首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we examine the issues associated with docking autonomous underwater vehicles (AUVs) operating within an Autonomous Ocean Sampling Network (AOSN). We present a system based upon an acoustic ultrashort baseline system that allows the AUV to approach the dock from any direction. A passive latch on the AUV and a pole on the dock accomplish the task of mechanically docking the vehicle. We show that our technique for homing is extremely robust in the face of the two dominant sources of error-namely the presence of currents and the presence of magnetic anomalies. Our strategy for homing is independent of the initial bearing of the dock to the AUV, includes a method for detecting when the vehicle has missed the dock, and automatically ensures that the AUV is in a position to retry homing with a greater chance of success. Our approach is seen to be extremely successful in homing the vehicle to the dock, mechanically attaching itself to the dock, aligning inductive cores for data and power transfer, and undocking at the start of a fresh mission. Once the AUV is on the dock, we present a methodology that allows us to achieve the complex tasks with ensuring that the AUV is securely docked, periodically checking vehicle status, reacting to a vehicle that requires charging, tracking it when it is out on a mission, archiving and transmitting via satellite the data that the AUV collects during its missions, as well as providing a mechanism for researchers removed from the site to learn about vehicle status and command high-level missions. The dock is capable of long-term deployments at a remote site while respecting the constraints - low power, small size, low computational energy, low bandwidth, and little or no user input - imposed by the amalgamation of acoustic, electronic and mechanical components that comprise the entire system  相似文献   

2.
This paper introduces an underwater docking procedure for the test-bed autonomous underwater vehicle (AUV) platform called ISiMI using one charge-coupled device (CCD) camera. The AUV is optically guided by lights mounted around the entrance of a docking station and a vision system consisting of a CCD camera and a frame grabber in the AUV. This paper presents an image processing procedure to identify the dock by discriminating between light images, and proposes a final approach algorithm based on the vision guidance. A signal processing technique to remove noise on the defused grabbed light images is introduced, and a two-stage final approach for stable docking at the terminal instant is suggested. A vision-guidance controller was designed with conventional PID controllers for the vertical plane and the horizontal plane. Experiments were conducted to demonstrate the effectiveness of the vision-guided docking system of the AUV.  相似文献   

3.
Central to the successful operation of an autonomous undersea vehicle (AUV) is the capability to return to a dock, such that consistent recovery of the AUV is practical. Vehicle orientation becomes increasingly important in the final stages of the docking, as large changes in orientation near the dock are impractical and often not possible. A number of homing technologies have been proposed and tested, with acoustic homing the most prevalent. If AUV orientation is required as well as bearing and distance to the dock, an acoustic homing system will require high update rates, and extensive signal conditioning. An Electromagnetic Homing (EM) system is one alternative that can provide accurate measurement of the AUV position and orientation to the dock during homing. This system offers inherent advantages in defining the AUV orientation, when compared to high frequency acoustic systems. The design and testing of an EM homing system are given, with particular attention to one can be adapted to a wide class of AUVs. A number of homing, docking, and latching trials were successfully performed with the design. Homing data include dead reckoning computation and acoustic tracking of the homing track, and video documentation of homing into the dock  相似文献   

4.
Central to the successful operation of an autonomous undersea vehicle (AUV) is the capability to return from a mission, in that there is consistent recovery or docking of the AUV. In addition, some missions may require communication with and power transfer to the AUV after docking. This paper describes an inductive system that provides a nonintrusive power and communications interface between the dock and the AUV. The system makes up to 200 W of AC or DC power available to the AUV. The communications interface is 10BaseT Ethernet and is platform- and protocol-independent. The overall design of the system is given as well as results from wet laboratory and field tests  相似文献   

5.
刘菲菲  郑荣 《海洋工程》2023,41(3):157-167
水下对接传输技术作为自主水下机器人(autonomous underwater vehicle,简称AUV)水下能源补给及数据传输的重要方式,受到国内外的重点关注,目前采用的水下对接传输方式主要分为接驳插拔传输及无线感应传输。在探究国内外AUV水下对接研究概况的基础上,归纳、总结以上两种传输方式的研究现状,分析对比其在对接传输效率、发展限制因素、对接控制技术等方面的区别。通过分析发现,接驳插拔传输在传输效率及功率方面具备优势,无线感应传输则具有更高的简易性、经济性。此发现为不同作业需求下传输方式的选择提供了基础。通过技术发展限制因素对比得出,在未来技术发展方向上,接驳插拔传输技术需提升系统稳定性、灵活性及费效比,无线感应传输需解决能量损耗、系统鲁棒性及涡旋损耗等问题。对两种传输技术未来发展前景及方向的预测,能够为AUV水下传输的发展提供重要参考。  相似文献   

6.
自主水下机器人(AUV)对接技术是目前水下机器人的研究热点,精确可靠的AUV的回坞导航是实现对接的关键技术。对于追求轻便的便携式AUV的对接系统,考虑到便携式AUV的搭载能力有限又需要足够的定位精度用于对接,提出了一种基于超短基线(USBL)定位的回坞导航方法,该方法让AUV只需装载电子罗盘和水声应答器就能完成精确的回坞定位。根据导航方法的特点,设计了一种改进的扩展卡尔曼滤波算法,其优点是能在处理滞后的USBL数据的同时动态估算海流、更新状态方程以消除海流造成的定位误差。通过湖试和大量仿真实验,验证了定位算法在海流影响下的定位性能。  相似文献   

7.
Two general-purpose mooring designs have been developed to support autonomous underwater vehicle (AUV) operations in autonomous ocean sampling networks (AOSNs). These moorings provide two-way communications between investigators and AUVs docked on the moorings or conducting survey operations some distance from the moorings. A deep-water design that incorporates an AUV dock and recharging station was built for use in the Labrador Sea during the winter of 1997/1998. This severe winter environment required a robust design that could operate unattended for six months while isolating the dock from surface wave motion. A much lighter, easier-to-deploy design was developed for use in coastal waters to extend the nearshore AOSN operating area by extending the communications network. This coastal design has been deployed without the dock component and has typically been configured for use in a small network of moorings maintained with a small research vessel. The deep-water mooring has been deployed successfully on two occasions, for short periods of time. The coastal moorings have been deployed a number of times and have proven to be quite effective. This paper describes the two moorings in detail and provides information on their performance so that interested investigators can utilize the technology where it meets their needs  相似文献   

8.
The Naval Postgraduate School (NPS) is constructing a small autonomous underwater vehicle (AUV) with an onboard mission control computer. The mission controller software for this vehicle is a knowledge-based artificial intelligence (AI) system requiring thorough analysis and testing before the AUV is operational. The manner in which rapid prototyping of this software has been demonstrated by developing a controller code on a LISP machine and using an Ethernet link with a graphics workstation to simulate the controller's environment is discussed. The development of a testing simulator using a knowledge engineering environment (KEE) expert system shell that examines AUV controller subsystems and vehicle models before integrating them with the full AUV for its test environment missions is discussed. This AUV simulator utilizes an interactive mission planning control console and is fully autonomous once initial parameters are selected  相似文献   

9.
水下滑翔机器人(AUG)是一种将浮标技术与传统水下机器人技术相结合的新型水下机器人,可用于长时间、大范围的海洋环境测量和监测,具有较高的可控性和机动性。在欧洲地区海洋环境安全(MERSEA)中水下滑翔机器人扮演了重要的角色,未来其应用领域将更加广泛,性能更加先进。  相似文献   

10.
A method for dynamics investigation and coupling detection between velocities of autonomous underwater vehicles (AUVs) is presented in this paper. The method is based on transformation of equations of motion, which are usually used for an underwater vehicle, into equations with a diagonal mass matrix. The obtained equations contain quasi-velocities and allow one to give a further insight into the AUV dynamics especially for an underactuated system. Some advantages of the proposed approach are discussed, too. An analytical example for a 3-DOF AUV shows possible application of the transformed equations. Moreover, the given approach is validated via simulation on a 6-DOF vehicle.  相似文献   

11.
以便携式自主水下机器人(AUV)和罩式导向对接平台的水下对接过程为研究对象,将碰撞力大小和对接时间作为评价指标,研究导向罩形状、对接管尺度以及AUV与对接管的偏心距对整个对接过程的影响。在三维建模的基础上,使用ADAMS软件进行动力学仿真分析,结果表明,减小导向罩开口角度、增大对接管直径、减小偏心距可以适当减小碰撞力和对接时间。通过对上述影响因素与评价指标建立函数关系,利用多目标优化设计的方法并结合实际情况对参数做出合理的分析和筛选,为水下机器人对接平台提供设计依据。  相似文献   

12.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

13.
首先介绍了水下导航算法,采用GPS和水下参量测算相结合的方案,即当运行器在水下运行时,利用电子罗盘测量运行器的相对航向,水流传感器测算运行器的相对速度大小,利用学习阶段计算出海水流速,在水下运行器潜行时进行船位推算导航,用GPS精准的定位信号进行导航误差的校正。此算法精度的高低很大程度上取决于用来进行水下参量测算的传感器和用来方位校准的GPS。文中从各个传感器的误差着手,通过模拟仿真详细分析了电子罗盘、水流传感器和GPS的误差对导航精度的影响,对工程应用具有实际的指导意义。  相似文献   

14.
This paper presents a discrete-time quasi-sliding mode controller for an autonomous underwater vehicle (AUV) in the presence of parameter uncertainties and a long sampling interval. The AUV, named VORAM, is used as a model for the verification of the proposed control algorithm. Simulations of depth control and contouring control are performed for a numerical model of the AUV with full nonlinear equations of motion to verify the effectiveness of the proposed control schemes when the vehicle has a long sampling interval. By using the discrete-time quasi-sliding mode control law, experiments on depth control of the AUV are performed in a towing tank. The controller makes the system stable in the presence of system uncertainties and even external disturbances without any observer nor any predictor producing high rate estimates of vehicle states. As the sampling interval becomes large, the effectiveness of the proposed control law is more prominent when compared with the conventional sliding mode controller  相似文献   

15.
针对水下自主式航行器(AUV)在总体概念设计阶段的多学科和多目标优化问题进行了研究。基于MDO的概念将AUV的设计要求分解为系统控制层和5个子系统,考虑了有效负载长度和总质量两个目标函数。采用多学科可行解方法(MDF)和多目标遗传算法(MOGA)给出了多学科的Pareto最优解,并且和经典的多目标方法进了比较。  相似文献   

16.
以小型、经济、易扩展为目标,采用模块化设计思想,开发了一种基于CAN总线的递阶一分布式水下自航行平台控制系统,并重点考虑了安全可靠性,对各节点负载进行了优化分配。实际应用表明,该控制系统结构简单、性能可靠、传输率高,能够满足平台工作环境复杂多变的要求。  相似文献   

17.
Recent advances in autonomous underwater vehicle (AUV) and underwater communication technology have promoted a surge of research activity within the area of signal and information processing. A new application is proposed herein for capturing and processing underwater video onboard an untethered AUV, then transmitting it to a remote platform using acoustic telemetry. Since video communication requires a considerably larger bandwidth than that provided by an underwater acoustic channel, the data must be massively compressed prior to transmission from the AUV. Past research has shown that the low contrast and low-detailed nature of underwater imagery allows for low-bit-rate coding of the data by wavelet-based image-coding algorithms. In this work, these findings have been extended to the design of a wavelet-based hybrid video encoder which employs entropy-constrained vector quantization (ECVQ) with overlapped block-based motion compensation. The ECVQ codebooks were designed from a statistical source model which describes the distribution of high subband wavelet coefficients in both intraframe and prediction error images. Results indicate that good visual quality can be achieved for very low bit-rate coding of underwater video with our algorithm  相似文献   

18.
ABSTRACT

Reliable power supply, precise position determination and effective communication are the key requirements for strategic autonomous underwater vehicles (AUV) involved in long duration scientific missions, search operations and when operated as a swarm. The paper presents the challenging range of AUV developed for deep water, Polar and intervention applications; demanding technical requirements for strategic AUV; reliability modeling done on the lithium-ion batteries to identify the redundancy requirements for achieving near-zero failures; navigation model to estimate the achievable level of position accuracies using the state-of-the-art navigation system; limitations in underwater communication; and their importance in realizing vehicle autonomy and swarm intelligence. It is identified that a strategic grade Doppler velocity- aided inertial navigation system could provide position accuracies of about 0.5% of the distance travelled when navigated using sea bottom or ice reference, and a 38?kWh lithium-ion battery pack requires about 7% redundant battery capacity to achieve a failure probability of <?1% in a period of 1 year.  相似文献   

19.
Kinematic global positioning system (GPS) positioning and underwater acoustic ranging can combine to locate an autonomous underwater vehicle (AUV) with an accuracy of /spl plusmn/30cm (2-/spl sigma/) in the global International Terrestrial Reference Frame 2000 (ITRF2000). An array of three precision transponders, separated by approximately 700 m, was established on the seafloor in 300-m-deep waters off San Diego. Each transponder's horizontal position was determined with an accuracy of /spl plusmn/8 cm (2-/spl sigma/) by measuring two-way travel times with microsecond resolution between transponders and a shipboard transducer, positioned to /spl plusmn/10 cm (2-/spl sigma/) in ITRF2000 coordinates with GPS, as the ship circled each seafloor unit. Travel times measured from AUV to ship and from AUV to transponders to ship were differenced and combined with AUV depth from a pressure gauge to estimate ITRF2000 positions of the AUV to /spl plusmn/1 m (2-/spl sigma/). Simulations show that /spl plusmn/30 cm (2-/spl sigma/) absolute positioning of the AUV can be realized by replacing the time-difference approach with directly measured two-way travel times between AUV and seafloor transponders. Submeter absolute positioning of underwater vehicles in water depths up to several thousand meters is practical. The limiting factor is knowledge of near-surface sound speed which degrades the precision to which transponders can be located in the ITRF2000 frame.  相似文献   

20.
The paper addresses the problem of autonomous underwater vehicle (AUV) modelling and parameter estimation as a means to predict the dynamic performance of underwater vehicles and thus provide solid guidelines during their design phase. The use of analytical and semi-empirical (ASE) methods to estimate the hydrodynamic derivatives of a popular class of AUVs is discussed. A comparison is done with the results obtained by using computational fluid dynamics to evaluate the bare hull lift force distribution around a fully submerged body. An application is made to the estimation of the hydrodynamic derivatives of the MAYA AUV, an autonomous underwater vehicle developed under a joint Indian-Portuguese project. The estimates obtained were used to predict the turning diameter of the vehicle during sea trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号