性;地面沉降分布特征受到活动地裂缝影响,沉降曲线呈近NE向偏转展布。研究结果可为沉降灾害预防研究提供宏观的参考信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号