首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
A sensitivity-corrected Multiple Aliquot Regenerative-dose protocol has been developed for fine-grained quartz OSL dating of Chinese loess. Its reliability has been assessed on the basis of the methodology and by dating reference samples of known age close to the transition from the last interglacial paleosol (S1) to the last glacial loess (L1), which corresponds to the Marine Oxygen Isotope Stage (MIS) 5/4 transition. On the basis of the fine-grained quartz OSL-age estimates for 33 loess samples from the upper part of the Luochuan profile, a detailed chronostratigraphy of continuous dust accumulation in the past 130 ka has been proposed. Changes in the accumulation rate occurred during the last glacial period (MIS 4 to MIS 2); unexpectedly, high accumulation rates were found in the weakly developed L1-2(S) paleosol of the last interstadial (MIS 3), rather than in the classic L1-1 and L1-3 loess of the cold-dry glacial condition (MIS 2 and 4). The OSL ages show some disagreement with the previous numerical chronology for the loess-paleosol sequence based on correlation of variations in grain size with sedimentation rate; the latter method resulted in an almost constant accumulation rate from 72 to 12 ka.  相似文献   

2.
The alternation of terrestrial and marine deposits is an indicator of past environmental and sea‐level changes. The age of deposition is usually dated by means of radiocarbon. However, radiocarbon dates of molluscan shells from coastal areas may be complicated by various sources of carbon, and problematic for deposits of 40–50 ka or older. Herein, we apply the Optically Stimulated Luminescence (OSL) dating method to date samples from terrestrial and marine/coastal sediments extracted from three cores in the south Bohai Sea, China. Multiple‐ and single‐aliquot regenerative‐dose procedures using OSL signals from fine‐silt (4–11 μm), coarse‐silt (38–63 μm) and fine‐sand (63–90 or 90–125 μm) quartz were employed to determine the equivalent dose (D e). The results showed that: (i) OSL ages from quartz of different grain sizes and different protocols are consistent with each other; (ii) for Holocene samples, most of the radiocarbon dates agree well with OSL ages; (iii) for pre‐Holocene samples, radiocarbon dates cluster at 40–50 14 C ka BP, whereas OSL ages are in stratigraphic order from 11 ka to 176 ka. Because of the self‐consistency of the quartz OSL ages, the stratigraphic agreement in the three cores, and the clustering of the radiocarbon dates, we suggest that the quartz OSL ages are more reliable with respect to dating the samples from the south Bohai Sea. Finally, the four marine strata identified in the south Bohai Sea are likely to have formed during the Holocene, Marine Isotopic Stage (MIS) 3–5, MIS 6 and probably MIS 7, respectively.  相似文献   

3.
It is still disputed whether very old archaeological and palaeontological remains found in the Belle‐Roche palaeocave (eastern Belgium) pertain to the Early (~1 Ma) or Middle (~0.5 Ma) Pleistocene. Here, in situ‐produced cosmogenic 10Be concentrations from a depth profile in nearby sediments of the Belle‐Roche terrace (Amblève Main Terrace level) are used as an indirect solution of this chronological issue. The distribution of 10Be concentrations in the upper 3 m of this profile displays the theoretically expected exponential decrease with depth. Assuming a single exposure episode, we obtain a best fit age of 222.5±31 ka for the time of terrace abandonment. However, below 3 m, the 10Be concentrations show a marked progressive increase with depth. This distinctive cosmogenic signal is interpreted as the result of slow aggradation of the fluvial deposits over a lengthy interval. Modelling of the whole profile thus suggests that the onset of the terrace formation occurred at around 550 ka, with a sediment accumulation rate of ~20 mm ka?1. Based on two slightly different reconstructions of the geomorphic evolution of the area and a discussion of the temporal link between the cave and Main Terrace levels, we conclude that the fossil‐bearing layers in the palaeokarst pertain most probably to MIS 14–13, or possibly MIS 12–11. This age estimate for the large mammal association identified in the Belle‐Roche palaeokarst and the attribution to MIS 14–13 of a similar fauna found in the lowermost fossiliferous layers of the Caune de l'Arago (Tautavel) are in mutual support. Our results therefore confirm the status of the Belle‐Roche site as a reference site for the Cromerian mammal association in NW Europe.  相似文献   

4.
Abstract

Quaternary alluvial and colluvial sediments infill major river valleys and form alluvial fans and colluvium-filled bedrock depressions on the range fronts and within the Mount Lofty Ranges of southern Australia. A complex association of alluvial successions occurs in the Sellicks Creek drainage basin, as revealed from lithostratigraphy, physical landscape setting and optically stimulated luminescence (OSL) ages. Correlation of OSL ages with the Marine Oxygen Isotope record reveals that the alluvial successions represent multiple episodes of alluvial sedimentation since the penultimate glaciation (Marine Isotope Stage 6; MIS 6). The successions include a penultimate glacial maximum alluvium (Taringa Formation; 160?±?15?ka; MIS 6), an unnamed alluvial succession (42?±?3.2?ka; MIS 3), a late last glacial colluvial succession within bedrock depressions (ca 15?ka; MIS 2) and a late last glacial alluvium (ca 15?ka; MIS 2) in the lowest, distal portion of Sellicks Creek. In addition, the Waldeila Formation, a Holocene alluvium (3.5?±?0.3?ka; MIS 1), and sediments deposited during a phase of Post-European Settlement Aggradation (PESA) are also identified. The age and spatial distribution of the red/brown successions, mapped as the Upper Pleistocene Pooraka Formation, directly relate to different topographic and tectonic settings. Neotectonic uplift locally enhanced erosion and sedimentation, while differences in drainage basin sizes along the margin of the ranges have influenced the timing and delivery of sediment in downstream locations. Close to the Willunga Fault Scarp at Sellicks Creek, sediments resembling the Pooraka Formation have yielded a pooled mean OSL age of 83.9?±?7?ka (MIS 5a) corroborating the previously identified extended time range for deposition of the formation. Elsewhere, within major river valleys, the Pooraka Formation was deposited during the last interglacial maximum (128–118?ka; MIS 5e). In general, alluviation occurred during interglacial and interstadial pluvial events, while erosion predominated during drier glacial episodes. In both cases, contemporaneous erosion and sedimentation continued to affect the landscape. For example, in the Sellicks Creek drainage basin, which lies across an actively uplifting fault zone, late glacial age sediments (MIS 2) occur within the ranges and near the distal margin of the alluvial fan complex. OSL dating of the alluvial successions reported in this paper highlights linkages between the terrestrial and marine environments in association with sea-level (base-level) and climatic perturbations. While the alluvial successions relate largely to climatically driven changes, especially in major river valleys, tectonics, eustasy, geomorphic setting and topography have influenced erosion and sedimentation, especially on steep-sloped alluvial fan environments.
  1. KEY POINTS
  2. Luminescence dating of the Sellicks Creek alluvial fan complex reveals that sedimentation occurred predominantly during the later stages of glacial cycles accompanying lower sea-levels than present.

  3. Luminescence dating confirms that the stratigraphically lower portions of the Pooraka Formation are beyond the range of radiocarbon dating.

  4. Upper Pleistocene alluvial fan sedimentation at Sellicks Creek correlates with pluvial events in southeastern Australia.

  相似文献   

5.
Buylaert, J.‐P., Huot, S., Murray, A.S. & Van den haute, P.: Infrared stimulated luminescence dating of an Eemian (MIS 5e) site in Denmark using K‐feldspar. Boreas, 10.1111/j.1502‐3885.2010.00156.x. ISSN 0300‐9483. Infrared stimulated luminescence (IRSL) dating of K‐feldspars may be an alternative to quartz optically stimulated luminescence (OSL) dating when the quartz OSL signal is too close to saturation or when the quartz luminescence characteristics are unsuitable. In this paper, Eemian (MIS 5e) coastal marine sands exposed in a cliff section on the coast of southern Jutland (Denmark) are used to test the accuracy and precision of IRSL dating using K‐feldspars. This material has been used previously to test quartz OSL dating ( Murray & Funder 2003 ): a small systematic underestimation of <10% compared to the expected age of ~130 ka was reported. In our study, a single‐aliquot regenerative‐dose (SAR) IRSL protocol is used to determine values of equivalent dose (De) and the corresponding fading rates (g values). A significant age underestimation (of up to ~35%) is observed; this is attributed to anomalous fading. Using a single site‐average fading rate of 3.66 ± 0.09%/decade to correct the IRSL ages for all samples provides good agreement between the average fading‐corrected K‐feldspar age (119 ± 6 ka) and the independent age control (132–125 ka). This is despite the reservations of Huntley & Lamothe (2001) that their fading correction method is not expected to work on samples older than ~20–50 ka. This fading‐corrected feldspar result is not significantly different from the overall revised quartz age (114 ± 7 ka) also presented here. We conclude that fading‐corrected IRSL ages measured using K‐feldspar may be both precise and accurate over a greater age range than might be otherwise expected.  相似文献   

6.
Alexanderson, H., Johnsen, T. & Murray, A. S. 2009: Re‐dating the Pilgrimstad Interstadial with OSL: a warmer climate and a smaller ice sheet during the Swedish Middle Weichselian (MIS 3)? Boreas, 10.1111/j.1502‐3885.2009.00130.x. ISSN 0300‐9483. Pilgrimstad in central Sweden is an important locality for reconstructing environmental changes during the last glacial period (the Weichselian). Its central location has implications for the Scandinavian Ice Sheet as a whole. The site has been assigned an Early Weichselian age (marine isotope stage (MIS) 5 a/c; >74 ka), based on pollen stratigraphic correlations with type sections in continental Europe, but the few absolute dating attempts so far have given uncertain results. We re‐excavated the site and collected 10 samples for optically stimulated luminescence (OSL) dating from mineral‐ and organic‐rich sediments within the new Pilgrimstad section. Single aliquots of quartz were analysed using a post‐IR blue single aliquot regenerative‐dose (SAR) protocol. Dose recovery tests were satisfactory and OSL ages are internally consistent. All, except one from an underlying unit that is older, lie in the range 52–36 ka, which places the interstadial sediments in the Middle Weichselian (MIS 3); this is compatible with existing radiocarbon ages, including two measured with accelerator mass spectrometry (AMS). The mean of the OSL ages is 44±6 ka (n=9). The OSL ages cannot be assigned to the Early Weichselian for all reasonable adjustments to water content estimates and other parameters. The new ages suggest that climate was relatively mild and that the Scandinavian Ice Sheet was absent or restricted to the mountains for at least parts of MIS 3. These results are supported by other recent studies completed in Fennoscandia.  相似文献   

7.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Paleoclimatic changes in the late Quaternary sediments deposited in the East Sea were analyzed by studying diatoms. A total of 95 species belonging to 47 genera were identified from the Core02GHP-02 of the Ulleung Basin in the East Sea, Korea. In the Core 02GHP-02, U-Oki(169–181 cm; 9.3 ka), AT(464–465.5 cm; 22 ka) and U–Ym(556–559 cm; 33 ka) tephra layers were recognized. The chronological divisions of 02GHP-02 may be correlated with the climatic changes from the glacial interval(730–620 cm; MIS3), to interstadial(620–500 cm; MIS3), to the last glacial maximum(500–390 cm; MIS 2), to the deglaciation(390–290 cm; MIS 2), to the late glacial(290–190 cm; MIS 1), and to the Holocene(190–10 cm; MIS 1). It is speculated that diatoms were rarely found during the glacial interval when the 02GHP-02 core was deposited; during the interstadial(MIS 3) and deglaciation, a mixture of warm-water and cold-water species were found. In particular, Fragilariopsis doliolus seems to have appeared in the East Sea after 8 ka BP. In the lower layers of the Holocene deposits, cold-water species such as Neodenticula seminae were frequently found, while in the upper layers, warm-water species such as Hemidiscus cuneiformis were found in relatively large abundance. Therefore, the findings indicate that the climate became warmer during the transition from the lower layer to the upper layer of the Holocene deposits.  相似文献   

9.
The Heidelberg Basin (HDB) hosts one of the thickest Quaternary sediment successions in central Europe. To establish a reliable Middle and Upper Pleistocene chronology for a recently drilled core from the depocentre of the Heidelberg Basin, we applied multiple luminescence dating approaches, including quartz optically stimulated luminescence (OSL), two feldspar post‐IR IRSL protocols using second IR stimulation temperatures of 225 °C (pIRIR225) and 290 °C (pIRIR290), and two fading correction models. Relatively high anomalous fading was observed for both the pIRIR225 and pIRIR290 signals, with mean fading rates of 2.13±0.27 and 2.08±0.49%/decade, respectively. Poor dose recovery behaviour of the pIRIR290 signal suggests that the pIRIR290 ages are not reliable. The comparison of two fading correction methods for the K‐feldspar ages indicates that the correction method proposed by Kars et al. (2008) Radiation Measurements 43, 786, yields reliable ages, whereas the dose‐rate correction method proposed by Lamothe et al. (2003) Radiation Measurements 37, 493, does not. A chronology for the HDB is established using the quartz ages and reliable fading corrected feldspar pIRIR225 ages. Our chronology shows that the sediments in the upper Mannheim Formation were deposited during Marine Isotope Stage (MIS) 4 (c. 70 ka), constrained by two quartz ages in the upper 20 m of the core. Four fading corrected pIRIR225 ages of c. 400 ka show that the upper Ludwigshafen Formation was deposited during MIS 12–11, correlated with the Elsterian‐Holsteinian stage. Two ages of 491±76 and 487±79 ka indicate that the Middle and Upper Ludwigshafen Formation were probably deposited during the Cromerian Complex. This luminescence chronology is consistent with palynological results. It also indicates that the IR‐RF ages reported earlier are probably underestimated due to anomalous fading.  相似文献   

10.
A geochronological framework based on amino acid racemisation (AAR) and constrained by previously reported optically stimulated luminescence (OSL) ages is presented for the evolution and paleosea-level record of the Pleistocene Bridgewater Formation of the Mount Gambier region, of southern Australia. Within the study area, the Bridgewater Formation is represented by late early Pleistocene [Marine Isotope Stage (MIS) 23 at 933 ka] to Holocene barrier shoreline successions deposited during sea-level highstands. Regional monotonic uplift (0.13 mm yr–1) and pervasive calcrete development during the Pleistocene have preserved the sequence of calcarenite (mixed quartz-skeletal carbonate sand) shoreline complexes from denudation. AAR analyses confirm that the barriers generally increase in age landwards and correlate with sea-level highstands associated with interglacials as defined by the marine oxygen isotope record. AAR analyses on the benthic foraminifer Elphidium crispum have proved more reliable than the whole-rock method in extending the age range of AAR dating of these relict shoreline successions. Paleosea-levels from the coastal plain are as follows: MIS 7, –9 ± 2 m; MIS 9, 4 ± 1 m; and a minimum sea-level of 2 ± 2 m is derived for MIS 11. Paleosea-level could not be determined for MIS 15, 19 or 23 as diagnostic sea-level indicators were not identified within these sedimentary successions. Dismal Range, dated at 933 ± 145 ka (MIS 23), represents a correlative feature to the East Naracoorte Range but is some 25 km seaward of the Kanawinka Fault compared with the same barrier at Naracoorte. Mingbool Range (788 ± 18 ka) is of similar age to the West Naracoorte Range (MIS 19) and formed as an arcuate shoreline complex that became attached to the higher relief of the area represented by the Mount Burr Volcanic Province. The higher topographical relief resulted from crustal doming of the Oligo-Miocene Gambier Limestone caused by the intrusion of magma associated with the volcanic province. The AAR age of 788 ± 118 ka for Mingbool Range indicates that the Mount Burr volcanics predate the deposition of this shoreline complex.  相似文献   

11.
The strong spectral interference between Br‐ and Al‐induced X‐ray lines hampers the utilisation of electron probe microanalysis (EPMA) for measuring Br mass fractions in Al‐bearing minerals and glasses. Through measuring Br‐free Al‐bearing materials, we established an EPMA method to quantify the overlap from AlKα on BrLβ, which can be expressed as a linear function of the Al2O3 content. The count rate of the BrLβ peak signal was enhanced by high beam currents and long measurement times. Application of this EPMA method to Al‐ and Br‐bearing materials, such as sodalite and scapolite, and to five experimental glasses yielded Br mass fractions (in the range of 250–4000 μg g?1) that are consistent with those measured by microbeam synchrotron X‐ray fluorescence (μ‐SXRF) spectrometry. The EPMA method has an estimated detection limit of ~ 100–300 μg g?1. We propose that this method is useful for measuring Br mass fractions (hundreds to thousands of μg g?1) in Al‐bearing minerals and glasses, including those produced in Br‐doped experiments. In addition, the natural marialitic scapolite (ON70) from Mpwapwa (Tanzania) containing homogeneously distributed high mass fractions of Br (2058 ± 56 μg g?1) and Cl (1.98 ± 0.03% m/m) is an ideal reference material for future in situ analyses.  相似文献   

12.
The history of sea‐level change and sediment accumulation since the last deglaciation along the German North Sea coast is still controversial because of a limitation in the quantity and quality of chronological data. In the current study, the chronology of a 16‐ka coastal sedimentary record from the Garding‐2 core, retrieved from the Eiderstedt Peninsula in Schleswig‐Holstein, northern Germany, was established using OSL and AMS 14C dating techniques. The robust chronology using 14 radiocarbon and 25 OSL dates from the Garding‐2 core is the first long‐term record that covers the Holocene as well as the last deglaciation period in one succession in the German North Sea area. It provides a new insight into understanding the Holocene transgression and coastal accumulation histories. The combined evidence from the sedimentology and chronology investigations indicates that an estuarine environment dominated in Eiderstedt Peninsula from 16 to 13 ka, followed by a depositional hiatus between 13 and 8.3 ka, attributed to erosion caused by the Holocene transgression; the onset of the Holocene transgression at the core site occurred at around 8.3 ka. The sea level continued to rise with a decelerated rate until around 3 ka. Since 3 ka, the shoreline has begun to prograde. Foreshore (tidal flat) sediments have been deposited at the drilling site with a very high sedimentation rate of about 10 m ka?1. At around 2 ka, a sandy beach deposit accumulated in the sedimentary succession, indicating that the coastline shifted landward, which may represent a small‐scale transgression in the late Holocene. At around 1.5 ka, terrestrial clastic sediment started to accumulate, indicating a retreat of the relative sea level in this area, which may be related to local diking activities undertaken since the 11th century.  相似文献   

13.
Cosmogenic nuclide surface exposure dating of boulders and erratics provides new constraints for a glacial chronology in the source area of the Urumqi River, Tian Shan, China. 10Be exposure ages of 15.0 ± 1.3–17.1 ± 1.5 ka from the Upper Wangfeng (UWF) moraines agree well with their previous relative age assignments to marine isotope stage (MIS) 2, but are younger than published AMS 14C and electron spin resonance (ESR) ages (from 22.8 ± 0.6 to 37.4 ka). This difference may result from variations in techniques, or could reflect the impact of surface erosion and sediment/snow cover on surface exposure dating. 10Be ages from the Lower Wangfeng (LWF) moraines (18.7 ± 1.8 and 16.2 ± 1.5 ka) are indistinguishable from the UWF exposure ages, but are significantly younger than previously reported thermoluminescence (TL) and ESR ages (37.7 ± 2.6–184.7 ± 18 ka). Either these two groups were formed during the same period (MIS 2) and there are problems with TL and ESR ages, or the moraines were of very different ages and the similar exposure ages result from different degrees of degradation. Erratics on rock steps and a drumlin along >8 km of the main glacial valley above the UWF have internally consistent and slightly decreasing 10Be exposure ages indicating glacier retreat >2.5 m a?1 after MIS 2 and before middle or late Holocene glacier re‐advances. This retreat rate is similar to rates observed from modern glaciers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recording information about the past interplay between the Asian monsoon and Westerlies and the link between dust accumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lying between 3500 and 4500 m a.s.l. on the east‐facing slopes of the Anyemaqen Mountains. However, there is little chronological information about the loess deposits in this region. This study provides a detailed chronology for loess formation in the region using luminescence dating. A total of 29 samples were collected from an 8‐m‐thick homogeneous loess section at Hebei (HB) in order to date sand‐sized (63–90 μm) quartz and K‐feldspar fractions using optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals, respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De >120 Gy), the quartz age is underestimated, and the pIRIR170 feldspar ages are considered more reliable. The HB loess section records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage (MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulation around c. 38 ka and after c. 32 ka; in between, and at the beginning of MIS 3 (50–40 ka), the dust accumulation rate was ~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation. This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and the TP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.  相似文献   

15.
Mongolian glaciers have been the subject of relatively little research, resulting in less geochronological constraint than other parts of Central Asia. The Khentey Mountains (latitude 47–51°N, longitude 105–112°E) are a typical landlocked mountain range exhibiting clear geomorphic evidence of late Quaternary glaciation. Yet, compared to western parts of Mongolia such as the Mongolian Altay, Gobi Altay, Khangay, and Khovsgol, glacial history of the Khentey Mountains is poorly understood. To address this, and permit comparison of the Khentey glacier–climate record with other alpine regions in Mongolia, we performed geomorphological mapping and cosmogenic 10Be surface‐exposure dating in two glaciated regions of the Khentey Mountains: Yestii and Khagiin Khar. Specifically, we measured 10Be in 34 samples collected from five moraine sequences, which, together with morphostratigraphy, correspond to four main glacial stages: (i) The My1 terminal moraine sequence for Yestii (21.0±4.9 ka) and the Mk1 moraine for Khagiin Khar (19.6±2.6 ka), both of which represent the Last Glacial Maximum; (ii) the Lateglacial Mk2 moraine, dated to 16.0±3.5 ka; (iii) the Mk3 moraine, dated to either 17.6±7.0 ka (Lateglacial) or 12.1±1.1 ka (Younger Dryas); and (iv) the currently undated Mk4 moraine (~2200 m a.s.l.), to which we assign a Holocene age. Our results suggest that the timing of maximum glacier extent in Mongolia was regionally variable. In the Khentey Mountains, maximum glaciation occurred during Marine Isotope Stage (MIS) 2, whereas the maximum occurred during MIS 3 in Khangay and Khovsgol and during MIS 4 in the Altay. The MIS 2 glacial maximum in the Khentey Mountains coincided with the global sea level minimum during the Last Glacial Maximum, and was followed by at least three glacial re‐advances during the Lateglacial to possibly the Holocene.  相似文献   

16.
Approximately 13 km south of Gulf Shores, Alabama (United States), divers found in situ baldcypress (Taxodium distichum) stumps 18 m below the ocean surface. These trees could have only lived when sea level fell during the Pleistocene subaerially exposing the tectonically stable continental shelf. Here we investigate the geophysical properties along with microfossil and stratigraphical analyses of sediment cores to understand the factors that lead to this wood’s preservation. The stumps are exposed in an elongated depression (~100 m long, ~1 m deep) nested in a trough of the northwest–southeast trending Holocene sand ridges and troughs with 2–5 m vertical relief and ~0.5 km wavelength. Radiocarbon ages of the wood were infinite thus optically stimulated luminescence (OSL) dating was used to constrain the site’s age. Below the Holocene sands (~0.1–4 m thick), separated by a regional erosional unconformity, are Late Pleistocene mud-peat (72±8 ka OSL), mud-sand (63±5, 73±6 ka OSL), and palaeosol (56±5 ka OSL) facies that grade laterally from west to east, respectively. Foraminiferal analysis reveals the location of the terrestrial-marine transitional layer above the Pleistocene facies in an interbedded sand and mud facies (3940±30 (1σ) 14C a BP), which is part of a lower shoreface or marine-dominated estuarine environment. The occurrence of palaeosol and swamp facies of broadly similar ages and elevation suggests the glacial landscape possessed topographic relief that allowed wood, mud and peats to be preserved for ~50 ka of subaerial exposure before transitioning to the modern marine environment. We hypothesize that rapid sea-level rise occurring ~60 or ~40 ka ago provided opportunities for local flood-plain aggradation to bury the swamp thus preserving the stumps and that other sites may exist in the northern Gulf of Mexico shelf.  相似文献   

17.
Two sand wedge structures and their host sediments, from Jonzac in SW France, were successfully dated using Optically Stimulated Luminescence (OSL) measurements on both small aliquots and single grains of quartz from the 180–212 μm size fraction. One of the sand wedges clearly contains primary infilling. However, grain‐size analysis and field observations do not clearly indicate whether the other feature represents a primary sand wedge or a composite sand wedge with primary and secondary infilling. OSL results and the geological setting justify using the Central Age Model (CAM) for the calculation of age estimates. Grain‐size analysis and detailed investigations of OSL results revealed the contamination of one sand wedge sample with host sediment. However, age calculation using the Finite Mixture Model (FMM) provided what is considered to be a reliable age estimate for the contaminated sample. The age estimates for all samples correspond to Marine Isotope Stage (MIS) 3. While fine‐grained sediments were deposited in the middle of MIS 3 (c. 43–55 ka), the sand wedges unexpectedly correspond to the end of this period (c. 33 ka) or the onset of MIS 2 (c. 27 ka). The sand wedges were probably formed during intense but short cold periods, possibly correlated with a Heinrich event (H2 and/or H3). The results help us to assess how effective luminescence dating is on sand wedges and the limitations involved in correlating sand wedge ages with Heinrich events, and contribute to the debate on the timing of cryogenic formation processes and the permafrost distribution in SW France.  相似文献   

18.
The lacustrine deposits of lakes in arid central Asia (ACA) potentially record palaeoclimatic changes on orbital and suborbital time scales, but such changes are still poorly understood due to the lack of reliable chronologies. Bosten Lake, the largest freshwater inland lake in China, is located in the southern Tianshan Mountains in central ACA. A 51.6‐m‐deep lacustrine succession was retrieved from the lake and 30 samples from the succession were used for luminescence dating to establish a chronology based on multi‐grain quartz OSL and K‐feldspar post‐IR IRSL (pIRIR290) dating. Quartz OSL ages were only used for samples from the upper part of the core. The K‐feldspar luminescence characteristics (dose recovery test, anomalous fading test, first IR stimulation temperature plateau test) are satisfactory and from the relationship amongst the quartz OSL, IR50 and pIRIR290 doses we infer that the feldspar signals are likely to be well bleached at deposition. Bacon age‐depth modelling was used to derive a chronology spanning the last c. 220 ka. The chronology, lithology and grain‐size proxy record indicate that Bosten Lake formed at least c. 220 ka ago and that lake levels fluctuated frequently thereafter. A stable deep lake occurred at c. 220, 210–180, c. 165, 70–60, 40–30 and 20–5 ka, while shallow levels occurred at c. 215, 180–165, 100–70, 60–40 and 30–20 ka. Bosten Lake levels decreased by at least ~29 m and possibly the lake even dried up between c. 160 and c. 100 ka. We suggest that the water‐level fluctuations in the lakes of ACA may not respond directly to climatic changes and may be affected by a number of complex factors.  相似文献   

19.
Lake Ladoga hosts preglacial sediments, although the Eurasian ice sheet overrode the area during the LGM. These sediments were first discovered by a seismic survey and are investigated using a 22.75‐m‐long core. Its upper 13.30 m comprise Holocene and Lateglacial sediments separated from the lower 11.45 m of preglacial sediments by a hiatus. They consist of highly terrigenous lacustrine sediments, which according to OSL dating, were deposited during an early stage of the last ice age (MIS 5). The palynological data allow a first reconstruction of the Early Weichselian environmental history for northwestern Russia. Birch and alder forests with broad‐leaved taxa dominated during MIS 5d (c. 118–113 ka), suggesting a climate more favourable than in the Holocene. A high content of well‐sorted sands and poorly preserved palynomorphs indicates a shallow‐water environment at least temporarily. More fine‐grained sediments and better preserved organic remains suggest deeper water environments at the core location during MIS 5c (c. 113–88 ka). Pine and spruce became dominant, while broad‐leaved taxa started to disappear, especially after c. 90 ka, pointing to a gradual climate cooling. An increase in open herb‐dominated habitats at the beginning of MIS 5b (c. 88–86 ka) reflects a colder and dryer climate. However, later (c. 86–82 ka) pine and spruce again became more common. Birch and alder forests dominated in the area c. 82–80 ka (beginning of MIS 5a). Although open treeless habitats also became more common at this time, a slight increase in hazel may point to somewhat warmer climate conditions coinciding with the beginning of MIS 5a. The studied sediments also contain numerous remains of freshwater algae and cysts of marine and brackish‐water dinoflagellates and acritarchs documenting that the present lake basin was part of a brackish‐water basin during the Early Weichselian, probably as a gulf of the Pre‐Baltic Sea.  相似文献   

20.
Considerable uncertainty surrounds the timing of glacier advance and retreat during the Younger Dryas or Loch Lomond Stade (LLS) in the Scottish Highlands. Some studies favour ice advance until near the end of the stade (c. 11.7 ka), whereas others support the culmination of glacier advance in mid‐stade (c. 12.6–12.4 ka). Most published 10 Be exposure ages reported for boulders on moraines or deglacial sites post‐date the end of the LLS, and thus appear to favour the former view, but recalibration of 33 10 Be ages using a locally derived 10 Be production rate and assuming rock surface erosion rates of zero to 1 mm ka?1 produces exposure ages 130–980 years older than those originally reported. The recalibrated ages are filtered to exclude anomalous data, and then employed to generate aggregate probability density distributions for the timing of moraine deposition and deglaciation. The results suggest that the most probable age for the timing of the deposition of the sampled outermost moraines lies in the interval 12.4–12.1 ka or earlier. Deglacial ages obtained for sites inside Loch Lomond Stadial glacier limits imply that glaciers at some or all of the sampled sites were retreating prior to 12.1 ka. Use of aggregated data does not exclude the possibility of asynchronous glacier behaviour at different sites, but confirms that some glaciers reached their maximum limits and began to retreat several centuries before the rapid warming that terminated the LLS at 11.7–11.6 ka, consistent with the retrodictions of recent numerical modelling experiments and with geomorphological evidence for gradual oscillatory ice‐margin retreat under stadial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号