首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Understanding the poroelastic effect on anisotropic organic-rich mudstones is of high interest and value for evaluating coupled effects of rock deformation and pore pressure, during drilling, completion and production operations in the oilfield. These applications include modeling and prevention of time-dependent wellbore failure, improved predictions of fracture initiation during hydraulic fracturing operations (Suarez-Rivera et al. Presented at the Canadian Unconventional Resources Conference held in Calgary, Alberta, Canada, 15–17 November 2011. CSUG/SPE 146998 2011), improved understanding of the evolution of pore pressure during basin development, including subsidence and uplift, and the equilibrated effective in situ stress (Charlez, Rock mechanics, vol 2 1997; Katahara and Corrigan, Pressure regimes in sedimentary basins and their prediction: AAPG Memoir, vol 76, pp 73–78 2002; Fjær et al. Petroleum related rock mechanics. 2nd edn 2008). In isotropic rocks, the coupled poro-elastic deformations of the solid framework and the pore fluids are controlled by the Biot and Skempton coefficients. These are the two fundamental properties that relate the rock framework and fluid compressibility and define the magnitude of the poroelastic effect. In transversely isotropic rocks, one desires to understand the variability of these coefficients along the directions parallel and longitudinal to the principal directions of material symmetry (usually the direction of bedding). These types of measurements are complex and uncommon in low-porosity rocks, and particularly problematic and scarce in tight shales. In this paper, we discuss a methodology for evaluating the Biot’s coefficient, its variability along the directions parallel and perpendicular to bedding as a function of stress, and the homogenized Skempton coefficient, also as a function of stress. We also predict the pore pressure change that results during undrained compression. Most importantly, we provide values of transverse and longitudinal Biot’s coefficients and the homogenized Skempton coefficient for two important North American, gas-producing, organic-rich mudstones. These results could be used for petroleum-related applications.  相似文献   

2.
The imbrication’s area in northern Tunisia is the most external segment of Alpine range, where several associated folds types with thrust ramps are recognized within imbricate units beneath Numidian front slope. Their presence help to understand thrusting mechanisms installation through studied area. In fact, this zone was considered as a result of Paleogene gravitary slop (Kujawski (Ann Miner Géol Tunis (24):281, 1969); Caire (Ann Min Géol Tunis 26:87–110, 1973); Rouvier 1977), which is proved to be affected by major deep decollement, given rise to various structures, some are propagation folds, specific of foreland front, limited to this area, and those in more external position: Tunisian Atlas (Creusot et al. (C R Acad Sci Paris 314(Sér II):961–965, 1992); Ouali and Mercier (PII: S0191-8141(97):00048-5, 1997); Ouali 1984; Ahmadi et al. (J Struct Geol 28:721–728, 2006)). Various categories of fold ramps could be identified: frontal folds ramp NE–SW and others as lateral or oblique ramp with NW–SE trend (Aridhi et al. (C R Geosci 343:360–369, 2011)). The relation between various structures has been used as recognition tools of thrusting sequences and to propose a new deformation chronology. Delimited outcropping of these structures between two both parallel faults strikes with regional displacement, leads to interpret these faults as cogenetic tear faults of propagation thrusts; this fault separates two domains with different deformation styles from each other side.  相似文献   

3.
A total of 163 free-field acceleration time histories recorded at epicentral distances of up to 200 km from 32 earthquakes with moment magnitudes ranging from M w 4.9 to 7.4 have been used to investigate the predictive capabilities of the local, regional, and next generation attenuation (NGA) ground-motion prediction equations and determine their applicability for northern Iran. Two different statistical approaches, namely the likelihood method (LH) of Scherbaum et al. (Bull Seismol Soc Am 94:341–348, 2004) and the average log-likelihood method (LLH) of Scherbaum et al. (Bull Seismol Soc Am 99:3234–3247, 2009), have been applied for evaluation of these models. The best-fitting models (considering both the LH and LLH results) over the entire frequency range of interest are those of Ghasemi et al. (Seismol 13:499–515, 2009a) and Soghrat et al. (Geophys J Int 188:645–679, 2012) among the local models, Abrahamson and Silva (Earthq Spectra 24:67–97, 2008) and Chiou and Youngs (Earthq Spectra 24:173–215, 2008) among the NGA models, and finally Akkar and Bommer (Seism Res Lett 81:195–206, 2010) among the regional models.  相似文献   

4.
We discuss the convergence of the upstream phase-by-phase scheme (or upstream mobility scheme) towards the vanishing capillarity solution for immiscible incompressible two-phase flows in porous media made of several rock types. Troubles in the convergence were recently pointed out by Mishra and Jaffré (Comput. Geosci. 14, 105–124, 2010) and Tveit and Aavatsmark (Comput. Geosci. 16, 809–825, 2012). In this paper, we clarify the notion of vanishing capillarity solution, stressing the fact that the physically relevant notion of solution differs from the one inferred from the results of Kaasschieter (Comput. Geosci. 3, 23–48, 1999). In particular, we point out that the vanishing capillarity solution depends on the formally neglected capillary pressure curves, as it was recently proven in by Andreianov and Cancès (Comput. Geosci. 17, 551–572, 2013). Then, we propose a numerical procedure based on the hybridization of the interfaces that converges towards the vanishing capillarity solution. Numerical illustrations are provided.  相似文献   

5.
The comment of Green et al. debates the interpretation of the temperature of the H2O-saturated peridotite solidus and presence of silicate melt in the experiments of Till et al. (Contrib Mineral Petrol 163:669–688, 2012) at <1,000?°C. The criticisms presented in their comment do not invalidate any of the most compelling observations of Till et al. (Contrib Mineral Petrol 163:669–688, 2012) as discussed in the following response, including the changing minor element and Mg# composition of the solid phases with increasing temperature in our experiments with 14.5?wt% H2O at 3.2?GPa, as well as the results of our chlorite peridotite melting experiments with 0.7?wt% H2O. The point remains that Till et al. (Contrib Mineral Petrol 163:669–688, 2012) present data that call into question the H2O-saturated peridotite solidus temperature preferred by Green (Tectonophysics 13(1–4):47–71, 1972; Earth Planet Sci Lett 19(1):37–53, 1973; Can Miner 14:255–268, 1976); Millhollen et al. (J Geol 82(5):575–587, 1974); Mengel and Green (Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions, Geological Society of Australia Special Publication, Blackwell, pp 571-581, 1989); Wallace and Green (Mineral Petrol 44:1–19, 1991) and Green et al. (Nature 467(7314):448–451, 2010).  相似文献   

6.
The final ratio equation of an isotopic element in a rock, derived from water/rock formula of McCulloch et al. Earth Planet Sci Lett 46:201-211, 1980, McCulloch et al. J Geophys Res 86:B4 2721-2735, 1981 is used to assess the behavior of diverse suites of rocks towards the alteration effect, and what implications can give about hydrothermal alteration in terms of isotopic compositions. Due to their higher Sr and lower Nd initial ratios than seawater, rocks of metamorphic and sedimentary signatures such as carbonates and Precambrian basement rocks show similar but inverse mixing curves compared with igneous rocks. Sr composition of rocks immediately alters by seawater, while Nd composition keeps unchanged until large volumes of water are added. Although, this can be attributed to the very low Nd concentration in seawater, it indicates that Nd-exchange may only take place under seawater, possibly hydrothermally by circulated seawater, and Nd-concentration of less altered crustal rocks are apparently primary. The isotopic composition and rock mineralogy seem to be the main factors controlling the volume of water required to cause isotopic alteration in rocks. Crustal rocks require higher water volumes due to their relatively low temperature minerals, whereas, mantle peridotites mainly consist of residual olivine minerals that are highly susceptible to alteration and lack of Sr and Nd compositions, and so need less amount of water for metasomatism. This property reduces the limited penetration effect as the mafic affinity increases at depth in the oceanic crust, and enables modified (probably acidified) circulated fluids to maintain ion exchanging and leaching throughout their passageway.  相似文献   

7.
Three-dimensional, elastic and elasto-plastic finite element (FE) programs have permitted calculation of the displacements and the factor of safety (FOS) for the excavation for a tower, 132.70 m high (above foundation) on the island of Tenerife. The tower is supported by a 2 m thick reinforced concrete slab on jointed, vesicular and weathered basalt and scoria. The installation of rod extensometers at different depths below the slab has permitted comparison between measured and calculated displacements and the estimation of in situ deformation modulus. The moduli deduced from the simple empirical equations proposed by Hoek et al. (In: NARMS-TAC, 2002) and Gokceoglu et al. (Int J Rock Mech Min Sci 40:701–710, 2003) as a function of GSI, and Nicholson and Bieniawski (Int J Min Geol Eng 8:181–202, 1990) as a function of RMR, provide an acceptable fit with the measured settlements in this type of rock. Good correlation is also obtained with the empirical equation presented by Verman et al. (Rock Mech Rock Eng 30(3):121–127, 1997) that incorporates the influence of confining stress in the deformation modulus. The FOS obtained from different correlations with geomechanical classifications is within a relatively narrow range. These results increase our confidence in the use of classification schemes to estimate the deformation and stability in jointed rock.  相似文献   

8.
The renewed interest in chromite ore deposits is directly related to the increase in Cr price ruled by international market trends. Chromite, an accessory mineral in peridotites, is considered to be a petrogenetic indicator because its composition reflects the degree of partial melting that the mantle experienced while producing the chromium spinel-bearing rock (Burkhard in Geochim Cosmochim Acta 57:1297–1306, 1993). However, the understanding of chromite alteration and metamorphic modification is still controversial (e.g. Evans and Frost in Geochim Cosmochim Acta 39:959–972, 1975; Burkhard in Geochim Cosmochim Acta 57:1297–1306, 1993; Oze et al. in Am J Sci 304:67–101, 2004). Metamorphic alteration leads to major changes in chromite chemistry and to the growth of secondary phases such as ferritchromite and chlorite. In this study, we investigate the Vourinos complex chromitites (from the mines of Rizo, Aetoraches, Xerolivado and Potamia) with respect to textural and chemical analyses in order to highlight the most important trend of alteration related to chromite transformation. The present study has been partially funded by the Aliakmon project in collaboration between the Public Power Corporation of Greece and Institute of Geology and Mineral Exploration of Kozani.  相似文献   

9.
Different failure modes during fracture shearing have been introduced including normal dilation or sliding, asperity cut-off and degradation. Attempts have been made to study these mechanisms using analytical, experimental and numerical methods. However, the majority of the existing models simplify the problem, which leads to unrealistic results. With this in mind, the aim of this paper is to simulate the mechanical behaviour of synthetic and rock fracture profiles during direct shear tests by using the two-dimensional particle flow computer code PFC2D. Correlations between the simulated peak shear strength and the fracture roughness parameter D R1 recently proposed by Rasouli and Harrison (2010) are developed. Shear test simulations are carried out with PFC2D and the effects of the geometrical features as well as the model micro-properties on the fracture shear behaviour are studied. The shear strength and asperity degradation processes of synthetic profiles including triangular, sinusoidal and randomly generated profiles are analysed. Different failure modes including asperity sliding, cut-off, and asperity degradation are explicitly observed and compared with the available models. The D R1 parameter is applied to the analysis of synthetic and rock fracture profiles. Accordingly, correlations are developed between D R1 and the peak shear strength obtained from simulations and by using analytical solutions. The results are shown to be in good agreement with the basic understanding of rock fracture shear behaviour and asperity contact degradation.  相似文献   

10.
The liquefaction potential of saturated cohesionless deposits in Guwahati city, Assam, was evaluated. The critical cyclic stress ratio required to cause liquefaction and the cyclic stress ratio induced by an earthquake were obtained using the simplified empirical method developed by Seed and Idriss (J soil Mech Found Eng ASCE 97(SM9):1249–1273, 1971, Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, CA, 1982) and Seed et al. (J Geotech Eng ASCE 109(3):458–483, 1983, J Geotech Eng ASCE 111(12):1425–1445, 1985) and the Idriss and Boulanger (2004) method. Critical cyclic stress ratio was based on the empirical relationship between standard penetration resistance and cyclic stress ratio. The liquefaction potential was evaluated by determining factor of safety against liquefaction with depth for areas in the city. A soil database from 200 boreholes covering an area of 262 km2 was used for the purpose. A design peak ground acceleration of 0.36 g was used since Guwahati falls in zone V according to the seismic zoning map of India. The results show that 48 sites in Guwahati are vulnerable to liquefaction according to the Seed and Idriss method and 49 sites are vulnerable to liquefaction according to the Idriss and Boulanger method. Results are presented as maps showing zones of levels of risk of liquefaction.  相似文献   

11.
Despite a missing definition of equivalence of mathematical models or methods by Zhang et al. (Math Geosci, 2013), an “equivalence” (Zhang et al., Math Geosci, 2013, p. 6,7,8,14) of modified weights-of-evidence (Agterberg, Nat Resour Res 20:95–101, 2011) and logistic regression does not generally exist. Its alleged proof is based on a previously conjectured linear relationship between weights of evidence and logistic regression parameters (Deng, Nat Resour Res 18:249–258, 2009), which does not generally exist either (Schaeben and van den Boogaart, Nat Resour Res 20:401–406, 2011). In fact, an extremely simple linear relationship exists only if the predictor variables are conditionally independent given the target variable, in which case the contrasts, i.e., the differences of the weights, are equal to the logistic regression parameters. Thus, weights-of-evidence is the special case of logistic regression if the predictor variables are binary and conditionally independent given the target variable.  相似文献   

12.
Tracing fractures under glacial drift commonly involves costly and often unfeasible (in populated areas) geophysical methods or outcrop surveys, often far from the area of interest. A hypothesis is tested, that the specific capacity data for wells penetrating through glacial drift into a bedrock aquifer display two statistical populations: assuming uniform well construction, the wells with high specific capacity penetrate transmissive fracture zones, while those with low specific capacity encounter non-fractured rock characterized by primary porosity. The hypothesis was tested on 617 wells drilled into the Pennsylvanian Sharon Sandstone, Geauga County, Ohio (USA). Hydraulic conductivity, calculated using the Cooper and Jacob (1946) approximation to Theis’ non-equilibrium radial flow equation, followed quasi-log-normal distribution (geometric mean 9.88?×?10?6 m/s). The lower values presumably correspond to primary porosity, and higher values correspond to bedrock fracture zones. The higher hydraulic conductivity followed two distinct orientations (N34°E, N44°W), corresponding with the regional fracture pattern of the Allegheny Plateau. A variogram showed that the wells within a kilometer of each other correlate and that wells penetrating the thicker glacial blanket have lower hydraulic conductivity and larger drawdown. Cooper and Jacob (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Am. Geoph. Union Trans. 27/4:526–534.  相似文献   

13.
Tertiary basalt is widespread in the area south of Wadi Hodein, south Eastern Desert, Egypt. It is the youngest unit in the basement rocks of the Central Eastern Desert classification of El Shazly (Proc 22nd Intl Geol Congr, New Delhi 10:88–101, 1964) and El Ramly (Ann Geol Surv Egypt II:1–17, 1972), traversed all the previous succession of the basement rocks as well as the Nubia Sandstone of Cretaceous age, forming sheets, small hills, ridges, and dikes. This Tertiary basalt is strongly associated with the opening of the Red Sea. Geologic, petrographic, and petrochemical studies as well as microprobe and X-ray analyses were performed on samples from Wadi Hodein Tertiary basalt. Field and petrographic studies classified the Tertiary basalt in south Wadi Hodein into porphyritic olivine basalt, plagiophyric basalt, and doleritic basalt. Opaque minerals (magnetite and ilmenite) constitute 6–7.5% of this basalt. Petrochemical studies and microprobe analyses reveal that they are low-TiO2 basalt with low uranium and thorium contents, classified as being basaltic andesite to andesite, originated from calc-alkaline magma, and developed in within-plate tectonic environment. Scanning electron microscopy shows that magnetite and ilmenite are the prevalent opaque minerals in this Tertiary basalt. Field radiometric measurements of the Tertiary basalt in south Wadi Hodein reveals low uranium and thorium contents. Uranium contents range from 0.5 to 0.9 ppm, while thorium contents range from 1.2 to 3.2 ppm. Fractional crystallization and mass balance modeling indicate that the most-silica low-TiO2 Tertiary basalt in south Wadi Hodein can be derived from the relatively less-silica low-TiO2 Tertiary basalt of south Quseir and Gabal Qatrani through fractional crystallization of plagioclase, olivine, augite, and titanomagnetite oxides. Tertiary basalts in south Wadi Hodein and south Quseir have nearly the same age, 25 Ma (Sherif, The Fifth International Conference on the Geology of Africa, 2007), 24 Ma (Meneisy and Abdel Aal, Ain Shams Sci Bull 25(24B): 163–176, 1984), and 27 Ma (El Shazly et al., Egypt J Geol 1975), respectively. Finally, the fractionation modeling and geochemical characteristics of these basalts suggested their origination from one basaltic magma emplaced in late Oligocene.  相似文献   

14.
We propose a two-dimensional computational model for deep landslides triggered by rainfall, based on interacting particles or grains. The model describes a vertical section of a fictitious granular material along a slope, in order to study the behavior of a wide-thickness landslide. The triggering of the landslide is caused by the exceeding of two conditions: a threshold speed and a condition on the static friction of the particles, the latter based on the Mohr–Coulomb failure criterion (Coulomb in Mem Acad R Div Sav 7:343–387, 1776; Mohr in Abhandlungen aus dem Gebiete der Technischen Mechanik. Ernst, Berlin, 1914). The interparticle interactions are represented as a potential that, in the absence of suitable experimental data and due to the arbitrariness of the grain dimension, is modeled similarly to the Lennard-Jones’ one (Lennard-Jones in Proc R Soc Lond A 106(738):463–477, 1924), i.e., with an attractive and a repulsive part. For the updating of the particle positions, we use a molecular dynamics method, which is quite suitable for this type of systems (Herrmann and Luding in Continuum Mech Thermodyn 10:189–231, 1998). An infiltration scheme is introduced for modeling the increasing pore pressure due to the rainfall. Finally, we also introduce the viscosity in the dynamical equations of motion. The statistical characterization and dynamical behavior of the results of simulations are quite satisfactory relative to real landslides: We obtain a power law distribution of landslide triggering times, and the velocity patterns are typical of real cases, including the acceleration progression. Therefore, we can claim that this type of modeling can represent a new method to simulate landslides triggered by rainfall.  相似文献   

15.
Jakobsson (Contrib Miner Petrol 164(3):397–407, 2012) investigated a double capsule assembly for use in piston-cylinder experiments that would allow hydrous, high-temperature, and high-pressure experiments to be conducted under controlled oxygen fugacity conditions. Using a platinum outer capsule containing a metal oxide oxygen buffer (Ni–NiO or Co–CoO) and H2O, with an inner gold–palladium capsule containing hydrous melt, this study was able to compare the oxygen fugacity imposed by the outer capsule oxygen buffer with an oxygen fugacity estimated by the AuPdFe ternary system calibrated by Barr and Grove (Contrib Miner Petrol 160(5):631–643, 2010). H2O loss or gain, as well as iron loss to the capsule walls and carbon contamination, is often observed in piston-cylinder experiments and often go unexplained. Only a few have attempted to actually quantify various aspects of these changes (Brooker et al. in Am Miner 83(9–10):985–994, 1998; Truckenbrodt and Johannes in Am Miner 84:1333–1335, 1999). It was one of the goals of Jakobsson (Contrib Miner Petrol 164(3):397–407, 2012) to address these issues by using and testing the AuPdFe solution model of Barr and Grove (Contrib Miner Petrol 160(5):631–643, 2010), as well as to constrain the oxygen fugacity of the inner capsule. The oxygen fugacities of the analyzed melts were assumed to be equal to those of the solid Ni–NiO and Co–CoO buffers, which is incorrect since the melts are all undersaturated in H2O and the oxygen fugacities should therefore be lower than that of the buffer by 2 log $a_{{{\text{H}}_{ 2} {\text{O}}}}$ .  相似文献   

16.
We perform a strong ground motion simulation using a modified semi-empirical technique (Midorikawa in Tectonophysics 218:287–295, 1993), with frequency-dependent radiation pattern model. Joshi et al. (Nat Hazards 71:587–609, 2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency-dependent radiation pattern model is applied to simulate high-frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura in Earth Planets Space 63:571–576, 2011) of the 2011 off the Pacific coast of Tohoku earthquake (M w  = 9.0) were modeled using this modified technique. We analyzed the effect of changing seismic moment values of SMGAs on the simulated acceleration time series. Final selection of the moment values of SMGAs is based on the root-mean-square error (RMSE) of waveform comparison. Records are simulated for both frequency-dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration, peak ground velocity and pseudo-acceleration response spectra at different stations. Comparison of simulated and observed records in terms of RMSE suggests that the method is capable of simulating record, which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.  相似文献   

17.
D. K. Yoon 《Natural Hazards》2012,63(2):823-843
The purpose of this study is to examine and compare the methodologies being developed in assessing social vulnerability to natural disasters. Existing vulnerability literature shows that two methods have been used in developing social vulnerability indexes: (1) a deductive approach based on a theoretical understanding of relationships and (2) an inductive approach based on statistical relationships (Adger et al. in New indicators of vulnerability and adaptive capacity. Tyndall Centre for Climate Change Research, Norwich, 2004). Two techniques were also utilized in aggregating social vulnerability indicators: (1) a deductive approach using standardization techniques such as z scores or linear scaling (Wu et al. in Clim Res 22:255?C270, 2002; Chakraborty et al. in Nat Hazards Rev 6(1):23?C33, 2005) and (2) an inductive approach using data-reduction techniques such as factor analysis (Clark et al. in Mitig Adapt Strateg Glob Change 3(1):59?C82, 1998; Cutter et al. Soc Sci Quart 84(2):242?C261, 2003). This study empirically compares deductive and inductive index development and indicator aggregation methods in assessing social vulnerability to natural disasters in the Gulf of Mexico and Atlantic coastal areas. The aggregated social vulnerability index is used to examine a relationship with disaster losses in the Gulf of Mexico and Atlantic coastal areas. The results show that coastal counties with more vulnerability in terms of social achieved status are positively associated with disaster damages, while variations in the development of the index using deductive and inductive measurement approaches produce different outcomes.  相似文献   

18.
We consider an immiscible incompressible two-phase flow in a porous medium composed of two different rocks so that the capillary pressure field is discontinuous at the interface between the rocks. This leads us to apply a concept of multivalued phase pressures and a notion of weak solution for the flow which have been introduced in Cancès and Pierre (SIAM J Math Anal 44(2):966–992, 2012). We discretize the problem by means of a numerical algorithm which reduces to a standard finite volume scheme in each rock and prove the convergence of the approximate solution to a weak solution of the two-phase flow problem. The numerical experiments show in particular that this scheme permits to reproduce the oil-trapping phenomenon.  相似文献   

19.
The development of the Brazilian disc test for determining indirect tensile strength and its applications in rock mechanics are reviewed herein. Based on the history of research on the Brazilian test by analytical, experimental, and numerical approaches, three research stages can be identified. Most of the early studies focused on the tensile stress distribution in Brazilian disc specimens, while ignoring the tensile strain distribution. The observation of different crack initiation positions in the Brazilian disc has drawn a lot of research interest from the rock mechanics community. A simple extension strain criterion was put forward by Stacey (Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474, 1981) to account for extension crack initiation and propagation in rocks, although this is not widely used. In the present study, a linear elastic numerical model is constructed to study crack initiation in a 50-mm-diameter Brazilian disc using FLAC3D. The maximum tensile stress and the maximum tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of the disc surface. Therefore, the crack initiation point of the Brazilian test for rocks may be located near the loading point when the tensile strain meets the maximum extension strain criterion, but at the surface center when the tensile stress meets the maximum tensile strength criterion.  相似文献   

20.
To understand and predict the in situ brittle rock mass damage process induced by a coupled thermo-mechanical loading, the knowledge of rock mass yielding strength, scaling relationship between laboratory and in situ and microstructure characterization is required. Difficulties have been recognized due to the seldom availability of in situ experiment and appropriate numerical methodologies. The Äspö Pillar Stability Experiment was used to monitor the evolution of rock mass damage in a pillar of rock separating two 1.75-m diameter vertical boreholes. The loading of the pillar was controlled using the in situ stresses, excavation geometry, and locally increasing the rock temperature. The induced loading resulted in a complex discontinuum process that involved fracture initiation, propagation, interaction and buckling, all dominated by a tensile mechanism. Tracking this damage process was carried out in two steps. Initially, a three-dimensional numerical model was used to generate the stresses from the excavation geometry and thermal loading. The plane strain stresses, at selected locations where detailed displacement monitoring was available, were then used to track the evolution of damage caused by these induced stresses. The grain-based discrete element modeling approach described in Lan et al. (2010), which captures the grain scale heterogeneity of the rock, was used to establish the extent of damage. Good agreement was found between the predicted and measured temperatures and displacements. The grain-based model provided new insights into the progressive failure process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号