首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang, S., Liu, X., Sun, J., Yuan, L., Sun, L. & Wang, Y. 2011: A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard. Boreas, Vol. 40, pp. 468–480. 10.1111/j.1502‐3885.2010.00198.x. ISSN 0300‐9483 The Arctic constitutes a unique and important environment with a significant role in the dynamics and evolution of the earth system. Arctic lake sediments, which accumulate slowly over time, contain abundant information about the biological communities that lived within the water body, as well as in the surrounding catchment. In this study, we collected a sediment core from Ny‐Ålesund, Svalbard, performed multi‐proxy analyses on sediment pigments, mineral magnetic susceptibility, various sediment quality (i. e. organic matter content, CaCO3 content, carbon and nitrogen isotope), and diatom composition, and reconstructed the history of ecosystem responses to environmental variations, especially regarding aquatic productivity and lake catchment surface processes. Ny‐Ålesund has undergone distinct ecological and climatic changes. During the Little Ice Age, the cold climate was unfavourable for the growth of lake algae, and therefore the lake primary productivity declined. After about AD 1890 and during the 20th century, the warming climate and reduced ice cover led to rapid lithological change and growth of lake algae, enhanced lake primary productivity, and increased input of nutrients derived from increased chemical weathering into the lake. The lake ecosystem on Ny‐Ålesund has had rapid responses to climatic and environmental changes in the Arctic.  相似文献   

2.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

3.
The oxygen and carbon stable isotope composition of Viviparus diluvianus shells was determined in the palaeolakes of the Holsteinian interglacial (MIS 11) in eastern Poland: the Ortel Królewski, Hrud, Ossówka, Roskosz and Szymanowo lakes. The occurrence of V. diluvianus covers the Taxus zone, the so‐called intra‐interglacial cooling period (Pinus‐Larix zone), the climatic optimum (Carpinus‐Abies zone) and the post‐optimal period with an undefined pollen zone. The isotope record of V. diluvianus shells allowed palaeoclimate and palaeoenvironmental reconstructions. δ18O and δ13C vary from −8.7‰ in the post‐optimal period to −4.8‰ in the optimal period, and from −10.6‰ at the beginning of the Taxus zone to −4.2‰ at the climatic optimum, respectively. A positive correlation of the isotope curves indicates closed‐water bodies, and only at Roskosz was some occasional overflow inferred. Higher oxygen isotopes correspond to an increase in temperature and/or enhanced evaporation, which is well marked in the Carpinus‐Abies zone, whereas samples enriched in 13C are correlated with periods demonstrating a lower water level and higher productivity in the lakes. Episodes of lake shallowing and dense aquatic vegetation occurred in the Pinus‐Larix zone and during the climatic optimum. The isotope ratios for the climatic optimum significantly exceed those of the other periods, thus pointing to warmer conditions. An estimation of relative changes of average summer temperatures using the δ18O/temperature gradient yielded variation of 1–2 °C within the lakes. Absolute temperature reconstructions indicate the effects of specific local conditions. Hence, V. diluvianus shells offer a reliable proxy in qualitative studies of interglacial lake records.  相似文献   

4.
The elemental shell chemistry of two freshwater snails, Viviparus diluvianus (Kunth) and Valvata piscinalis (Müller) was studied for palaeoenvironmental purposes. The shells were collected from lake sediments from five Holsteinian (Marine Isotope Stage 11) sites in eastern Poland (Ossówka, Hrud II, Roskosz, Ortel Królewski and Szymanowo) and analysed for Ca, Mg, Sr, Mn and Fe. The Fe/Mn molar ratio was used as a redox indicator, with lower values (and high Mn concentrations) pointing to suboxic conditions. These occurred in the beginning of the Taxus zone and during the transition between the Taxus and Pinus‐Larix zones at Ortel Królewski, and in the Holsteinian thermal maximum (CarpinusAbies zone) at Roskosz Lake. Strongly reducing conditions, indicated by increased Fe and Fe/Mn values, prevailed at Ortel Królewski palaeolake in the middle of the Taxus zone, in the Pinus‐Larix zone and in the upper part of the Roskosz sequence. Indicators of anoxia correlate with eutrophic conditions, enhanced productivity and oxygen consumption due to organic matter decay. The most distinct environmental changes in the records are comparable to other central and northern European records and to the main climatic oscillations during the Holsteinian, inferred from palynological, malacological and isotopic data.  相似文献   

5.
We present elemental concentrations and magnetic susceptibility data from a new 270‐cm‐long sediment core collected from the western part of palaeolake Babicora and infer millennial‐scale hydrological variations over the last 27 cal. ka in the western Chihuahua Desert. Variations in the available water content at the sediment–air interface of the watershed, lake salinity and lake productivity are inferred from values of the chemical index of alteration (CIA), CaCO 3 and Corg, respectively. An abrupt increase in runoff at c. 24 cal. ka BP appears correlative with the Heinrich 2 (H2) event. Except for this event, diminished runoff between c. 27 and 19 cal. ka BP indicates lower annual precipitation (weak summer rainfall) during the Last Glacial Maximum. The deposition of chemically altered sediments between c. 25 and 22 cal. ka BP results from the higher sediment–water interaction in the watershed owing to lower evaporation, cooler conditions and higher precipitation during the H2 event. Since 19 cal. ka BP the runoff has been characterized by high‐amplitude fluctuations with intervals of reduced precipitation identified at c. 19, 18, 17.5, 13–14, 11.5, 10, 7.5 and 3 cal. ka BP.  相似文献   

6.
The tephrostratigraphy of lake sediments in the Endinger Bruch provides the first robust age model for the Lateglacial palynological records of Vorpommern (north‐east Germany). Cryptotephra investigations revealed six tephra layers within sediments spanning from Open vegetation phase I (~Bølling, ~15 ka) to the Early Holocene Betula/Pinus forest phase (~Pre‐boreal, ~10.5 ka). Four of these layers have been correlated with previously described tephra layers found in sites across Europe. The Laacher See Tephra (Eifel Volcanic Field) is present in very high concentrations within sediments of the Lateglacial Betula (/Pinus) forest phase (~Allerød). The Vedde Ash (Iceland) lies midway through Open vegetation phase III (~Younger Dryas). The Hässeldalen and the Askja tephras (Iceland) lie in the Early Holocene Betula/Pinus forest phase (~Preboreal). These tephra layers have independently derived age estimates, which have been imported into the Endinger Bruch record. Furthermore, the layers facilitate direct correlation of the regional vegetation record with other palaeoenvironmental archives, which contain one or more of the same tephra layers, from Greenland to Southern Europe. In doing this, localized variations are confirmed in some aspects of the pollen stratigraphy; however, transitions between the main vegetation phases appear to occur synchronously (within centennial errors) with the equivalent environmental transitions observed in sites across the European continent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The fossil diatom record from the Hässeldala Port palaeolake, southeastern Sweden, offers an excellent opportunity to investigate how past climatic shifts influenced catchment conditions and early lake development. The record, dating to between 13 900 and 11 200 cal. a BP, covers a climatically dynamic period, starting with deglaciation followed by oscillations between warmer and colder climate states. The stratigraphical changes in the fossil diatom assemblages show a trend of less open‐water taxa and a successively more complex periphytic community as the lake shallows and the aquatic habitat structure develops. A diatom‐based reconstruction of lake water pH indicates a natural acidification trend early in the record from 13 900 to 12 500 cal. a BP. From 12 500 cal. a BP, coincident with the start of climate cooling, to 11 300 cal. a BP this trend is disrupted and lake waters become more alkaline. A cooler and drier climate most likely resulted in reduced soil organic matter build‐up as well as more frozen ground that impeded hydrological flow and decreased the input of dissolved organic matter and organic acids into the lake system. This study demonstrates the importance of the hydrological system as a link between terrestrial and aquatic ecosystems during early lake ontogeny.  相似文献   

8.
Palaeolimnological reconstruction of the aquatic environment in Lake Komo?any, based on sedimentology, geochemistry, and diatom and macrofossil analyses in the littoral part of the basin, reflects the mid‐Holocene history of the profile from its origin c. 9100 cal. a BP to its final transformation into an alder carr c. 4100 cal. a BP. The existence of the littoral zone can be best explained by increased precipitation during the studied interval. A stable diatom community, diatom‐inferred total phosphorus (50–80 μg L?1) and pH (~7.6), along with stable concentrations of elements associated with changes in its watershed indicate a long‐lasting, balanced aquatic environment with no major shifts attributable to external factors, including climate change. From c. 4700 cal. BP, there started a transition to terrestrial conditions, caused by either natural infilling processes or decreased precipitation. Alternation of remarkable dry/wet phases was not detected, in contrast to numerous analogous central European and supraregional records. Potential human impact was revealed through increases of Corylus and Populus pollen in the Neolithic. These anthropogenic changes in the lake surroundings had no detectable influence on the lacustrine environment. The gathered data suggest undramatic, balanced mid‐Holocene environmental and climatic settings for this central European locality, in direct contrast to numerous analogous studies from the region emphasizing fluctuations and shifts found in the sediment record.  相似文献   

9.
A palaeolimnological study of the annually laminated sediment sequence of Lake Xiaolongwan, a small maar lake in northeastern China, revealed distinct diatom responses to Lateglacial and early Holocene climate change between c. 19 700 and c. 10 700 a BP. In addition to analyses of diatom assemblage composition and of the biovolume accumulation rate of planktonic diatoms, geochemical (total nitrogen, total organic carbon) and physical (varve type and thickness) indicators were used to assess past environmental change. The diatom assemblages reveal a complex interplay between direct climate effects on the seasonal lake conditions (timing of ice cover break‐up, water column mixing and thermal stratification), catchment‐mediated effects on the concentrations of nutrients and dissolved organic carbon and, possibly, biotic interactions between the different algal groups present in the phytoplankton of Lake Xiaolongwan (diatoms, Chrysophyceae and Dinophyceae). The most remarkable changes in the aquatic system were: (i) a sharp increase in Asterionella formosa and the collapse of Handmannia balatonis at c. 14 780 a BP, corresponding with the onset of the Bølling – Allerød interstadial; (ii) a sharp rise in Stephanodiscus minutulus at c. 12 840 a BP, marking the start of the Younger Dryas event and (iii) when the lake phytoplankton became dominated by Dinophyceae instead of diatoms at c. 11 170 a BP, after the Pre‐Boreal oscillation. Two diatom assemblage zones characterize the Younger Dryas at Lake Xiaolongwan, suggesting a bipartite division of this stadial event as in several records from eastern Asia and Europe. The quasi‐synchronicity of these events with the oscillations described in the North Atlantic realm demonstrates that during the Lateglacial, North Atlantic dynamics at centennial and millennial time scales had a strong control upon the climate in northeastern China.  相似文献   

10.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

11.
The sediment record from the Piànico palaeolake in the southern Alps is continuously varved, spans more than 15 500 years, and represents a key archive for interglacial climate variability at seasonal resolution. The stratigraphic position of the Piànico Interglacial has been controversial in the past. The identification of two volcanic ash layers and their microscopic analysis provides distinct marker layers for tephrochronological dating of these interglacial deposits. In addition to micro‐facies analyses reconstructing depositional processes of both tephra layers within the lake environment, their mineralogical and geochemical composition has been determined through major‐element electron probe micro‐analysis on glass shards. Comparison with published tephra data traced the volcanic source regions of the Piànico tephras to the Campanian volcanic complex of Roccamonfina (Italy) and probably the Puy de Sancy volcano in the French Massif Central. Available dating of near‐vent deposits from the Roccamonfina volcano provides a robust tephrochronological anchor point at around 400 ka for the Piànico Interglacial. These deposits correlate with marine oxygen isotope stage (MIS) 11 and thus are younger than Early to Middle Pleistocene previously suggested by K/Ar dating and older than the last interglacial as inferred from macrofloral remains and the geological setting. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This study is an attempt to contribute to the data set of granulometric studies of sediments by measuring the sedimentary structure and texture, along with statistical parameters, of cold and arid lake systems. The palaeolake sequence along the River Indus on the western fringe of the Tibetan Plateau in Ladakh sector was selected in order to shed light on depositional environmental changes within the lake from post‐last glacial maximum to 5 ka. The River Indus was blocked by Lamayuru dam burst during the deglaciation, after the Last Glacial Maximum (LGM) and the subsequent increase in water level led to the formation of the Saspol–Khalsi palaeolake. This lake was ca 55 km in length, extending from Nimo to Khalsi, had a surface area of 370 km2 and was in existence until 5 ka. Two sections (Saspol and Khalsi) separated by an aerial distance of 35 km show a similar trend in sediment character due to their deposition in the same lake system. Grain‐size studies show a polymodal nature of sediments for both of the sections. However, sediments of the lower/downstream section (Khalsi) show a poorer degree of sorting, and coarser grain size and high energy depositional condition as compared with the sediments of Saspol section (positioned upstream) due to the location of the sections within the lake system. It was noted that, in high‐altitude arid regions, the sedimentological characteristics of large‐sized valley lakes may vary greatly, horizontally as well as vertically, owing to local stream input, inflow intensity from the catchment, outflow velocity of water channels, lithology and valley widths at the different sites.  相似文献   

13.
The laminated lacustrine succession at Ossówka in eastern Poland, which is largely the equivalent of MIS 11c, is amongst the best‐developed sites in Europe that cover this time period. Close inspection of the depth interval between 35.0 and 42.5 m in a 55‐m‐long core shows an environmental crisis at a depth of 40.95 m that lasted approximately 800 years and resulted in almost complete extinction of fir (Abies) from the communities existing at that time. Geochemical analyses reveal a simultaneous increase in sulphur in the deposits and a change in stable carbon and oxygen isotope ratios towards higher values, as well as a significant increase in the thickness of the laminae (up to 5 mm). Diatom studies show a clear increase in benthic diatoms in this interval, implying a decrease in water level. However, the predominance of such forms was probably caused by the elimination of planktonic diatoms by invasive blooms of Tetraedron, rather than lower lake levels, evidence of which was not noted in the pollen spectra. Hence, all these changes in the lake may have been triggered by the destruction of fir trees, the gradual decomposition of dead trunks and some inconspicuous geomorphological disturbances caused by wind throw. They resulted in a supply of micronutrients to the basin, an increase in varve thickness and rapid oscillations in the abundance and composition of algae and changes in the geochemical status of the lake. Rapid and significant drops in winter temperatures appear to be responsible for the extinction of fir. Alternatively, late frost in spring or hot and dry summers may have affected microsporophyll growth and the fir physiology as known from extant Abies populations. This environmental crisis, which is termed the Younger Holsteinian Oscillation (YHO), is noted at only a few sites. At Dethlingen (Germany), where hornbeam communities disappear at that time, a drop in summer temperatures is suggested to have been the driving force. We suggest that, at Ossówka, a drop in winter temperatures, late frost, or summer drought at the very start of the YHO are possible causes of the near‐extinction of fir.  相似文献   

14.
《Sedimentology》2018,65(4):1170-1212
Barrier‐island system evolution is controlled by internal and external forcing mechanisms, and temporal changes in these mechanisms may be recorded in the sedimentary architecture. However, the precise role of individual forcing mechanisms is rarely well understood due to limited chronological control. This study investigates the relative role of forcing conditions, such as antecedent topography, sea‐level rise, sediment supply, storms and climate changes, on the evolution of a Holocene wave‐dominated barrier‐island system. This article presents temporal reconstruction of the depositional history of the barrier‐island system of Rømø in the Wadden Sea in unprecedented detail, based on ground‐penetrating radar profiles, sediment cores, high‐resolution dating and palynological investigations, and shows that ca 8000 years ago the barrier island formed on a Pleistocene topographic high. During the initial phase of barrier evolution, the long‐term sea‐level rise was relatively rapid (ca 9 mm year−1) and the barrier was narrow and frequently overwashed. Sediment supply kept pace with sea‐level rise, and the barrier‐island system mainly aggraded through the deposition of a ca 7 m thick stack of overwash fans. Aggradation continued for ca 1700 years until sea‐level rise had decreased to <2 mm year−1. In the last ca 6000 years, the barrier prograded 4 to 5 km through deposition of a 10 to 15 m thick beach and shoreface unit, despite a long‐term sea‐level rise of 1 to 2 mm year−1. The long‐term progradation was, however, interrupted by a transgression between 4000 years and 1700 years ago. These results demonstrate that the large‐scale morphology of the Danish Wadden Sea shoreline influences the longshore sediment transport flux and the millennial‐scale dispersal of sediment along the shoreline. On decadal to centennial timescales, major storms induced intense beach and shoreface erosion followed by rapid recovery and progradation which resulted in a highly punctuated beach and shoreface record. Major storms contributed towards a positive sediment budget, and the sustained surplus of sediment was, and still is, instrumental in maintaining the aggradational–progradational state of the barrier island.  相似文献   

15.
The sedimentary records of Nulhegan Pond and Beecher Pond in the Nulhegan Basin of north‐eastern Vermont were analyzed to yield a history of environmental change since the latest Pleistocene. Shoreline landforms indicate that part of the Nulhegan Basin was inundated by Glacial Lake Nulhegan (GLN), which was impounded behind a dam of glacial sediment. Outwash derived from stagnant ice forms the bottom 176 cm of the Nulhegan Pond core. Fine‐grained inorganic sediment deposited between 13.4 and 12.2k cal a BP is interpreted as a deep‐water facies representing GLN, while coarser sediment from 12.2 to 11.8k cal a BP records draining of the glacial lake. Rapid, simultaneous increases in organic matter and biogenic silica signal the onset of productivity following the Younger Dryas. Beecher Pond formed c. 11.3k cal a BP through surface collapse over a buried ice block; buried stagnant ice may have persisted in the vicinity of the pond into the early Holocene. From 8.9 to 5.5k cal a BP, sediment in both lakes became coarser and richer in aquatic organic matter, suggesting a low‐water phase in which previously deposited lacustrine sediments were reworked and the littoral zone shifted basinward. Low water levels at this time are consistent with other records from Maine and southern Quebec, but contrary to records from ~325 km to the south. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The lithostratigraphic framework of Lake Van, eastern Turkey, has been systematically analysed to document the sedimentary evolution and the environmental history of the lake during the past ca 600 000 years. The lithostratigraphy and chemostratigraphy of a 219 m long drill core from Lake Van serve to separate global climate oscillations from local factors caused by tectonic and volcanic activity. An age model was established based on the climatostratigraphic alignment of chemical and lithological signatures, validated by 40Ar/39Ar ages. The drilled sequence consists of ca 76% lacustrine carbonaceous clayey silt, ca 2% fluvial deposits, ca 17% volcaniclastic deposits and 5% gaps. Six lacustrine lithotypes were separated from the fluvial and event deposits, such as volcaniclastics (ca 300 layers) and graded beds (ca 375 layers), and their depositional environments are documented. These lithotypes are: (i) graded beds frequently intercalated with varved clayey silts reflecting rising lake levels during the terminations; (ii) varved clayey silts reflecting strong seasonality and an intralake oxic–anoxic boundary, for example, lake‐level highstands during interglacials/interstadials; (iii) CaCO3‐rich banded sediments which are representative of a lowering of the oxic–anoxic boundary, for example, lake level decreases during glacial inceptions; (iv) CaCO3‐poor banded and mottled clayey silts reflecting an oxic–anoxic boundary close to the sediment–water interface, for example, lake‐level lowstands during glacials/stadials; (v) diatomaceous muds were deposited during the early beginning of the lake as a fresh water system; and (vi) fluvial sands and gravels indicating the initial flooding of the lake basin. The recurrence of lithologies (i) to (iv) follows the past five glacial/interglacial cycles. A 20 m thick disturbed unit reflects an interval of major tectonic activity in Lake Van at ca 414 ka bp . Although local environmental processes such as tectonic and volcanic activity influenced sedimentation, the lithostratigraphic pattern and organic matter content clearly reflect past global climate changes, making Lake Van an outstanding terrestrial archive of unprecedented sensitivity for the reconstruction of the regional climate over the last 600 000 years.  相似文献   

17.
We present a new reconstruction of summer sea‐surface salinity (SSS) over the past 15 000 years based on a diatom record from piston core 17940, located on the northern slope of the South China Sea (SCS). The reconstructed diatom‐based summer SSS values for the modern period are in accord with instrumental observations of summer SSS in the area. Here, the modern summer SSS is primarily controlled by river runoff, in particular from the Pearl River. The reconstruction presented in this study shows that the summer SSS varied between 33.3 and 34.2 psu over the past 15 000 years. The long‐term summer SSS trend closely followed the trend of the orbitally controlled solar insolation at 20°N, suggesting that orbital forcing was the dominant driver of changes in summer SSS in this area. Comparisons to speleothem δ18O data and studies of surface hydrography in the region suggest that changes in solar insolation affected the summer SSS through changes in the East Asian Monsoon and sea‐level changes associated with the last deglaciation. Univariate spectral analyses indicate that centennial‐scale oscillatory variations in summer SSS were superimposed on the long‐term trend. During the deglacial period (c. 12 000–9000 cal. a BP), the dominant periodicity was centred around 230–250 years, whereas a ~350‐year oscillation dominated in the period 2200–4500 cal. a BP. The balance of evidence suggests that these centennial‐scale changes in summer SSS may have been driven by solar‐induced changes in the East Asian Monsoon, but further evidence is needed to firmly establish this relationship.  相似文献   

18.
Decadal–centennial‐scale climate variability in coastal Antarctica remains poorly understood due to the limited number of highly resolved, well‐dated records. We present a 900‐year, decadal‐scale reconstruction based on sedimentary diatoms from Lake Abi in Lützow–Holm Bay, East Antarctica. Hydrological change is inferred from diatom ecological preferences in conjunction with an existing regional training set and implies that lake water specific conductivity, depth and nitrogen availability are the key drivers of diatom assemblage change. Lake Abi underwent a series of subtle environmental changes related to these environmental variables, possibly driven by changes in catchment snow melt and the duration of seasonal ice cover. Ordination is used to trace the major patterns of change in the diatom community, with notable shifts identified between 470 and 400 and at ~350 cal a BP (where present = CE 1950). The frequency of environmental variability at Lake Abi is broadly consistent with a record of the Interdecadal Pacific Oscillation during the last millennium, but contrasts with the apparent climate stability elsewhere in eastern Antarctica. Further research is required to constrain the limnological and ecological responses of lakes in coastal Antarctica to obtain more rigorous palaeoclimate reconstructions from these sites of immense potential.  相似文献   

19.
Seventy-four meters of a 95-m-long drill core recovered from the Lappäjarvi crater, a meteoritic impact site in western Finland, consisted of Pleistocene sediments. These sediments refer to two events of glacial deposition (Saalian and Weichselian) interrupted by non-glacigenic freshwater sedimentation. The sediments contain abundant redeposited Holsteinian and Tertiary microfossils, and possibly represent a pre-Weichselian interstadial not described from elsewhere in Finland. The pollen flora indicates a mixed primary arctic to subarctic succession that followed deglaciation, i.e. the beginning of an interglacial or interstadial event. The secondary pollen component derives from an eroded interglacial deposit that can be interpreted as Holsteinian, or possibly Eemian, in age. The vegetation succession interpreted from the primary pollen flora reflects a transition from arctic conditions to subarctic birch forests. The diatom flora indicates a primary succession that can be observed clearly in the uppermost gyttja layer in which the rich alkaliphilous diatom flora refers to more or less eutrophic conditions. The diatom flora of sediments below the gyttja layer is composed of a primary component and a secondary, redeposited or relict component. The diatoms encountered are interglacial or Tertiary in origin. The results show that meteorite craters can provide long, representative stratigraphic sequences in glacially eroded Precambrian shield areas such as Finland.  相似文献   

20.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号