首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upper Campanian to upper Maastrichtian sedimentary sequence of the Kiseiba Formation in south Western Desert is sampled and described in two surface sections (Sinn El Kaddab and Wadi Abu Siyal). Forty-four agglutinated foraminiferal species are identified from 42 samples in the studied succession. The benthic foraminiferal assemblages are dominated by agglutinated foraminifera which comprise more than 90% of the assemblage. The agglutinated foraminifera are subdivided into five morphogroups (A, B, C, D, E) according to shell architecture, integrated with the supposed microhabitat and feeding strategy. The foraminiferal assemblage is assigned to mixohaline shallow water environments. These assemblages with Ammoastuta megacribrostomoides and Ammotium bartheli suggest lagoonal environments with considerably reduced salinity in warm climates and high runoff for the late Campanian-Maastrichtian interval.  相似文献   

2.
The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K–P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian–Maastrichtian); Dakhla Formation (Danian–Selandian); Tarawan Formation (Selandian–Thanetian) and Esna Formation (Thanetian–Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian–Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene–Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.  相似文献   

3.
The echinoid fauna from the Miocene sedimentary succession cropping out south Wadi Tweirig, and Wadi Hommath, south Gebel Ataqa, NW Gulf of Suez, has been examined with the aim to known their stratigraphic and paleogeographic distribution. The Miocene succession includes two formations: Sadat Formation, unconformably overlying the middle/upper Eocene rocks at the base and Hommath Formation at the top. Twenty-eight echinoid species (8 regular and 20 irregular) belonging to 18 genera, 13 families, and 7 orders have been identified, systematically described, and illustrated in this work. Eleven species are recorded for the first time from Egypt: ten of these came from the Hommath Formation (Schizechinus cf. serresii Desor (1856), Schizechinus pentagonus Kier 1972, Clypeaster cf. martini des Moulins 1837, Scutella checchiae occidentalis Desio 1934, Scutella melitensis Airaghi 1902, Echinodiscus desori Duncan and Sladen 1883, Echinolampas cf. zeitensis Fourtau 1920, Schizaster lovisatoi Cotteau 1895, Agassizia (Agassizia) powersi Kier 1972, and Hemipatagus ocellatus Defrance (1827)), and one from the Sadat Formation (Clypeaster campanulatus Schlotheim (1820)). The identified fauna shows a strong affinity with the Mediterranean bio-province.  相似文献   

4.
The Tayiba Red Beds, exposed in the Abu Zenima area, west-central Sinai, have been intensively studied for their clay mineralogy and charophytes assemblages. Three surface sections exposed at Wadi El-Tayiba and Wadi Nukhul were studied. The Tayiba Formation uncomformably overlies the Middle Eocene Khaboba Formation at Wadi Nukhul and the Late Eocene Tanka Formation at Wadi El-Tayiba and commonly underlies the Early Miocene Nukhul Formation with unconformable relationships. The Tayiba Formation at Wadi Nukhul consists predominantly of continental coarse clastic sediments represented by polymictic conglomerates, alternating with red to pinkish mudstone, ferruginous sandstone and varicoloured mottled siltstone with plant remains. At Wadi El-Tayiba, the Tayiba Formation is represented by marine, yellow mudstone and red siltstone, alternating with greyish and reddish-yellow argillaceous to sandy limestone, highly fossiliferous with reworked Nummulites spp. and molluscan shell fragments.The mineralogical composition of the studied clay size fraction showed that most samples are dominated by illite, together with smectite, kaolinite and illite/smectite mixed layers. The relative proportion of these constituents shows wide variation. Smectite is more abundant than other constituents at Wadi El-Tayiba. The high content of smectite is usually accompanied by a terrigenous influx in the form of kaolinite and illite, reflecting deposition in an inner neritic shallow marine environment. The sediments of Wadi Nukhul are characterised by an appreciable proportion of illite, together with an illite/smectite mixed layer and minor amounts of kaolinite, suggesting deposition in fluviatile environments.The detailed investigation of charophytes (green algae) in the investigated sections showed that Wadi El-Tayiba is nearly barren of these microflorae, except for some benthic foraminifera from a shallow marine environment. In contrast, Wadi Nukhul yielded a high frequency and great diversity of charophytes, where 15 species have been identified, described and illustrated for the first time. The utilisation of the ranges of these species allowed the subdivision of the section into three charophyte zones, which are correlated with other zones recorded in Europe, as well as the standard mammal levels in the world. These biozones strongly assign the Tayiba Formation to the Late Eocene to Late Oligocene (Late Priabonian to Chattian). A depositional model was suggested for the Tayiba Formation in west-central Sinai.  相似文献   

5.
Cenomanian rocks of Egypt are rich in moderately to well-preserved echinoids. From the large Cretaceous echinoid collection at the Cairo Geological Museum, a total of 27 regular species, in 12 genera, eight families, six orders and two subclasses, are revised and systematically described from these strata as exposed at several localities in Egypt. One new family (Pedinopsidae), one new subfamily (Lorioliinae), one new genus (Alternocidaris) and two new species of Goniopygus, G. subaequalis (Gebel Ekma) and G. macrotuberculatus (Gebel El Minsherah), are erected. Additionally, two species of Diplopodia, D. micropyga Fourtau, 1921 and D. halperti Fourtau, 1921, are transferred to the genus Pedinopsis.  相似文献   

6.
The Cenomanian–Turonian boundary interval is generally considered a critical time for planktonic foraminifera due to the environmental perturbations associated with Oceanic Anoxic Event 2. However, only the rotaliporids became extinct at the onset of the event, whilst several lineages evolved and/or diversified. This remarkable morphologic plasticity is often overlooked in the literature, partly because a number of stratigraphic sections have only been studied in thin-section due to the degree of lithification of the samples. Improved documentation of the morphological variability of planktonic foraminifera and better defined species concepts are required in order to improve biostratigraphy, particularly as Helvetoglobotruncana helvetica is an unreliable marker for the base of the Turonian. At the same time, detailed study of the planktonic foraminiferal response to OAE 2 demands a more profound knowledge of the assemblage composition.We present new biostratigraphic, taxonomic, and quantitative data for planktonic foraminiferal species from the Clot Chevalier section (Vocontian Basin, SE France), with the aim of (1) providing a detailed biostratigraphic analysis of the section, (2) documenting the morphological plasticity of specimens in this time interval and stabilizing species concepts, and (3) identifying promising markers to improve the resolution of the present biozonation and allow regional correlation. Samples were processed with acetic acid to extract isolated planktonic foraminifera. Assemblages were assigned to the upper Cenomanian Rotalipora cushmani Zone and to the uppermost Cenomanian–lowermost Turonian Whiteinella archaeocretacea Zone. Planktonic foraminiferal bioevents and assemblage composition identified at Clot Chevalier are compared with the well-studied Pont d'Issole section located ca. 15 km to the NE, highlighting similarities and differences in the species occurrences that may complicate the stratigraphic correlation between the two sections.The results of our study support the validity and common occurrence of species that have been misidentified and/or overlooked in the literature (i.e., Dicarinella roddai, Praeglobotruncana oraviensis, Marginotruncana caronae) and indicate that primitive marginotruncanids evolved before the onset of OAE 2, although species diversification occurred only after the event. Moreover, we believe that the first appearance of P. oraviensis might represent a promising bioevent for approximating the Cenomanian/Turonian boundary, after calibration with bio- and chemostratigraphically well-constrained sections. Finally, we describe three new trochospiral species, named “Pseudoclavihedbergellachevaliensis, Praeglobotruncana pseudoalgeriana and Praeglobotruncana clotensis.  相似文献   

7.
A scheme of radiolarian zonal subdivision is proposed for the upper Albian–Santonian of the Tethyan regions of Eurasia. The upper Albian contains one zone: Crolanium triangulare; the Cenomanian contains three zones: Patellula spica (lower Cenomanian), Pseudoaulophacus lenticulatus (middle Cenomanian), and Triactoma parva (upper Cenomanian); the Turonian contains four zones: Acanthocircus tympanum (lower Turonian (with no upper part)), Patellula selbukhraensis (upper part of the lower Turonian), Phaseliforma turovi (middle Turonian (with no upper part)), and Actinomma (?) belbekense (upper part of the middle Turonian–upper Turonian); the Coniacian contains two zones: Alievium praegallowayi (lower part of the Coniacian) and Cyprodictyomitra longa (upper part of the Coniacian); the Santonian contains three zones: Theocampe urna (lower Santonian), Crucella robusta (middle Santonian–lower part of the upper(?) Santonian), and Afens perapediensis (upper part of the upper Santonian). The biostratigraphic subdivisions are correlated with biostrata in the schemes proposed previously for the Tethys and Pacific. A new species Patellula selbukhraensis Bragina sp. nov. is described.  相似文献   

8.
Compilation between the previous studies about the river systems evolution and integrating them with the remotely sensed data-based landscape analysis provide a new vision to the river systems evolution in Egypt during the Cenozoic Era. Relics of geomorphologic features left in the old basins related to these rivers suggest the existence of a natural dam between Nag Hammadi City and Wadi El-Assuiti. This barrier was separating two river systems during Late Miocene time: (1) the Qena River System and (2) the newly suggested North Egypt River System. The North Egypt River is supposed to be started by the Wadi El-Assuiti drainage basin, which flowed first in a westward direction, from its source in the Eastern Limestone Plateau to continue in a northward direction across the Nile Canyon (along the course of the Nile) to join the drainage system of Wadi Tarfa and Wadi Sannur and to end, finally, in the depression of Wadi El-Natrun to constitute the Wadi El-Natrun Miocene Delta. The present interpretation on the existence of a North Egypt River System, with the presence of an old natural dam to the south of Nag Hammadi City, necessitates a revision of the concepts used for groundwater exploration in Upper Egypt.  相似文献   

9.
Natural Hazards - Many parts of Upper Egypt as Sinai and Red Sea areas were hit by severe flash floods since 1976. Wadi Qena is considered one of the most watersheds that suffers from floods in Red...  相似文献   

10.
Diverse radiolarians (over 70 species) are detected in cherty rocks above the bituminous shale horizon, the marker of anoxic event OAE-2 recorded across the Cenomanian-Turonian boundary in the upper part of the Ananuri Formation of flyschoid deposits, the Lazarevskoe area of the western Caucasus. The radiolarian assemblages studied are comparable in composition with radiolarians from concurrent Cenomanian-Turonian boundary strata in other Mediterranean regions (e.g., in the Crimea and Turkey). The lower radiolarian assemblage includes index species Dactyliosphaera silviae of synonymous Cenomanian zone. Alievium superbum present in the upper assemblage is index species of the relevant Turonian zone. Within the studied flyschoid sequence, sediments indicative of the above event (bituminous shales and cherts) are confined to upper elements of flysch rhythms.  相似文献   

11.
<正> 一、前言 新疆莎车地区上白垩统出露完整,为一套海相与泻湖相沉积,含丰富的孢粉及海相横裂甲藻与疑源类,因限于篇幅,本文着重讨论横裂甲藻与疑源类,孢粉部份另行发表。 近十多年来,国外已广泛用横裂甲藻与疑源类作为划分地层、寻找石油和探讨古地理的重要手段之一。白垩纪海相横裂甲藻,我国还是首次报道,本文将通过对上白垩统英吉沙群浮游横裂甲藻及疑源类组合的分析,来探讨其地质时代、地层划分及古生态特点。 文中共鉴定了横裂甲藻42个属、93个种,其中描述了贝个新属、14个新种、1个新变种。疑源类鉴定7个属,6个种。  相似文献   

12.
A river section at Słupia Nadbrzeżna, central Poland, has been proposed as a candidate Turonian – Coniacian (Cretaceous) GSSP, in combination with the Salzgitter-Salder quarry section of Lower Saxony, Germany. Results of a high-resolution (25 cm) palynological study of the boundary interval in the Słupia Nadbrzeżna section are presented. Terrestrial palynomorphs are rare; marine organic-walled dinoflagellate cysts dominate the palynological assemblage. The dinoflagellate cyst assemblage has a low species richness (5–11 per sample; total of 18 species recorded) and diversity (Shannon index H = 0.8–1.4), dominated by four taxa: Circulodinium distinctum subsp. distinctum; Oligosphaeridium complex; Spiniferites ramosus subsp. ramosus; Surculosphaeridium longifurcatum. Declining proportions of O. complex and S. ramosus subsp. ramosus characterise the uppermost Turonian, with an increased dominance of S. longifurcatum in the lower Coniacian. The Turonian – Coniacian boundary interval includes an acme of C. distinctum subsp. distinctum in the upper Mytiloides scupini Zone, a dinoflagellate cyst abundance maximum in the Cremnoceramus walterdorfensis walterdorfensis Zone, and the highest occurrence of Senoniasphaera turonica in the basal Coniacian lower Cremnoceramus deformis erectus Zone. Most previously reported Turonian – Coniacian boundary dinoflagellate cyst marker species are absent; a shallow-water oligotrophic epicontinental depositional setting, remote from terrestrial influence, likely limited species diversity and excluded many taxa of biostratigraphic value.  相似文献   

13.
The investigation of the exposed middle Miocene strata from Wadi Sudr yielded well-preserved ostracod carapaces. Detailed taxonomic and paleontological studies led to the recognition of 36 ostracod species belonging to 25 genera, 4 species of them were considered new which fully described. Three assemblage biozones were recorded as follows: Actinocythereis spinosa–Actinocythereis hystrix zone, Chrysocythere cataphracta muricata-Cytheretta africana zone, and Disopontocypris schweijeri-Bythocypris tripolensis zone. The recorded biozones were calibrated with the previously studied middle Miocene planktonic foraminiferal biozones on the same samples and also correlated with the Miocene ostracod biozones from the neighboring countries. Our ostracod assemblages present in the lower and upper parts of the studied section (section II) indicated an inner neritic marine environment of moderate energy of currents and rapid sedimentation, while the assemblages in the middle part showed more deeper (outer neritic) environments with low energy of currents and low rate of sedimentation. The palaeobiogeographic distribution of the studied ostracods showed high affinity with the ostracod assemblages of the southern Mediterranean and moderate to low affinities with that of the northern and eastern Mediterranean respectively. The highly ornamented ostracod species with structures on the carapace were recorded from both Northern and Southern Mediterranean, while the smooth ones were found in the Southern Mediterranean only. The highly ornamented species are more widely distributed in both Southern and Northern Mediterranean than the smooth species. This may indicate that the ornamented species are more able to migrate than the smooth ones.  相似文献   

14.
《Comptes Rendus Geoscience》2018,350(6):310-318
The sabkha of Gueran in the Southwest Moroccan Sahara has yielded a rich and diverse fauna of late middle Eocene vertebrates that include the world's richest Bartonian age archaeocete assemblage. Archeocete remains were described previously and here we report on the rest of the vertebrate fauna. The Gueran fauna includes abundant chondrichthyan species belonging to Lamniformes, Carcharhiniformes and Rhinopristiformes, and actinopterygian assemblage consisting of Cylindracanthus, of a siluriform, and of Perciformes. Turtles are represented by at least two marine taxa referred to as Cheloniidae and Dermochelyidae. Crocodylian remains belong to at least two longirostrine species, including gavialoid remains. Snakes are represented by Pterosphenus cf. schweinfurthi (Palaeophiidae). Seabirds are represented by a pseudo-toothed bird (Pelagornithidae). The avian fossil belonged to a gigantic soaring bird and constitutes the earliest occurrence of the genus Pelagornis. The presence of proboscideans is attested by dental fragments. This fossil assemblage from Gueran shows affinities with those of the Eocene beds of Egypt and Libya. The numerous shared taxa support a close biogeographical connection between faunas from southeastern and southwestern coasts of the Mediterranean Sea.  相似文献   

15.
The Wadi Daya Formation, or the Calcaires crayeux of the older literature, attains a thickness of 10–40 m in the Talerhza Basin of the South Riffian Ridges. Previously, this unit was first dated as “Vraconian” (i.e., late upper Albian), but then reinterpreted as Cenomanian-Turonian and Cenomanian-Coniacian on the basis of foraminiferal and ostracod assemblages, respectively. Here, we record for the first time in the South Riffian Ridges, some typically Turonian ammonoids and a nautiloid species, namely Romaniceras (Yubariceras) cf. ornatissimum (Stoliczka), Spathites (Jeanrogericeras) cf. reveliereanus (Courtiller), Neoptychites cephalotus (Courtiller), Pachydesmoceras linderi (de Grossouvre), Lewesiceras peramplum (Mantell) and Angulithes galea (Fritsch, in Fritsch & Schlönbach). These species are herein described and illustrated. In view of these data, the underlying Marnes et marno-calcaires jaunes Formation, formerly dated as “Vraconian”, could in fact be of a middle to late Cenomanian date, in accordance with the age assignment based on planktonic foraminifera. Deposition of the overlying Marnes jaunes Formation, previously dated as Cenomanian-“Senonian”, probably started during the latest Turonian or earliest Coniacian.  相似文献   

16.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

17.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

18.
The first occurrence (FO) of Marthasterites furcatus was correlated with the FOs of other nannofossils, inoceramid bivalves and foraminifers in the Bohemian Cretaceous Basin and Outer Flysch Carpathians. The correlation showed that the FO of M. furcatus was diachronous, becoming younger from east to west. In the Silesian Unit it appears in the lower Turonian in association with Eprolithus moratus (UC6b nannofossil Zone). In the Pavlovské vrchy klippes it appears in the upper middle Turonian together with Lithastrinus septenarius (UC9 Zone). In the Bohemian Cretaceous Basin, the FO of M. furcatus was observed in the lower upper Turonian just above the FO of Liliasterites angularis. The presence of M. furcatus in Turonian strata is scarce and discontinuous up to its sudden quantitative increase (represented by 5–27% in assemblages) below the FO of the inoceramid bivalve species Cremnoceramus waltersdorfensis and C. deformis erectus in the Turonian–Coniacian boundary interval. The top of the M. furcatus acme was recorded below the FO of Micula staurophora. The second quantitative rise of M. furcatus (12% in assemblage) was found in the lower lower Campanian of the Pavlovské vrchy klippes above the FO of Broinsonia parca parca in the UC14a Zone and the last occurrence of the planktonic foraminifer Whiteinella baltica. Above this second acme M. furcatus disappears. The significantly earlier appearance of M. furcatus in the Silesian Basin may be connected with a southeast-heading surface current from the North European epicontinental sea where the species appeared in the early Turonian too.  相似文献   

19.
Nineteen benthonic and planktonic foraminiferal zones and their subzones have been recognized in the Tethyan cretaceous successions along the four sections analyzed in the northwestern Zagros fold–thrust belt within the preforeland–foreland basin. A detailed micropaleontological investigation revealed eight benthonic zones from the Qamchuqa Formation (Barremian to Lower Early Cenomanian) including: the Choffatella decipiens interval zone, C. decipiens/Palorbitolina lenticularis total range zone, C. decipiens/Salpingoporella dinarica interval zone, Mesorbitolina texana total range zone, Mesorbitolina subconcava total range zone, Orbitolina qatarica total range zone, Orbitolina sefini total range zone, and the Orbitolina concava partial range zone. The Rotalipora cushmani total range zone was recorded in the Dokan Formation that overlies the Qamchuqa Formation of the Late Cenomanian age. The Gulneri Formation is represented only by the Whitnella archaeocretacea partial range zone/Heterohelix moremani total range subzone and indicates the Late Cenomanian/Early Turonian age. Six planktonic foraminiferal zones were recorded from the Kometan Formation, indicating the Late Cenomanian to Early Campanian age, and are represented by the R. cushmani/H. moremani subzone, Helvetotruncana helvetica total range zone, Marginotruncana sigali partial range zone, Dicarinella primitiva interval range zone, Dicarinella concavata interval zone, Dicarinella assymetrica total range zone, and Globotruncanita elevata partial range zone. Two planktonic foraminferal zones were recorded also and these are related to the Globotruncana (fornicata, stuartiformis, elevata, and ventricosa) assemblage zone, Globotruncana calcarata total range subzone, from the Shiranish Formation, Lower Late Campanian, while the second zone is nominated as the Globotruncana (arca, tricarinata, esnehensis, and bahijae) assemblage zone, Globotruncana gansseri interval subzone, and Globotruncana contusa total range zone of the Late Campanian to basal middle Maastrichtian age. The last zone is related to the Abathomphalus mayaroensis partial range zone (of Late Maastrichtian age) and occasionally intercalated with the OrbitoidesLoftusia benthic zones. An important hiatus, between the Qamchuqa and Kometan formations was proved and manifests Pre-Aruma unconformity, and is occasionally associated with the global Cenomanian–Turonian Oceanic Anoxic Euxinic Event, while the Maastrichtian red bed of the Shiranish Formations mostly points to Tethyan upper Cretaceous Oceanic Red Bed.  相似文献   

20.
The position of the Cenomanian-Turonian boundary is established for the first time in Charente-Maritime, northwestern Aquitaine (France), on the basis of ammonite occurrences and the δ13C isotope curve, corresponding to Oceanic Anoxic Event 2, that straddles the boundary. The earliest Turonian ammonites recognised are a monospecific occurrence of the early early Turonian pseudotissotiine Bageites bakui Zaborski, 1998, previously known only from northern Nigeria. Newly collected material and well-preserved specimens from existing collections supplement previous records, and include species of Placenticeras, Morrowites, Kamerunoceras, Romaniceras (Romaniceras), Spathites (Jeanrogericeras), Mammites, Fagesia, Neoptychites, Choffaticeras (Leoniceras), Collignoniceras and Lecointriceras. These confirm the presence of the upper lower Turonian nodosoides Zone and the lower middle Turonian turoniense and kallesi zones/subzones of authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号