首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Locating and quantifying overpressures are essential to understand basin evolution and hydrocarbon migration in deep basins and thickly sedimented continental margins. Overpressures influence sediment cohesion and hence fault slip in seismically active areas or failure on steep slopes, and may drive catastrophic fluid expulsion. They also represent a significant drilling hazard. Here, we present a method to calculate the pore pressure due to disequilibrium compaction. Our method provides an estimate of the compaction factor, surface porosity and sedimentation rate of each layer in a sediment column using a decompaction model and the constraints imposed by seismic data and geological observations. For a range of surface porosities, an ad hoc iterative equation determines the compaction factor that gives a calculated layer thickness that matches the observed thickness within a tolerance. The surface porosity and compaction factor are then used to obtain a density profile and a corresponding estimate of P‐wave velocity (Vp). The selected parameters are those that give a good match with both the observed and calculated layer thicknesses and Vp profiles. We apply our method to the centre of the Eastern Black Sea Basin (EBSB), where overpressures have been linked to a low‐velocity zone (LVZ) at ca. 5500–8500 m depth. These overpressures were generated by the relatively high sedimentation rate of ca. 0.28 m ka?1 of the low permeability organic‐rich Maikop formation at 33.9–20.5 Ma and an even higher sedimentation rate of ca. 0.85 m ka?1 at 13–11 Ma. We estimate a maximum pore pressure of ca. 138 MPa at ca. 8285 m depth, associated with a ratio of overpressure to vertical effective stress in hydrostatic conditions () of ca. 0.7. These values are lower than those presented in a previous study for the same area.  相似文献   

2.
Interactions between fold and thrust belt deformation, foreland flexure and surface mass transport are investigated using a newly developed mathematical model incorporating fully dynamic coupling between mechanics and surface processes. The mechanical model is two dimensional (plane strain) and includes an elasto‐visco‐plastic rheology. The evolving model is flexurally compensated using an elastic beam formulation. Erosion and deposition at the surface are treated in a simple manner using a linear diffusion equation. The model is solved with the finite element method using a Lagrangian scheme with marker particles. Because the model is particle based, it enables straightforward tracking of stratigraphy and exhumation paths and it can sustain very large strain. It is thus ideally suited to study deformation, erosion and sedimentation in fold–thrust belts and foreland basins. The model is used to investigate how fold–thrust deformation and foreland basin development is influenced by the non‐dimensional parameter , which can be interpreted as the ratio of the deformation time scale to the time scale for surface processes. Large values of imply that the rate of surface mass transport is significantly greater than the rate of deformation. When , the rates of surface processes are so slow that one observes a classic propagating fold–thrust belt with well‐developed wedge top basins and a largely underfilled foreland flexural depression. Increasing causes (1) deposition to shift progressively from the wedge top into the foredeep, which deepens and may eventually become filled, (2) widespread exhumation of the fold–thrust belt, (3) reduced rates of frontal thrust propagation and possible attainment of a steady‐state orogen width and (4) change in the style and dynamics of deformation. Together, these effects indicate that erosion and sedimentation, rather than passively responding to tectonics, play an active and dynamic role in the development of fold–thrust belts and foreland basins. Results demonstrate that regional differences in the relative rates of surface processes (e.g. because of different climatic settings) may lead to fold–thrust belts and foreland basins with markedly different characteristics. Results also imply that variations in the efficiency of surface processes through time (e.g., because of climate change or the emergence of orogens above sea level) may cause major temporal changes in orogen and basin dynamics.  相似文献   

3.
This study focuses on the upper part of the Muskegon River system in north-central Lower Michigan and is the first to reconstruct the post-glacial history of fluvial landform development in the core of North America's Great Lakes region. Results indicate that the upper Muskegon River valley contains four alluvial terraces and numerous paleomeanders. Radiocarbon dating of peats within these old channels provides a good chronology for stream behavior and landform development. The T-4 terrace is a paired Pleistocene outwash/lacustrine surface that probably formed about 12,500 years ago. The T-3 terrace is a fill-strath surface that was cut between about 12,000 and perhaps 9500 years ago. The geometry of macromeanders on this surface suggests that stream discharge was  8 times greater than during the Holocene.The Pleistocene/Holocene transition is marked by a major period of downcutting that likely began as the climate warmed/dried and sediment yield diminished. This period of downcutting potentially lasted through the drier middle Holocene, creating a 6-m-high escarpment in the valley. The Muskegon River then began to aggrade when the climate became wetter. Subsequently the river again incised, creating the paired T-2 terrace, about 3400 years ago when the climate became still wetter. T-2 paleomeanders indicate that stream discharge at this time was consistent with the modern river. In the past 2500 years, the stream has constructed a poorly defined complex of T-1 terraces. These surfaces likely formed due to complex response associated with more variable climate. This study demonstrates that the upper Muskegon River has a similar post-glacial history as streams on deglacial and periglacial landscapes elsewhere in the world.  相似文献   

4.
A palaeomagnetic study has been carried out on late Palaeozoic rocks exposed in the Sierras Australes thrust and fold belt of Buenos Aires province (Argentina), in the early Permian red sandstones and clay siltstones of the Tunas Formation. The sections sampled are exposed in the eastern parts of the belt, in Sierra de las Tunas (north) and Sierra de Pillahuincó (south). More than 300 specimens were collected from 25 sites, in three localities with different structural attitudes. Demagnetization at high temperatures isolated a characteristic remanence at 20 sites. All the localities have a reverse characteristic remanence, suggesting that the magnetization was acquired during the Kiaman interval. Stepwise tectonic tilt correction suggests that the Tunas Formation in these localities acquired its magnetization during folding in early Permian times. Palaeomagnetic poles were computed for each locality based on partial tilt-corrected remanence directions. Taking into account the fact that these localities are close to one another and that the rocks are all of reverse polarity, a group syntectonic palaeomagnetic pole called Tunas was calculated: longitude: 13.9°E, latitude: 63.0°S; A 95 = 5.4°, K = 39.7, N = 19. This pole is consistent with previously calculated poles from South America assigned to the early Permian. In age it corresponds to the early Permian San Rafaelic tectonic phase of the Sierras Australes. Independent geological evidence indicates that the Tunas Formation underwent syndepositional deformation. We conclude that the Tunas Formation was deposited, deformed and remagnetized, all during the early Permian.  相似文献   

5.
Urban Heat Island (UHI) refers to a phenomenon whereby urban areas experience higher temperatures compared to the surrounding areas. Remote sensing-based Land Surface Temperature (LST) measurements can be utilized to measure UHI. This study emphasized on geostatistical remote sensing-based hot spot analysis ( G i * ) of UHI in Dhaka, Bangladesh as a way of examining the influences of Land Use Land Cover (LULC) on UHI from 1991 to 2015. Landsat 5 and 7 satellite-based remote sensing indices were used to explore LULC, UHI and environmental footprints during the study period. The Urban Compactness Ratio (CoR) was used to calculate the urban form and augmented characteristics. The Surface Urban Heat Island (SUHI) intensity (ΔT) was also used to explore the effects of UHI on the surrounding marginal area. Based on our investigations into LULC, we discovered that around 71.34 per cent of water bodies and 71.82 percent of vegetation cover decreased from 1991 to 2015 in Dhaka city. Contrastingly, according to CoR readings, 174.13 km2 of urban areas expanded by 249.77 per cent. Our hot spot analysis also revealed that there was a 93.73 per cent increase in hot concentration zones. Furthermore, the average temperature of the study area had increased by 3.26°C. We hope that the methods and results of this study can contribute to further research on urban climate.  相似文献   

6.
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to  400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.  相似文献   

7.
Studies on the geomorphological evolution of the South American passive margin have been based on the pediplanation model, which predicts that its morphology is a response to regional uniform uplift and concomitant development of erosion surfaces. We combined remote sensing, geological mapping, lithostratigraphic and facies analyses, and luminescence dating in the Cariatá trough, northeastern Brazil, in order to determine how brittle tectonics and climate influenced colluviation and the shaping of local landforms in the Quaternary. Our work indicates that Cariatá is an asymmetrical trough  40 km long,  25 km wide, 250–550 m deep, and delimited by ENE–WSW-trending faults to the north and south. We recognized an ENE–WSW-oriented compression related to a strike-slip faulting regime, which corresponds to the present-day stress field in the region. This faulting event led to the deposition of colluvial fans, shed from adjacent uplifted crustal blocks, in a tectonically controlled depression. The colluvial succession is  45 m thick and presents two facies assemblages that filled the southern and, in particular, the northern borders of the trough: non-cohesive debrisflow and mudflow deposits. Optically stimulated luminescence dates of the sedimentary infill yielded ages at 224–128 ka and 45–28 ka, dominated by debrisflow and mudflow deposits, respectively. These ages may be over-estimated due to poor bleaching of colluvium, but they and our field data suggest that the margins of the trough were tectonically uplifted and eroded twice in the Late Pleistocene. The spasmodic colluvial accretion reflects the occurrence of high-magnitude, low-recurrence episodes probably associated with climate shifts in a semi-arid hillslope system. It follows that the present-day low-lying piedmont in which the Cariatá trough occurs is a juxtaposition of surfaces of various ages. This trough may have counterparts across the region. These conclusions do not corroborate the application of the cyclical pediplanation hypothesis in the area.  相似文献   

8.
青弋江上游泾县段阶地砾石层砾组结构及其沉积环境研究   总被引:1,自引:1,他引:0  
胡春生  吴立  杨立辉 《地理科学》2016,36(6):951-958
通过对青弋江上游泾县段阶地砾石层进行砾组分析,讨论阶地砾石层的沉积环境及其对青弋江发育的启示。结果表明:砾径以中砾和粗砾为主,砾石沉积时水动力条件较强,流速基本为2 m/s左右,最大可达到3.5 m/s,特别是T3砾石层形成时期;砾向在T3和T2砾石层形成时期分别为南南西(SSW)和南西西(SWW)方向,古流向变化不大,呈自南而北的基本流向;砾态以次圆和圆为主,其总含量超过70%,较高的磨圆度暗示砾石经历了较远距离的搬运;砾性主要有石英砂岩、砂岩、脉石英和石英岩,其总含量达到90%以上,且砾石物源区变化不显著;T2砾石层和T1砾石层是典型的河流沉积,而T3砾石层可能是河流沉积和泥石流沉积叠加作用的产物,并且T3砾石层的沉积特征对于分析古青弋江的发育有一定的启示作用。  相似文献   

9.
Terrestrial cosmogenic nuclide (TCN) 10Be surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at  11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modern stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2–3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions.  相似文献   

10.
黄山北麓青弋江发育研究   总被引:5,自引:0,他引:5  
青弋江位于黄山北麓,为长江下游最长的支流。野外考察发现青弋江泾县盆地段存在溪口剖面和城北剖面等2个天然剖面,共发育了1级洪积扇台地(P)和3级河流阶地(T3、T2和T1),并相应堆积了4级砾石层。通过对砾石层进行砾组分析,并借助电子自旋共振(ESR)测年和古地磁测年等方法,初步探讨了青弋江发育的年代、过程和成因。研究结论为:① 砾组分析表明青弋江T3阶地是青弋江的最老阶地,并且其砾石层是青弋江的最老砾石层;② 测年结果表明青弋江发育的年代区间为1300~900 ka,其中~1300 ka为青弋江发育的最早年代,而~900 ka则为青弋江发育的最晚年代;③ 青弋江发育于~1377 ka前的洪积扇辫状河,并先后经历了洪积扇及辫状河发育、辫状河下切、青弋江形成等阶段,即所谓的源于洪积扇辫状河的青弋江发育过程;④ 青弋江发育可能是降水增加和构造抬升共同作用的结果。该研究有助于为中国东部地区中小河流发育研究提供参考。  相似文献   

11.
Granitic regolith, developed in the Boulder Creek catchment and adjacent areas, records a history of deep weathering, some of which may predate Quaternary time. Field and well-log measurements of weathering, chemical denudation and rates of erosion derived from 10Be cosmogenic radionuclide (CRN) data help to quantify rates of landscape change in the post-orogenic Rocky Mountains. The density of oxidized, fractured bedrock ranges from 2.7 to about 2.2 g cm− 3, saprolite and grus have densities between 2.0 and 1.8 g cm− 3, and 30 soil samples averaged 1.6 ± 0.2 g cm− 3. Highly weathered regolith in 540 wells averages 3.3 m thick, mean depth to bedrock in 1661 wells is 7 m, and the weathered thickness exceeds 10 m in relatively large local areas east of the late Pleistocene glacial limit. Thickness of regolith shows no simple relationship to rock type or structure, local slope, or distance from channels. Catchments in the vicinity of the Boulder Creek have an average CRN erosion rate of 2.2 ± 0.7 cm kyr− 1 for the past 10,000 to 40,000 yr. Annual losses of cations and SiO2 vary from about 2 to 5 g m− 2 over a runoff range of 10 to nearly 160 cm.Using measured rates in simple box models shows that if a substantial fraction of void space is created by volume expansion in the weathering rock materials, 7 m of weathered rock materials could form in as little as 230 kyr. If density loss results mainly from chemical denudation and some volume expansion, however, the same weathering profile would take > 1340 kyr to form. Rates of erosion measured by CRN could be balanced by the rate of soil formation from saprolite if the annual solute loss from soil is 2.0 g m− 2 and 70% of the density decrease from saprolite to grus and soil results from strain. Saprolite, however, forms from oxidized bedrock at a far slower rate and rates of saprolite formation cannot balance soil and grus losses to erosion. The zone of thick weathered regolith is likely an eroding relict landscape. The undulating surface marked by relatively low relief and tors is not literally a topographic surface of Eocene, Oligocene or Miocene age unless it was covered with deposits that were removed in Pliocene or Quaternary time.  相似文献   

12.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

13.
Earthworks of assumed age and their initial and current morphologies provide an ideal basis for developing and testing models for long-term landform erosion. Inca agricultural terraces abandoned at  1532 A.D in the drylands of southern Peru may be used to document morphological changes since the abandonment. The objective of this research is to determine the erosion pattern and process to estimate the erosion rate.The development of rills and channels on the Inca agricultural terraces is evidence for erosion by wash processes on slopes where the anchoring effect of vegetation is absent and loose material is available for removal. The pattern and amount of erosion from 1532–2005 A.D. is estimated by comparing elevation models of the observed morphology and reconstructed models of the original morphology of the Inca terraces. The results show that in areas of sediment accumulation surface elevation increased up to 0.5 m. Elevation lowering on the terrace treads was 0.7 m at maximum, and a temporally and spatially averaged lowering rate was 0.094 mm yr− 1. This gives insights about how the rate of erosion occurs on currently disturbed lands in arid environments where soil resources are scarce and lands are prone to desertification.  相似文献   

14.
15.
Surface crusts and seals can form from a variety of processes, both physical and biological, and have the potential to alter runoff and erosion, especially in regions with low vegetation covers. Despite the obvious links between seals and crusts these features have rarely been considered together. This study uses rainfall simulation experiments to investigate interrill soil crust and seal development in response to structural (or raindrop-impact-induced) and depositional (or runoff-induced) processes on a semiarid piedmont in southern New Mexico, USA, which has undergone substantive vegetation change (replacement of grasses by shrubs) over the last 100 years. The study design incorporates six double-paired runoff plots divided into four subplots, each of which was exposed to three rainfall simulation events. Crust development on these plots was assessed using penetration-resistance measurements while seal development was assessed using runoff coefficients. The penetration-resistance data indicate that subplots directly exposed to raindrop impacts (uncovered plots) have crusts that are  40% stronger than those positioned beneath a mesh cover (covered plots) that intercepts the kinetic energy of the rainfall. The crusts exposed to raindrop-impacts increased in strength following each simulation, whereas the crusts on the covered surfaces reached a plateau after two events.Runoff data indicate that seal development does not directly mirror crust formation. Runoff coefficients increased after each rainfall simulation event but were not significantly different between the covered and uncovered plots. Rather, the presence of stone lags or litter on the soil surface influenced the relation between runoff and seal development. Sediment yields from uncovered surfaces exceeded those from covered surfaces, indicating that raindrop impacts contribute to the delivery of sediment into flows. The results of this study indicate that the loss of vegetation cover on the piedmont has increased the extent of surface crust and seal development but that those crusts may be playing an important role in mitigating erosion.  相似文献   

16.
Using the Ar–Ar technique, we have obtained the first numerical dates for the Pleistocene volcanism along the valley of the River Ceyhan in the Düziçi area of southern Turkey, in the western foothills of the Amanos Mountains. Our six dates indicate a single abrupt episode of volcanism at  270 ka. We have identified a staircase of 7 fluvial terraces, at altitudes of up to  230 m above the present level of the Ceyhan. Using the disposition of the basalt as an age constraint, we assign these terraces to cold-climate stages between marine oxygen isotope stages 16 and 2, indicating rates of fluvial incision, equated to surface uplift, that increase upstream through the western foothills of this mountain range at between 0.25 and 0.4 mm a− 1. Extrapolation of these uplift rates into the axis of the range suggests that the entire  2300 m of present-day relief has developed since the Mid-Pliocene, a view that we confirm using numerical modelling. Since  3.7 Ma the Amanos Mountains have formed a transpressive stepover along the northern part of the Dead Sea Fault Zone, where crustal shortening is required by the geometry. Using a physics-based technique, we have modelled the overall isostatic response to the combination of processes occurring, including crustal thickening caused by the shortening, erosion caused by orographic precipitation, and the resulting outward flow of mobile lower-crustal material, in order to predict the resulting history of surface uplift. This modelling suggests that the effective viscosity of the lower crust in this region is in the range  1–2 × 1019 Pa s, consistent with a Moho temperature of  590 ± 10 °C, the latter value being in agreement with heat flow data. This modelling shows that the nature of the active crustal deformation is now understood, to first order at least, in this key locality within the boundary zone between the African and Arabian plates, the structure and geomorphology of which have been fundamentally misunderstood in the past.  相似文献   

17.
Alluvium in dry lands is considered difficult to date by radiocarbon methods because of the paucity of organic matter. Although organic materials of sufficient size for conventional 14C dating are rare, wet sieving of alluvium in the Sonoran Desert yields sufficient organics for 14C measurements by accelerator mass spectrometry (AMS). Detrital charcoal from two Quaternary fluvial fill terraces on the western side of the Ajo Mountains yielded 14C ages of 14,880 ± 70 yr B.P. (CAMS-12408) for the Qt 1 terrace and 2490 ± 60 yr B.P. (CAMS-12414) and 2510 ± 60 yr B.P. (CAMS-12415) for the smaller inset Qt 2 terrace. These 14C ages are consistent with what is known about rates of soil development in the region. The earlier aggradation event appears to be supported by regional and possibly global climate change at about 14,000 14C yr B.P. The more recent aggradation event does not appear to be synchronous with periods of frequent paleofloods in the southwest. The offset between 14C and 36Cl ages for the same terraces provides a general indication of the time taken for the clasts to be transported to their current positions on the terraces. [Key words: soils, organic matter, 14C, 36Cl, Quaternary dating methods, piedmont, geomorphology, Sonoran Desert.]  相似文献   

18.
New sediment core data from a unique slow-sedimentation rate site in Lake Tanganyika contain a much longer and continuous record of limnological response to climate change than have been previously observed in equatorial regions of central Africa. The new core site was first located through an extensive seismic reflection survey over the Kavala Island Ridge (KIR), a sedimented basement high that separates the Kigoma and Kalemie Basins in Lake Tanganyika.Proxy analyses of paleoclimate response carried out on core T97-52V include paleomagnetic and index properties, TOC and isotopic analyses of organic carbon, and diatom and biogenic silica analyses. A robust age model based on 11 radiocarbon (AMS) dates indicates a linear, continuous sedimentation rate nearly an order of magnitude slower here compared to other core sites around the lake. This age model indicates continuous sedimentation over the past 79 k yr, and a basal age in excess of 100 k yr.The results of the proxy analyses for the past 20 k yr are comparable to previous studies focused on that interval in Lake Tanganyika, and show that the lake was about 350 m lower than present at the Last Glacial Maximum (LGM). Repetitive peaks in TOC and corresponding drops in 13C over the past 79 k yr indicate periods of high productivity and mixing above the T97-52V core site, probably due to cooler and perhaps windier conditions. From 80 through 58 k yr the 13C values are relatively negative (–26 to –28 l) suggesting predominance of algal contributions to bottom sediments at this site during this time. Following this interval there is a shift to higher values of 13C, indicating a possible shift to C-4 pathway-dominated grassland-type vegetation in the catchment, and indicating cooler, dryer conditions from 55 k yr through the LGM. Two seismic sequence boundaries are observed at shallow stratigraphic levels in the seismic reflection data, and the upper boundary correlates to a major discontinuity near the base of T97-52V. We interpret these discontinuities to reflect major, prolonged drops in lake level below the core site (393 m), with the lower boundary correlating to marine oxygen isotope Stage 6. This suggests that the previous glacial period was considerably cooler and more arid in the equatorial tropics than was the last glacial period.  相似文献   

19.
We have investigated secondary influences on the noble gas budget in rim and interior pairs of three Martian meteorites from Antarctica: the lherzolitic shergottites Y000027 and Y000097, and the nakhlite Y000593. Three factors have been found to influence the original Martian noble gas budget: shock metamorphic overprint, cosmic irradiation, and terrestrial weathering. The 3He/4He ratio of the shergottites is between 0.189 and 0.217, which indicates almost complete loss of radiogenic 4He. This is expected from the high shock pressure observed in the shergottite samples. The concentration of 4He in these shergottite samples ranges from 33.8 to 39.4 × 10−8 ccSTP/g. 22Ne in the shergottites is on the order of 14 × 10−9 ccSTP/g. The nakhlite has 800 × 10−8 ccSTP/g 4He and 26 × 10−9 ccSTP/g 22Ne. An indication for solar cosmic ray contribution to the neon budget can be found in the shergottites. As Y000027 and Y000097 are reported to be paired we conclude the cosmic ray exposure (CRE) age T(3+21) of this shergottite to be 4.41 ± 0.54 Ma. For the nakhlite Y000593 T(3+21) is 11.8 ± 0.3 Ma. Heavy noble gas concentrations show large differences between rim and interior samples with the rim samples having 1.3–2.9, 1.7–38, and 1.4–20 times as much 36Ar, 84Kr, and 132Xe, respectively. The enrichment of heavy noble gases in the rim samples indicates severe terrestrial contamination. The relation between 129Xe/132Xe and 84Kr/132Xe in the rim samples shows that the incorporation mechanism caused elemental fractionation of Kr and Xe to the extent that in the Y000027 shergottite samples any Martian signature is completely masked by terrestrial contamination, if the total is taken. Only the 1400 °C steps show clear evidence for Martian atmosphere. The Y000593 nakhlite interior sample, on the other hand, shows low 84Kr/132Xe in relation to 129Xe/132Xe, which is characteristic for fractionated Martian atmosphere observed in nakhlites.  相似文献   

20.
Nicola J. Litchfield   《Geomorphology》2008,99(1-4):369-386
In order to make robust predictions of future coastal processes and hazards, historical rates of coastal processes such as coastal erosion need to be put into a long-term (Holocene) context. In this study a methodology is proposed that uses fluvial terraces to construct longitudinal profiles which can be projected offshore to infer paleo-coastline positions. From these positions, an average Holocene coastal erosion rate can be calculated. This study also shows how constraints can be placed on sea level changes and Late Pleistocene uplift rates using fluvial terraces, and by assuming the latter has been constant since  55–37 ka, these constraints feedback into the coastal erosion rate calculations. For the northwestern Hawke Bay (North Island, New Zealand) coastline, Late Pleistocene uplift rates of 0.6 ± 0.2, 0.6 ± 0.2, and − 0.1 ± 0.1 (i.e., stable or subsiding) mm/yr have been determined for the Waikari, Mohaka, and Waihua River mouths, respectively. These rates are consistent with previous interpretations of subsidence to the northeast and uplift being the result of regional, subduction-related processes. A Holocene coastal erosion rate of 0.5 ± 0.1 m/yr was determined for the Waikari River mouth, which is at the higher end of the calculated historical ( 1880–1980) rates (0.02–0.5 m/yr). If this difference is significant, then two possible reasons for this difference are: (i) the historical rate is affected by events such as the 1931 Napier earthquake, and (ii) the Holocene rate is the average of a steadily declining rate over the last 7.3 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号