首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Soil Carbon Sequestration in India   总被引:4,自引:0,他引:4  
R. Lal 《Climatic change》2004,65(3):277-296
With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. Thesoil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 ×1015 g= billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y.  相似文献   

2.
Tropical and subtropical areas comprise about 23% of the total land area (960 Mha) of China. Of this, about 40% is in forests, 20% is in cropland and another 20% is wasteland. Preliminary estimates of overall sources and sinks of carbon dioxide indicate that current agricultural activities probably constitute a net sink. We estimate that improved agricultural management and wasteland reclamation have the potential to sequester an additional 1.9 Tg CO2-C y-1 or more, largely through increasing productivity and C inputs to soils and conversion of wasteland to agricultural production. We estimate that current forestry activities in the region could sequester about 7 Tg CO2-C y-1. There is also a large potential for increased C sequestration and fossil fuel offsets by conversion of wasteland to fuel wood plantations, on the order of 30-70 Tg C y-1. A number of practices for increasing mitigation of CO2 emissions in the forestry and agricultural sectors are presented.  相似文献   

3.
R. Lal 《Climatic change》2001,51(1):35-72
There is a strong link between desertification of the drylands and emission of CO2 from soil and vegetation to the atmosphere. Thus, there is a strong need to revisit the desertification process so that its reversal can lead to C sequestration and mitigation of the accelerated greenhouse effect. Drylands of the world occupy 6.31 billion ha (Bha) or 47% ofthe earth's land area distributed among four climates: hyper-arid (1.0 Bha), arid (1.62 Bha), semi-arid (2.37 Bha) and dry sub-humid (1.32 Bha). Principal soils of drylands are Aridisols (1.66 Bha), Entisols (1.92 Bha), Alfisols (0.38 Bha), Vertisols (0.21 Bha) and others (1.27 Bha). Drylands occur in all continents covering 2.01 Bha in Africa, 2.00 Bha in Asia, 0.68Bha in Australia, 1.32 Bha in the Americas and 0.30 Bha in Europe. Desertification, degradation of soil and vegetation in drylands resulting from climatic and anthropogenic factors, affects about 1.137 Bha of soils and an additional 2.576 Bha of rangeland vegetation. The rate of desertification is estimated at 5.8 million hectares (Mha) per year. Desertification is a biophysical process (soil, climate and vegetation) driven by socio-economic and political factors. The principal biophysical processes involved, accelerated soil erosion by water and wind and salinization, reduce soil quality and effective rooting depth, decrease vegetal cover, reduce biomass productivity, and accentuate vagaries of climateespecially low and variable rainfall. Major consequences of desertification include reduction in the total soil C pool and transfer of C from soil to the atmosphere. Total historic loss of C due to desertification may be 19 to 29 Pg. The rate of C emission from drylands due to accelerated soil erosion is estimated at 0.227 to 0.292 Pg C y–1. Therefore, desertification control and restoration of degraded soils and ecosystems would improve soil quality, increase the pool of C in soil and biomass, and induce formation of secondary carbonates leading to a reduction of C emissions to the atmosphere. Desertification control and soil restoration are affected by establishing vegetative cover with appropriate species, improving water use efficiency, using supplemental irrigation including water harvesting, developing a strategy of integrated nutrient management for soil fertility enhancement, and adopting improved farming systems. Adoption of these improved practices also have hidden carbon costs, especially those due to production and application of herbicides and nitrogen fertilizers, pumping irrigation water etc. Restoration of eroded and salt-affected soils is important to C sequestration. Total potential of C sequestration in drylands through adoption of these measures is 0.9 to 1.9Pg C y–1 for a 25- to 50-year period beyond which the rate of sequestration is often too low to be important. In addition to enhancing productivity and food security, C sequestration in soils and ecosystem has numerous ancillary benefits. Therefore, identification and implementation of policies is important to facilitate adoption of recommended practices and for commodification of carbon.  相似文献   

4.
Potential Soil C Sequestration on U.S. Agricultural Soils   总被引:1,自引:0,他引:1  
Soil carbon sequestration has been suggested as a means to help mitigate atmospheric CO2 increases, however there is limited knowledge aboutthe magnitude of the mitigation potential. Field studies across the U.S. provide information on soil C stock changes that result from changes in agricultural management. However, data from such studies are not readily extrapolated to changes at a national scale because soils, climate, and management regimes vary locally and regionally. We used a modified version of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory method, together with the National Resources Inventory (NRI) and other data, to estimate agricultural soil C sequestration potential in the conterminous U.S. The IPCC method estimates soil C stock changes associated with changes in land use and/or land management practices. In the U.S., the NRI provides a detailed record of land use and management activities on agricultural land that can be used to implement the IPCC method. We analyzed potential soil C storage from increased adoption of no-till, decreased fallow operations, conversion of highly erodible land to grassland, and increased use of cover crops in annual cropping systems. The results represent potentials that do not explicitly consider the economic feasibility of proposed agricultural production changes, but provide an indication of the biophysical potential of soil C sequestration as a guide to policy makers. Our analysis suggests that U.S. cropland soils have the potential to increase sequestered soil C by an additional 60–70 Tg (1012g) C yr– 1, over present rates of 17 Tg C yr–1(estimated using the IPCC method), with widespread adoption of soil C sequestering management practices. Adoption of no-till on all currently annually cropped area (129Mha) would increase soil C sequestration by 47 Tg C yr–1. Alternatively, use of no-till on 50% of annual cropland, with reduced tillage practices on the other 50%, would sequester less – about37 Tg C yr–1. Elimination of summer fallow practices and conversionof highly erodible cropland to perennial grass cover could sequester around 20 and 28Tg C yr–1, respectively. The soil C sequestration potentialfrom including a winter cover crop on annual cropping systems was estimated at 40Tg C yr–1. All rates were estimated for a fifteen-yearprojection period, and annual rates of soil C accumulations would be expected to decrease substantially over longer time periods. The total sequestration potential we have estimated for the projection period (83 Tg C yr–1) represents about 5% of 1999total U.S. CO2 emissions or nearly double estimated CO2 emissionsfrom agricultural production (43 Tg C yr–1). For purposes ofstabilizing or reducing CO2 emissions, e.g., by 7% of 1990 levels asoriginally called for in the Kyoto Protocol, total potential soil C sequestration would represent 15% of that reduction level from projected 2008 emissions(2008 total greenhouse gas emissions less 93% of 1990 greenhouse gasemissions). Thus, our analysis suggests that agricultural soil C sequestration could play a meaningful, but not predominant, role in helping mitigate greenhouse gas increases.  相似文献   

5.
中国土壤有机碳库及其演变与应对气候变化   总被引:1,自引:0,他引:1  
通过综述和评价中国土壤,特别是农田土壤有机碳库(以下简称碳库)的现状与演变态势, 讨论其对我国应对气候变化的意义, 提出了我国土壤碳库及其演变与应对气候变化的基本国情是:1) 我国土壤背景碳储量较低且区域分布不均衡;2) 我国土壤固碳效应明显,未来固碳减排潜力显著;3) 技术和政策是实现和提高我国土壤碳汇、促进我国应对气候变化能力建设的重要途径。建议进一步加强对我国农田土壤固碳减排的研发投入, 完善农业应对气候变化的相关政策和鼓励措施体系,研究构建气候友好的新型农业,以期在提高和稳定农业生产力与应对气候变化能力上获得双赢。  相似文献   

6.
中国土壤有机碳库及其演变与应对气候变化   总被引:33,自引:0,他引:33  
 通过综述和评价中国土壤,特别是农田土壤有机碳库(以下简称碳库)的现状与演变态势, 讨论其对我国应对气候变化的意义, 提出了我国土壤碳库及其演变与应对气候变化的基本国情是:1) 我国土壤背景碳储量较低且区域分布不均衡;2) 我国土壤固碳效应明显,未来固碳减排潜力显著;3) 技术和政策是实现和提高我国土壤碳汇、促进我国应对气候变化能力建设的重要途径。建议进一步加强对我国农田土壤固碳减排的研发投入, 完善农业应对气候变化的相关政策和鼓励措施体系,研究构建气候友好的新型农业,以期在提高和稳定农业生产力与应对气候变化能力上获得双赢。  相似文献   

7.
This article reviews recent advances over the past 4 years in the study of the carbon-nitrogen cycling and their relationship to climate change in China. The net carbon sink in the Chinese terrestrial ecosystem was 0.19-0.26 Pg C yr-1 for the 1980s and 1990s. Both natural wetlands and the rice-paddy regions emitted 1.76 Tg and 6.62 Tg of CH 4 per year for the periods 1995-2004 and 2005-2009, respectively. China emitted~1.1 Tg N 2 O-N yr-1 to the atmosphere in 2004. Land soil contained~8.3 Pg N. The excess nitrogen stored in farmland of the Yangtze River basin reached 1.51 Tg N and 2.67 Tg N in 1980 and 1990, respectively. The outer Yangtze Estuary served as a moderate or significant sink of atmospheric CO 2 except in autumn. Phytoplankton could take up carbon at a rate of 6.4 ×10 11 kg yr-1 in the China Sea. The global ocean absorbed anthropogenic CO 2 at the rates of 1.64 and 1.73 Pg C yr-1 for two simulations in the 1990s. Land net ecosystem production in China would increase until the mid-21st century then would decrease gradually under future climate change scenarios. This research should be strengthened in the future, including collection of more observation data, measurement of the soil organic carbon (SOC) loss and sequestration, evaluation of changes in SOC in deep soil layers, and the impacts of grassland management, carbon-nitrogen coupled effects, and development and improvement of various component models and of the coupled carbon cycle-climate model.  相似文献   

8.
1980~2010年华北平原农田土壤有机碳的时空变化   总被引:2,自引:0,他引:2  
利用农业生态系统过程模型(Agricultural Production Systems s IMulator,APSIM),研究了1980~2010年间中国华北平原农田土壤有机碳(Soil Organic Carbon,SOC)的时空变化。模型验证结果表明,校正后的APSIM模型总体能够较好地模拟徐州、郑州和昌平3个长期定位试验站点中各处理下小麦和玉米的产量变化以及SOC的变化。区域模拟结果显示,1980~2010年间华北平原大部分农田SOC呈增加趋势,仅河北省的北部、山东省中部和东部部分地区农田SOC减少。华北平原总的农田面积约为24.52 Mha(1 ha=0.01 km2),其SOC密度的平均变化速率为0.35 Mg(C)ha-1 a-1,总的SOC贮量增加了约257.43 Tg。在京津冀地区、山东省以及河南省的农田中,SOC分别平均增加了102.05、59.82、95.56 Tg。SOC的增加,主要归功于过去几十年里外源碳投入量的增加。  相似文献   

9.
Increasing carbon sequestration in agricultural soils in Canada is examined as a possible strategy in slowing or stopping the current increase in atmospheric CO2 concentrations. Estimates are provided on the amount of carbon that could be sequestered in soils in various regions in Canada by reducing summerfallow area, increased use of forage crops, improved erosion control, shifts from conventional to minimal and no-till, and more intensive use of fertilizers. The reduction of summerfallow by more intensive agriculture would increase the continuous cropland base by 8.1% in western Canada and 6.8% in all of Canada. Although increased organic carbon (OC) sequestration could be achieved in all agricultural regions, the greatest potential gains are in areas of Chernozemic soils. The best management options include reduction of summerfallow, conversion of fallow areas to hay or continuous cereals, fertilization to ensure nutrient balance, and adoption of soil conservation measures. The adoption of these options could sequester about 50-75% of the total agricultural emissions of CO2 in Canada for the next 30 years. However, increased sequestration of atmospheric carbon in the soil is possible for only a limited time. Increased efforts must be made to reduce emissions if long-term mitigation is to be achieved.  相似文献   

10.
Increasing concentrations of CO2 and other greenhouse gases (GHG) in the Earth's atmosphere have the potential to enhance the natural greenhouse effect, which may result in climatic changes. The main anthropogenic contributors to this increase are fossil fuel combustion, land use conversion, and soil cultivation. It is clear that overcoming the challenge of global climate change will require a combination of approaches, including increased energy efficiency, energy conservation, alternative energy sources, and carbon (C) capture and sequestration. The United States Department of Energy (DOE) is sponsoring the development of new technologies that can provide energy and promote economic prosperity while reducing GHG emissions. One option that can contribute to achieving this goal is the capture and sequestration of CO2 in geologic formations. An alternative approach is C sequestration in terrestrial ecosystsems through natural processes. Enhancing such natural pools (known as natural sequestration) can make a significant contribution to CO2 management strategies with the potential to sequester about 290 Tg C/y in U.S. soils. In addition to soils, there is also a large potential for C sequestration in above and belowground biomass in forest ecosystems.A major area of interest to DOE's fossil energy program is reclaimed mined lands, of which there may be 0.63 ×106 ha in the U.S. These areas are essentially devoid of soil C; therefore, they provide an excellent opportunity to sequester C in both soils and vegetation. Measurement of C in these ecosystems requires the development of new technology and protocols that are accurate and economically viable. Field demonstrations are needed to accurately determine C sequestration potential and to demonstrate the ecological and aesthetic benefits in improved soil and water quality, increased biodiversity, and restored ecosystems.The DOE's research program in natural sequestration highlights fundamental and applied studies, such as the development of measurement, monitoring, and verification technologies and protocols and field tests aimed at developing techniques for maximizing the productivity of hitherto infertile soils and degraded ecosystems.  相似文献   

11.
Soil carbon densities and pools have been estimated for Russia. The estimate was derived from the generalized version of the soil map of the country at the scale 1:2.5 million (Fridland, 1988), which has been designated a countrywide standard. At the pre-developed stage, the soils in Russia captured about 373 Pg of organic and 75 Pg of inorganic C in the 0–2.0 m layer. Organic C is intensively accumulated in the topsoil. Inorganic C tends to concentrate in deep soils and is of non-pedogenic origin. The mass of organic matter is captured in the tundra, pre-tundra, and the northern and middle taiga of Russia. Anthropogenic impacts have led to a loss of about 5 Pg of C in the 0–1.0 m layer, which is some 2% of the total C content in Russian soils. From this amount, the topsoil of cropland has lost 2.6 Pg (20% of the initial C content in soils), including 0.4 Pg caused by erosion. The deep soil (0.3–1.0 m) of cropland has lost 1 Pg. Some 0.5 Pg of C are removed from the topsoil (7%) and 0.6 Pg by the deep soil from pastures. Forest soils have roughly lost about 0.3 Pg of C due to the decline of C input into soils caused by various disturbances. The predicted climate warming is expected to enhance the C sequestration by soil in Russia.  相似文献   

12.
CO2 Mitigation by Agriculture: An Overview   总被引:6,自引:0,他引:6  
Agriculture currently contributes significantly to the increase of CO2 in the atmosphere, primarily through the conversion of native ecosystems to agricultural uses in the tropics. Yet there are major opportunities for mitigation of CO2 and other greenhouse gas emissions through changes in the use and management of agricultural lands. Agricultural mitigation options can be broadly divided into two categories: (I) strategies to maintain and increase stocks of organic C in soils (and biomass), and (ii) reductions in fossil C consumption, including reduced emissions by the agricultural sector itself and through agricultural production of biofuels to substitute for fossil fuels.Reducing the conversion of new land to agriculture in the tropics could substantially reduce CO2 emissions, but this option faces several difficult issues including population increase, land tenure and other socio-political factors in developing countries. The most significant opportunities for reducing tropical land conversions are in the humid tropics and in tropical wetlands. An important linkage is to improve the productivity and sustainability of existing agricultural lands in these regions.Globally, we estimate potential agricultural CO2 mitigation through soil C sequestration to be 0.4-0.9 Pg C y-1, through better management of existing agricultural soils, restoration of degraded lands, permanent "set-asides" of surplus agricultural lands in temperate developed countries and restoration of 10-20% of former wetlands now being used for agriculture. However, soils have a finite capacity to store additional C and therefore any increases in C stocks following changes in management would be largely realized within 50-100 years.Mitigation potential through reducing direct agricultural emissions is modest, 0.01-0.05 Pg C y-1. However, the potential to offset fossil C consumption through the use of biofuels produced by agriculture is substantial, 0.5-1.6 Pg C y-1, mainly through the production of dedicated biofuel crops with a smaller contribution (0.2-0.3 Pg C y-1) from crop residues.Many agricultural mitigation options represent "win-win" situations, in that there are important side benefits, in addition to CO2 mitigation, that could be achieved, e.g. improved soil fertility with higher soil organic matter, protection of lands poorly suited for permanent agriculture, cost saving for fossil fuel inputs and diversification of agricultural production (e.g. biofuels). However, the needs for global food production and farmer/societal acceptability suggest that mitigation technologies should conform to: (I) the enhancement of agricultural production levels in parts of the world where food production and population demand are in delicate balance and (ii) the accrual of additional benefits to the farmer (e.g., reduced labor, reduced or more efficient use of inputs) and society at large.  相似文献   

13.
Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2–Eq yr–1 in1990 to 52 Tg CO2–Eq yr–1 in 2008. Adoption of thesink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2–Eq yr–1 (L), 42 TgCO2–Eq yr–1 (M) or 36 Tg CO2–Eq yr–1 (H). Among thesink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation andmanure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992).  相似文献   

14.
Previous research has demonstrated that soil carbon sequestration through adoption of conservation tillage can be economically profitable depending on the value of a carbon offset in a greenhouse gas (GHG) emissions market. However adoption of conservation tillage also influences two other potentially important factors, changes in soil N2O emissions and CO2 emissions attributed to changes in fuel use. In this article we evaluate the supply of GHG offsets associated with conservation tillage adoption for corn-soy-hay and wheat-pasture systems of the central United States, taking into account not only the amount of carbon sequestration but also the changes in soil N2O emission and CO2 emissions from fuel use in tillage operations. The changes in N2O emissions are derived from a meta-analysis of published studies, and changes in fuel use are based on USDA data. These are used to estimate changes in global warming potential (GWP) associated with adoption of no-till practices, and the changes in GWP are then used in an economic analysis of the potential supply of GHG offsets from the region. Simulation results demonstrate that taking N2O emissions into account could result in substantial underestimation of the potential for GHG mitigation in the central U.S. wheat pasture systems, and large over-estimation in the corn-soy-hay systems. Fuel use also has quantitatively important effects, although generally smaller than N2O. These findings suggest that it is important to incorporate these two effects in estimates of GHG offset potential from agricultural lands, as well as in the design of GHG offset contracts for more complete accounting of the effect that no-till adoption will have on greenhouse gas emissions.  相似文献   

15.
Terrestrial carbon pools in southeast and south-central United States   总被引:1,自引:0,他引:1  
Analyses of regional carbon sources and sinks are essential to assess the economical feasibility of various carbon sequestration technologies for mitigating atmospheric CO2 accumulation and for preventing global warming. Such an inventory is a prerequisite for regional trading of CO2 emissions. As a U.S. Department of Energy Southeast Regional Carbon Sequestration Partner, we have estimated the state-level terrestrial carbon pools in the southeast and south-central US. This region includes: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia. We have also projected the potential for terrestrial carbon sequestration in the region. Texas is the largest contributor (34%) to greenhouse gas emission in the region. The total terrestrial carbon storage (forest biomass and soils) in the southeast and south-central US is estimated to be 130 Tg C/year. An annual forest carbon sink (estimated as 76 Tg C/year) could compensate for 13% of the regional total annual greenhouse gas emission (505 Tg C, 1990 estimate). Through proper policies and the best land management practices, 54 Tg C/year could be sequestered in soils. Thus, terrestrial sinks can capture 23% of the regional total greenhouse emission and hence are one of the most cost-effective options for mitigating greenhouse emission in the region.  相似文献   

16.
Great uncertainties remain in the impact of cropping systems on soil organic carbon (SOC) stocks in paddy fields that hold a large potential for carbon (C) sequestration. In this study, a meta-analysis was performed to examine trends on SOC stocks in unfertilized and fertilized fields from three of the most common rice cropping systems in China. Results showed that rice cropping without any nutrient application (Control) significantly increased SOC stocks by 9% compared to the initial level in double rice cropping systems (DR), whereas no significant effects were observed in single rice cropping systems (SR) and rice-upland crop rotation systems (RU). Paddy soils sequestered C in all the three cropping systems under inorganic NPK fertilization, and the magnitude of the increase in SOC stocks was in the order DR > RU > SR. Soil C stocks increased with the increasing cropping duration. Continuous rice cropping for more than 20?years led to average SOC gains of 15% and 23% in the control and NPK treatments, respectively. Furthermore, it seems that C sequestration was still occurring in the longest fields from the included studies. Thus, no SOC saturation trend was found over the investigated cropping duration. However, the negative relationship between SOC changes and their initial C stocks suggests indirectly the possibility of SOC saturation in paddy fields.  相似文献   

17.
Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.  相似文献   

18.
Ecological limits to terrestrial biological carbon dioxide removal   总被引:1,自引:1,他引:0  
Terrestrial biological atmospheric carbon dioxide removal (BCDR) through bioenergy with carbon capture and storage (BECS), afforestation/reforestation, and forest and soil management is a family of proposed climate change mitigation strategies. Very high sequestration potentials for these strategies have been reported, but there has been no systematic analysis of the potential ecological limits to and environmental impacts of implementation at the scale relevant to climate change mitigation. In this analysis, we identified site-specific aspects of land, water, nutrients, and habitat that will affect local project-scale carbon sequestration and ecological impacts. Using this framework, we estimated global-scale land and resource requirements for BCDR, implemented at a rate of 1 Pg C y?1. We estimate that removing 1 Pg C y?1 via tropical afforestation would require at least 7?×?106 ha y?1 of land, 0.09 Tg y?1 of nitrogen, and 0.2 Tg y?1 of phosphorous, and would increase evapotranspiration from those lands by almost 50 %. Switchgrass BECS would require at least 2?×?108 ha of land (20 times U.S. area currently under bioethanol production) and 20 Tg y?1 of nitrogen (20 % of global fertilizer nitrogen production), consuming 4?×?1012?m3 y?1 of water. While BCDR promises some direct (climate) and ancillary (restoration, habitat protection) benefits, Pg C-scale implementation may be constrained by ecological factors, and may compromise the ultimate goals of climate change mitigation.  相似文献   

19.
Carbon sequestration through ecological restoration programs is an increasingly important option to reduce the rise of atmospheric carbon dioxide concentration. China’s Grain for Green Program (GGP) is likely the largest centrally organized land-use change program in human history and yet its carbon sequestration benefit has yet to be systematically assessed. Here we used seven empirical/statistical equations of forest biomass carbon sequestration and five soil carbon change models to estimate the total and decadal carbon sequestration potentials of the GGP during 1999–2050, including changes in four carbon pools: aboveground biomass, roots, forest floor and soil organic carbon. The results showed that the total carbon stock in the GGP-affected areas was 682 Tg C in 2010 and the accumulative carbon sink estimates induced by the GGP would be 1697, 2635, 3438 and 4115 Tg C for 2020, 2030, 2040 and 2050, respectively. Overall, the carbon sequestration capacity of the GGP can offset about 3%–5% of China’s annual carbon emissions (calculated using 2010 emissions) and about 1% of the global carbon emissions. Afforestation by the GGP contributed about 25% of biomass carbon sinks in global carbon sequestration in 2000–2010. The results suggest that large-scale ecological restoration programs such as afforestation and reforestation could help to enhance global carbon sinks, which may shed new light on the carbon sequestration benefits of such programs in China and also in other regions.  相似文献   

20.
Carbon sequestration in agricultural soils is frequently promoted as a practical solution for slowing down the rate of increase of CO2 in the atmosphere. Consequently, there is a need to improve our understanding of how land management practices may affect the net removal of greenhouse gases (GHG) from the atmosphere. In this paper we examine the role of agriculture in influencing the GHG budget and briefly discuss the potential for carbon mitigation by agriculture. We also examine the opportunities that exist for increasing soil C sequestration using management practices such as reduced tillage, reduced frequency of summer fallowing, introduction of forage crops into crop rotations, conversion of cropland to grassland and nutrient addition via fertilization. In order to provide information on the impact of such management practices on the net GHG budget we ran simulations using CENTURY (a C model) and DNDC (a N model) for five locations across Canada, for a 30-yr time period. These simulations provide information on the potential trade-off between C sequestration and increased N2O emissions. Our model output suggests that conversion of cropland to grassland will result in the largest reduction in net GHG emissions, while nutrient additions via fertilizers will result in a small increase in GHG emissions. Simulations with the CENTURY model also indicated that favorable growing conditions during the last 15 yr could account for an increase of 6% in the soil C at a site in Lethbridge, Alberta. Presented at the International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change, Ljubljana, Slovenia, 7–9 October 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号