首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文提出用切仑科夫射电谱线发射机制解释分子云的非热发射谱线。相对论电子在某种粒子数反转布居的分子云中穿行时,可以产生具有反常强度比的微波发射谱线。对与超新星遗迹成协的Ⅱ_(?)类OH源的非热平衡发射谱线所作的计算表明,这种非热辐射机制可能成为解决天体脉塞理论困难的一种有希望的途径。  相似文献   

2.
We have measured the line widths and nonthermal velocities in 12 solar regions using high resolution EUV data taken by Hinode/EIS. We find that there exists a positive correlation between the intensity and nonthermal velocity for the Fe XII emission line as well as some other lines. The correlation coefficients decrease from the disk center to the limb. However, the nonthermal velocities of a particular spectral line do not vary much in different regions, so they are considered isotropic. In particular, we find that for a coronal loop structure, the largest widths and nonthermal velocities occur at the footpoints, where outflows appear. Based on these observational results, we discuss several physical processes responsible for coronal heating.  相似文献   

3.
We present radio maps at 22 and 44 GHz which show the emission before and after the eruption of a quiescent prominence located at the west limb. The observed radiation following the eruption is not consistent with thermal bremsstrahlung mechanism. It can be interpreted as due to gyrosynchrotron emission of nonthermal electrons. Our observations appear to be similar to the microwave radiation observed in post-flare loops; this radiation is due to nonthermal electrons trapped in the closed magnetic structures formed after the prominence eruption.  相似文献   

4.
5.
Huang  Guang-Li 《Solar physics》2000,196(2):395-402
The purpose of this paper is to investigate the crossing point of the power-law distribution lines calculated during different times of microwave and hard X-ray bursts. A linear correlation between the logarithm of the total density and the energy index of nonthermal electrons described by a power-law is proven to be a necessary condition for the crossing of a group of power-law distribution lines corresponding to the time evolution of the nonthermal electrons during a solar microwave and HXR burst. The common crossing point of these lines may be considered as evidence of a common cutoff energy of the nonthermal electrons responsible for gyrosynchrotron or bremsstrahlung radiation. When the common crossing point is close to the low-energy cutoff, the correlation coefficient is negative, and vice versa. The result may be useful for estimating the cutoff energy as well as the particle acceleration mechanism.  相似文献   

6.
V. V. Zharkova 《Solar physics》2008,251(1-2):641-663
In this paper the mechanisms responsible for observational features associated with sunquakes induced by different classes of solar flares are compared. The role of high-energy particle beams via Coulomb and Ohmic heating of the ambient plasma and nonthermal excitation and ionization is explored for different beam parameters at various atmospheric depths. On the one hand, only hard electron beams with high-energy fluxes are found producing extensive nonthermal hydrogen ionization, four orders of magnitude higher than in the quiet atmosphere. This excess ionization leads to the white-light flares associated with the seismic emission appearing simultaneously with hard X-ray emission and, consequently, to a strong increase of Ni-line emission observed as the seismic emission measured with the holographic technique. On the other hand, the ambient plasma hydrodynamic response to heating by such beam electrons forms hydrodynamic shocks just below the transition region, in the upper chromosphere, and they travel with supersonic velocity for up to five minutes before reaching the photosphere. These hydrodynamic responses caused by the beam electrons are maximized in the lower chromosphere for moderate electron beams because of their smaller Ohmic losses in the upper atmosphere compared to those for higher-energy electron beams whose bulk energy is deposited in the transition region. These shocks caused by electron beams can explain the observations of seismic emission by time?–?distance (TD) diagrams and the holographic method in M- and C-class flares, whereas to account for the quakes in X-class flares, high-energy quasi-thermal protons or power-law proton beams either by themselves or blended with electron beams are the most likely agents. Nonthermal ionization and excitation of lower atmospheric levels during the beam injection followed by thermo-conductive heating after the beam is stopped can contribute to the seismic signatures observed with the holographic technique caused by strong nonthermal ionization and back-warming heating occurring in the shock while it loses its energy by optically-thick radiation in the photospheric lines and continua.  相似文献   

7.
本文从Ⅰ型Seyfert星系在双色图上的行为出发,假定可见光与紫外波段连续谱的主要成分包括幂律非热致辐射、黑体辐射、宽线区Balmer连续谱的复合辐射和高阶Balmer线辐射,计算了这些发射机制的参数,发现结果与从分光光度测量决定的参数符合很好。因此,本文结果对已测定色指数的Ⅰ型Seyfert星系可决定出其热致成分(黑体谱和Balmer连续谱)在全部辐射中占的比重;给出了研究类星体的可见光与紫外波段辐射机制的新方法。  相似文献   

8.
The 10.86-μm P(44) and 10.33-μm R(8) lines of 12C16O2 were observed on Venus with an infrared heterodyne spectrometer. The spectral resolution equals the Doppler half-width and the line profiles are fully resolved. The P(44) line was observed in June 1979 on the day side of the planet. The P(44) line core appears in absorption; the nonthermal core emission, which is present at low J values, is negligible at J = 44. Modeling of the line profile indicates that a discrete, optically thick, cloud deck occurs at 45 mbar pressure, in essential agreement with current understanding of the Venusian cloud structure. The 10.33-μm R(8) line was observed in April 1980 at a variety of positions on the day side, and at a single position on the night side. The strong nonthermal core emission which appears on the day side for this line is not present on the night side, where the line core appears in absorption. This behavior is consistent with a solar radiative pump as an excitation mechanism for the nonthermal emission. Modeling of the R(8) night-side profile indicates that substantial high-altitude haze occurs above the cloud tops, in the region from 15 to 35 mbar pressure. Comparing the modeling for the R(8) line to the P(44) line we find that the variation in the mass of the high-altitude haze was greater than a factor of 2.  相似文献   

9.
A model is proposed for the nonthermal synchrotron emission from supernova remnants in the uniform interstellar medium. Some characteristics of nonthermal and thermal emission (luminosity and surface brightness distribution) are compared. The conditions when the nonthermal component can be prominent in the X-ray spectrum are specified. We point out some observational tests which will allow a number of parameters characterizing the cosmic ray injection on supernova remnant shocks to be estimated. The cases when electron radiation losses may be neglected are considered.  相似文献   

10.
We study pre-eruptive, eruptive, and post-eruptive phenomena related to a CME that occurred on November 23, 2000 by means of joint analyses of data from various spectral ranges. Almost all known CME-associated phenomena were observed during this event, i.e., a filament eruption, solar flare, dimmings, and a post-eruptive arcade formation. Following a chain of events observed in various spectral ranges, we find that the event occurred in an activity complex consisting of active regions 9231 and 9238, and that it was triggered by a magnetic flux emergence, which caused a flare in AR 9231. In turn, the flare triggered activation and eruption of the filament followed by the CME and the flare in AR 9238 in which the post-eruptive arcade was observed. We discuss some characteristics of the flare and CME and also estimate the magnetic field strength in the coronal arcade to be about 200 G from spatially resolved polarization measurements in microwaves with radio telescopes. In this particular case, the only significant emission mechanism is optically thin free-free emission, and the possible contribution of nonthermal emissions cannot change our estimate of the magnetic field strength in the corona. However, generally one should make sure that the nonthermal contribution cannot be important in similar cases; otherwise, the magnetic field can be well overestimated. Here, we specifically address the identification technique of the radio emission mechanism.  相似文献   

11.
本文对X射线选择BLLac天体(XBLs)的完备样品进行了较细致的研究,讨论了该样品各观测量的分布、最新发现的几例X射线和ROSAT选择的BLLac天体的Hubble关系及BLLac天体的红移起源问题.  相似文献   

12.
We analyze the observations of the hard (ACS SPI, > 150 keV) and soft (GOES, 1–8 Å) X-ray emissions and the microwave (15.5 GHz) emission in the solar flares on September 7, 2005 and December 6 and 13, 2006. The time profiles of the nonthermal emission from these flares had a complex structure, suggesting that active processes in the flare region continued for a long time (more than an hour). We have verified the linear relationship between the nonthermal flux and the time derivative of the soft X-ray flux (the Neupert effect) in the events under consideration. In the first two cases, the Neupert effect held at the time of the most intense nonthermal emission peak, but not at the decay phase of the soft X-ray emission, when the intensity of the nonthermal emission was much higher than the background values. At the same time, the hard X-ray emission was suppressed compared to the main peak, while the microwave emission remained approximately at the same level. In the December 13, 2006 event, the prolonged hard X-ray emission was difficult to observe due to the fast arrival of solar protons, but the Neupert effect did not hold for its main peak either. At comparable intensities of the microwave emission on December 6 and 13, the intensity of the hard X-ray emission on December 13 at the time of the main peak was suppressed approximately by an order of magnitude. These observational facts are indicative of several particle acceleration and interaction episodes under various physical conditions during one flare. When the Neupert effect did not hold, the interaction of electrons took place mainly in a low-density medium. An effective escape of accelerated particles into interplanetary space rather than their precipitation into dense layers of the solar atmosphere may take place precisely at this time.  相似文献   

13.
McDonald  L.  Harra-Murnion  L.K.  Culhane  J.L. 《Solar physics》1999,185(2):323-350
We analyse four solar flares which have energetic hard X-ray emissions, but unusually low soft X-ray flux and GOES class (C1.0–C5.5). These are compared with two other flares that have soft and hard X-ray emission consistent with a generally observed correlation that shows increasing hard X-ray accompanied by increasing soft X-ray flux. We find that in the four small flares only a small percentage of the nonthermal electron beam energy is deposited in a location where the heating rate of the electron beam exceeds the radiative cooling rate of the ambient plasma. Most of the beam energy is subsequently radiated away into the cool chromosphere and so cannot power chromospheric evaporation thus reducing the soft X-ray emission. We also demonstrate that in the four small flares the nonthermal electron beam energy is insufficient to power the soft X-ray emitting plasma. We deduce that an additional energy source is required, and this could be provided by a DC-electric field (where quasi-static electric field channels in the coronal loops accelerate electrons, and those electrons with velocity below a critical velocity will heat the ambient plasma via Joule heating) in preference to a loop-top thermal source (where heat flux deposited in the corona is conducted along magnetic field lines to the chromosphere, heating the coronal plasma and giving rise to further chromospheric evaporation).  相似文献   

14.
本文讨论了16个红外强PG类星体的红外辐射能谱。我们假设这些活动星系核的红外谱是由非热辐射机制和尘埃的热辐射共同产生的,通过对红外包的最佳拟合,我们发现大多数PG类星体的红外包位于7一24μ的中远红外区,尘埃的热辐射机制能很好地产生观测到的红外包。通过模拟能定量地说明尘埃产生的热致辐射在这些天体的红外谱中的相对重要性,在模型与观测值之间的拟合中,我们得到了在这些天体中核加热的尘埃区的大小、尘埃的分布等模型参数。  相似文献   

15.
This paper analyzes soft X-ray spectra obtained from the Hinotori spacecraft for the investigation of plasma motions during the initial phase of the great flare, 1982 June 6. The wavelength calibration of the scanning spectrometers is determined from information on the spacecraft attitude and from the position of the Fexxv resonance line during the decay phase. Hard X-ray bursts, nonthermal line broadenings and blueshifted components in X-ray lines are temporally correlated with time differences of 0–30 s. The possible contribution of the blueshifted component to the line width decreases more rapidly than the nonthermal broadening, which suggests dominant plasma motions are taking place at higher and higher altitude in the corona, because of the increase of electron density in flaring loops. The evolution of the input kinetic energy content to the thermal plasma inferred from line broadenings in the impulsive phase resembles that of the thermal energy content in the source of the Fexxvi emission, which is different from that deduced for Fexxv source. This suggests that the origins of the nonthermal line broadening and Fexxvi source are closely coupled.  相似文献   

16.
SAWANT  H. S.  ROSA  R. R.  CECATTO  J. R.  GOPALSWAMY  N. 《Solar physics》1997,171(1):155-159
Here, we report on impulsive solar radio bursts observed for the first time with high time/spectral resolution in the range 18 to 23 GHz. Using observational parameters and assuming nonthermal gyrosynchrotron emission from energetic electrons in a loop structure, we have estimated the density of nonthermal electrons, magnetic field, and dimension of the source along the line of sight.  相似文献   

17.
Hadronic cosmic rays of energies below about 100 MeV nucleon–1 are thought to be an important component of the Galactic ecosystem. However, since these particles cannot be detected near Earth due to the solar modulation effect, their composition and flux in the interstellar medium are very uncertain. Atomic interactions of low‐energy cosmic rays with interstellar gas can produce a characteristic nonthermal X‐ray emission comprising very broad lines from de‐excitations in fast ions following charge exchange. We suggest that broad lines at ∼0.57 and ∼0.65 keV could be detected from a dark molecular cloud in the local interstellar medium. These lines would be produced by fast oxygen ions of kinetic energies around 1 MeV nucleon–1 (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We report on mid-resolution (R∼2000) spectroscopic observations of Titan, acquired in November 2000 with the Very Large Telescope and covering the range 4.75-5.07 μm. These observations provide a detailed characterization of the CO (1-0) vibrational band, clearly separating for the first time individual CO lines (P10 to P19 lines of 13CO). They indicate that the CO/N2 mixing ratio in Titan’s troposphere is 32±10 ppm. Comparison with photochemical models indicates that CO is not in a steady state in Titan’s atmosphere. The observations confirm that Titan’s 5-μm continuum geometric albedo is ∼0.06, and further indicates a ∼20% albedo decrease over 4.98-5.07 μm. Nonzero flux is detected at the 0.01 geometric albedo level in the saturated core of the 12CO (1-0) band, at 4.75-4.85 μm, providing evidence for backscattering on the stratospheric haze. Finally, emission lines are detected at 4.75-4.835 μm, coinciding in position with lines from the CO(1-0) and/or CO(2-1) bands. Matching them by thermal emission would require Titan’s stratosphere to be much warmer (by ∼ 25 K at 0.1 mbar) than indicated by the methane 7.7-μm emission and the Voyager radio-occultation. We show instead that a nonthermal mechanism, namely solar-excited fluorescence, is a more plausible source for these emissions. Improved observations and laboratory measurements on the vibrational-translational relaxation of CO are needed for further interpretation of these emissions in terms of a CO stratospheric mixing ratio.  相似文献   

19.
We have studied the spectral and spatial distribution across the Orion Bar of the 3-14 micrometers emission, including hydrogen Brackett alpha and 12.8 micrometers [Ne II] emission lines and several "dust" emission features. The data indicate that the "dust" consists of three components; (1) "classical" dust with a temperature of approximately 60 K accounting for emission longward of 20 micrometers, (2) amorphous carbon particles or polycyclic aromatic hydrocarbon (PAH) clusters (approximately 400 C atoms) which produce broad emission features in the 6-9 and 11-13 micrometers bands, and (3) free PAHs which emit in sharper bands (most strongly at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers). The 3.3 and 11.3 micrometers features, which are due to C-H modes, are well correlated spatially, while the 7.7 micrometers band, due to C=C modes, has a different distribution than the 3.3 and 11.3 micrometers bands. We conclude that the sharp emission bands arise in the photodissociation transition region between the H II region and the molecular cloud and are not present in the H II region. The broad continuum feature extending from 11-13 micrometers is strong in both regions. Previous broad-band observations of the 10 and 20 micrometers flux distributions, which show that the 10 micrometers radiation extends farther into the neutral gas to the south than the 20 micrometers radiation, suggest that some of the 10 micrometers flux is supplied via a nonthermal mechanism, such as fluorescence.  相似文献   

20.
本文利用宽波段能谱结构讨论了四个PG类星体的红外辐射机制.结果表明,在产生红外连续辐射的可能机制中,非热的、具有幂律特征的辐射和被核光度加热的“核尘埃”的热再辐射是红外辐射的主要来源.对于高光度的活动星系核,它的主星系的红外辐射及恒星形成区的红外辐射是可以忽略的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号