首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UWE BRAND 《Sedimentology》1982,29(1):139-147
The aragonitic molluscs and lime-mud of the Pennsylvanian Buckhorn asphalt (Deese Group) of southern Oklahoma precipitated calcium carbonate in oxygen and carbon isotopic equilibrium with ambient sea-water. In addition, δ18O values indicate that the pelecypods precipitated their shells during the warmer months of the year. The coiled nautiloids probably precipitated their shells in the warm surface water and throughout the year. For the orthocone nautiloids, the δ18O values suggest that they precipitated their shells in deeper/cooler water. The low-Mg calcite brachiopods of the Mississippian Lake Valley Formation of New Mexico precipitated shells in oxygen and carbon isotopic equilibrium with ambient sea-water. The δ18O and δ13C values of the Buckhorn and Lake Valley faunas, in conjunction with other published results, suggest that Carboniferous sea-water was, on a average, depleted in δ18O by 1·5 ± 2‰, PDB, relative to Recent sea-water. However, the δ13C value of +2.6 ± 2‰, PDB, for average Carboniferous sea-water is similar to that of Recent ocean water. Early diagenetic alteration of metastable carbonates probably occurs in a meteoric-sea-water mixing zone. In this zone the oxygen and carbon isotopic compositions of these components are increased by about 2-4‰, PDB over their marine composition.  相似文献   

2.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(11-12):1825-1836
Oxygen isotope data have been obtained for silicate inclusions in diamonds, and similar associated minerals in peridotitic and eclogitic xenoliths from the Finsch kimberlite by laser-fluorination. Oxygen isotope analyses of syngenetic inclusions weighing 20–400 μg have been obtained by laser heating in the presence of ClF3. 18O/16O ratios are determined on oxygen converted to CO2 over hot graphite and, for samples weighing less than 750 μg (producing <12 μmoles O2) enhanced CO production in the graphite reactor causes a systematic shift in both δ13C and δ18O that varies as a function of sample weight. A “pressure effect” correction procedure, based on the magnitude of δ13C (CO2) depletion relative to δ13C (graphite), is used to obtain corrected δ18O values for inclusions with an accuracy estimated to be ±0.3‰ for samples weighing 40 μg.Syngenetic inclusions in host diamonds with similar δ13C values (−8.4‰ to −2.7‰) have oxygen isotope compositions that vary significantly, with a clear distinction between inclusions of peridotitic (+4.6‰ to +5.6‰) and eclogitic paragenesis (+5.7‰ to +8.0‰). The mean δ18O composition of olivine inclusions is indistinguishable from that of typical peridotitic mantle (5.25 ± 0.22‰) whereas syngenetic purple garnet inclusions possess relatively low δ18O values (5.00 ± 0.33‰). Reversed oxygen isotope fractionation between olivine and garnet in both diamond inclusions and diamondiferous peridotite xenoliths suggests that garnet preserves subtle isotopic disequilibrium related to genesis of Cr-rich garnet and/or exchange with the diamond-forming fluid. Garnet in eclogite xenoliths in kimberlite show a range of δ18O values from +2.3‰ to +7.3‰ but garnets in diamondiferous eclogites and as inclusions in diamond all have values >4.7‰.  相似文献   

4.
Shells of the helicid Cepaea nemoralis were studied using taphonomic, isotopic and morphometric measurements to estimate late glacial–Holocene (~ 12.1–6.3 cal ka BP) environmental conditions in northern Spain. Higher taphonomic alteration among Holocene shells suggests lower sedimentation rates or higher shell-destruction rates than during glacial conditions. Shells preserved the aragonitic composition despite differing degree of skeleton damage. Shell δ13C values were ? 10.3 ± 1.1‰, ? 8.2 ± 2.3‰, and ? 7.3 ± 1.6‰ for modern, Holocene and late-glacial individuals, respectively. Higher δ13C values during the late-glacial and some Holocene periods imply higher water stress of C3 plants and/or higher limestone contribution than today. Intrashell δ13C values were higher during juvenile stages suggesting higher limestone ingestion to promote shell growth. Shell δ18O values were ? 1.1 ± 0.7‰, ? 0.9 ± 0.8‰ and ? 0.1 ± 0.7‰ for modern, Holocene and late-glacial specimens, respectively. A snail flux-balance model suggests that during ~ 12.1 ? 10.9 cal ka BP conditions were drier and became wetter at ~ 8.4 ? 6.3 cal ka BP and today. Intrashell δ18O profiles reveal that glacial individuals experienced more extreme seasonality than interglacial shells, despite possible larger hibernation periods. Shell size correlated positively with δ18O values, suggesting that growth rates and ultimate adult size of C. nemoralis may respond to climate fluctuation in northern Spain.  相似文献   

5.
Variation in 13C/12C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13C/12C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ13C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ34S values indicative of bacterial sulfate reduction. The δ13C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ13C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ13C values of Group 3 calcite. The δ13C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ13C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of <30 m (bsl) was characterized by δ13C values indicative of degradation of surface derived organic matter, with δ13C values ranging from −30.3‰ to −5.5‰. The intermediate depth of 34–54 m showed evidence of localized methanotrophic activity seen as anomalously 13C depleted calcite, having δ13C values as low as −53.8‰. At depths of ∼60–400 m, positive δ13C values of up to +31.6‰ in late-stage calcite of Group 1–2 indicated methanogenesis. In comparison, high CH4 concentrations in present day groundwaters are found at depths of >300 m. One sample at a depth of 111 m showed a transition from methanogenetic conditions (calcite bearing methanogenetic signature) to sulfate reducing (precipitation of pyrite on calcite surface), however, the timing of this transition is so far unclear. The results from this study gives indications of the complex nature of sulfur and carbon cycling in fractured crystalline environments and highlights the usefulness of in situ stable isotope analysis.  相似文献   

6.
New data are presented on the distribution of oxygen isotopes and conditions of the local isotope equilibrium in high-Al rocks rocks of Khitostrov Island showing abnormally low δ18O values (below–25‰). The temperatures of isotope equilibrium are within 400–475°C. The minimum δ18O values have been registered in the in plagioclase, whereas the same phases in kyanite-bearing rocks lacking corundum demonstrate δ18O values usually 3–5‰ higher. The fluid δ18O value varies from–22 to–16‰ at 475 ± 15°C, from–18 to–23‰ at 425 ± 25°C, and from–17 to–22‰ at 380 ± 15°C. The results obtained do not require abnormal depletion of δ18O values owing to the infiltration of an external fluid under the Svecofennian transformations. The association of corundum-bearing rocks with the basic intrusions, the presence of zircon cores of older ages compared to these rocks, and the peculiarities of rock chemistry may be ascribed to the fact that lower crustal layers of ancient rocks depleted in δ18O before metamorphism were captured by basite melts.  相似文献   

7.
Nickel isotope ratios were measured in ores, fly ash, slags and FeNi samples from two metallurgical plants located in the Goiás State, Brazil (Barro Alto, Niquelândia). This allowed investigating the mass-dependent fractionation of Ni isotopes during the Ni-laterite ore smelting and refining. Feeding material exhibits a large range of δ60Ni values (from 0.02 ± 0.10‰ to 0.20 ± 0.05‰, n = 7), explained by the diversity of Ni-bearing phases, and the average of δ60Nifeeding materials was found equal to 0.08 ± 0.08‰ (2SD, n = 7). Both δ60Ni values of fly ash (δ60Ni = 0.07 ± 0.07‰, n = 10) and final FeNi produced (0.05 ± 0.02‰, n = 2) were not significantly different from the feeding materials ones. These values are consistent with the very high production yield of the factories. However, smelting slags present the heaviest δ60Ni values of all the smelter samples, with δ60Ni ranging from 0.11 ± 0.05‰ to 0.27 ± 0.05‰ (n = 8). Soils were also collected near and far from the Niquelândia metallurgical plant, to evaluate the potential of Ni isotopes for tracing the natural vs anthropogenic Ni in soils. The Ni isotopic composition of the non-impacted topsoils developed on ultramafic rocks ranges from −0.26 ± 0.09‰ to −0.04 ± 0.05‰ (n = 20). On the contrary, the Ni isotopic composition of the non-ultramafic topsoils, collected close to the plant, exhibit a large variation of δ60Ni, ranging from −0.19 ± 0.13‰ up to 0.10 ± 0.05‰ (n = 4). This slight but significant enrichment in heavy isotopes highlights the potential impact of smelting activity in the surrounding area, as well as the potential of Ni isotopes for discerning anthropogenic samples (heavier δ60Ni values) from natural ones (lighter δ60Ni values). However, given the global range of published δ60Ni values (from −1.03 to 2.5‰) and more particularly those associated to natural weathering of ultramafic rocks (from −0.61 to 0.32‰), the use of Ni isotopes for tracing environmental contamination from smelters will remain challenging.  相似文献   

8.
Dolomites from the productive Osa horizon (upper subformation of the Lower Cambrian Bilir Formation) in the Talakan petroleum field show a prominent 1–2‰ decrease in δ18O (from 23–24 to 21–22‰), which presumably marks a zone of relatively high water/rock ratios. Productive boreholes are characterized by moderate δ34S values (from 25.1 to 30.6‰) and negative correlation between δ34S in anhydrite and δ18O in associated dolomite, which points to a partial sulfate reduction during catagenesis. In nonproductive borehole, δ34S values increase significantly (from 31.4 to 35.6‰) and show positive correlation with δ18O in dolomite. Rocks recovered by nonproductive borehole possibly recrystallized during early diagenesis, and, correspondingly lost their permeability and capacity to form pores. Limestones and dolomites of the Osa horizon have a carbon isotopic composition within the range of normal marine carbonates (δ13C = 0 ± 1 ‰), which does not indicate a significant role of organic matter in postsedimentary recrystallization of carbonate sediments. A positive δ13C excursion up to 4.5‰ recorded in the lower subformation of the Bilir Formation presumably occurred at the sedimentation stage under conditions of high rates of bioproductivity and organic matter burial in sediments.  相似文献   

9.
The paper presents original authors' data on the O, H, C, S, and Sr isotopic composition of water and sediments from the basins into which the Aral Sea split after its catastrophic shoaling: Chernyshev Bay (CB), the basin of the Great Aral in the north, Lake Tshchebas (LT), and Minor Sea (MS). The data indicate that the δ18О, δD, δ13C, and δ34S of the water correlate with the mineralization (S) of the basins (as of 2014): for CB, S = 135.6‰, δ18О = 4.8 ± 0.1‰, δD = 5 ± 2‰, δ13C (dissolved inorganic carbon, DIC) = 3.5 ± 0.1‰, δ34S = 14.5‰; for LT, S = 83.8‰, δ18О = 2.0 ± 0.1‰, δD =–13.5 ± 1.5‰, δ13C = 2.0 ± 0.1‰, δ34S = 14.2‰; and for MS, S = 9.2‰, δ18О =–2.0 ± 0.1‰, δD =–29 ± 1‰, δ13C =–0.5 ± 0.5‰, δ34S = 13.1‰. The oxygen and hydrogen isotopic composition of the groundwaters are similar to those in MS and principally different from the artesian waters fed by atmospheric precipitation. The mineralization, δ13С, and δ34S of the groundwaters broadly vary, reflecting interaction with the host rocks. The average δ13С values of the shell and detrital carbonates sampled at the modern dried off zones of the basins are similar: 0.8 ± 0.8‰ for CB, 0.8 ± 1.4‰ for LT, and –0.4 ± 0.3‰ for MS. The oxygen isotopic composition of the carbonates varies much more broadly, and the average values are as follows: 34.2 ± 0.2‰ for CB, 32.0 ± 2.2‰ for LT, and 28.2 ± 0.9‰ for MS. These values correlate with the δ18O of the water of the corresponding basins. The carbonate cement of the Late Eocene sandstone of the Chengan Formation, which makes up the wave-cut terrace at CB, has anomalously low δ13С up to –38.5‰, suggesting origin near a submarine methane seep. The δ34S of the mirabilite and gypsum (11.0 to 16.6‰) from the bottom sediments and young dried off zone also decrease from CB to MS in response to increasing content of sulfates brought by the Syr-Darya River (δ34S = 9.1 to 9.9‰) and weakening sulfate reduction. The 87Sr/86Sr ratio in the water and carbonates of the Aral basins do not differ, within the analytical error, and is 0.70914 ± 0.00003 on average. This value indicate that the dominant Sr source of the Aral Sea is Mesozoic–Cenozoic carbonate rocks. The Rb–Sr systems of the silicate component of the bottom silt (which is likely dominated by eolian sediments) of MS and LT plot on the Т = 160 ± 5 Ma, I0 = 0.7091 ± 0.0001, pseudochron. The Rb–Sr systems of CB are less ordered, and the silt is likely a mixture of eolian and alluvial sediments.  相似文献   

10.
The stable carbon isotope compositions and the stomatal parameters (stomatal density and stomatal index) of four Cheirolepidiaceae species, Brachyphyllum ningxiaensis, Brachyphyllum obtusum, Pseudofrenelopsis dalatzensis and Pseudofrenelopsis gansuensis, were analyzed to recover the late Early Cretaceous atmospheric CO2 levels. The fossil plants were collected from 5 consecutive sedimentary members of the uppermost Zhonggou Formation. Based on the stomatal data, the estimated palaeo-atmospheric CO2 concentrations in the Jiuquan Basin during the late Early Cretaceous were 1060–882 ppmv based on the carboniferous standardization and were 641–531 ppmv based on the recent standardization; the pCO2 values present at first a decreasing and then an increasing trend within the sedimentary time of the five members. The δ13Cp values based on the 21 Brachyphyllum specimens showed a large variation, which ranged from −20.98‰ to −25.69‰, with an average of −24.2‰. The values also identified a C3 photosynthetic pathway for the Brachyphyllum specimens. The predicted δ13Ca values varied from −2.1‰ to −6.38‰, with an average of −5.03‰. These two proxies were irregular within the different members; therefore, the correlation with the change in atmospheric CO2 concentrations was not significant. Moreover, a water-stressed environment was proposed based on the δ13C values of the present fossil plants, a proposal that was also supported by the previous palaeobotanical, palynological and stratigraphical evidence. In the present study, an inconsistent relationship between the stable carbon isotope and the stomata values was apparent, which most likely indicated that the stomata numbers of the plant were more sensitive to the variation in the concentration of the atmospheric CO2, whereas the δ13C values were sensitive to the moisture conditions.  相似文献   

11.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

12.
Carbon (δ13CPDB) and oxygen (δ18OSMOW) isotopic compositions of auriferous quartz-carbonate veins (QCVs) of gold deposits from Sangli, Kabuliyatkatti, Nagavi, Nabapur and Mysore mining areas developed on the Central Lode system of the Gadag Gold Field (GGF) in the Neoarchaean Gadag schist belt of the Dharwar Craton, southern India have been examined for the first time to understand the origin of the mineralising fluids. In majority of the samples (46 out of 49), δ13Cpdb of carbonates of the QCVs fall in the range from − 2.2‰ to − 9.7‰ and the δ18O values range from 12.0‰ to 30.5‰ SMOW. The calculated fluid δ13C C compositions for these deposits range from − 2.1‰ to − 9.6‰ and δ18OH2O from 6.8‰ to 25.9‰, respectively. Carbonate δ13C and fluid δ13C C compositions of the carbonates of the QCVs of the GGF are not only distinct from the carbon isotope range of marine carbonates or meta-sedimentary carbonates of the Chitradurga schist belt, but are consistent with C-isotope values of magmatic (− 5 ± 3‰, Burrows et al., 1986) and/or mantle (− 6 ± 2‰, Ohmoto, 1986) carbonates. As dissolution/decarbonation reactions during metamorphism of pre-existing carbonate/carbonated rocks produce CO2 with δ13C values similar to or more enriched than parent rock, the carbonate or fluid δ13C ratios of the QCVs (which fall in the compositional range of mantle/magmatic derived CO2 or carbonates) obtained in this work cannot be the result of metamorphism. The present study corroborates our previous reports from Ajjanahalli and G.R. Halli gold deposits (Sarangi et al., 2012) occurring in the vicinity of the southern extension of the same crustal scale shear zone on which all the GGF deposits are located.The age of gold mineralisation in this area has been reported to be 2522 ± 6 Ma by Sarma et al., 2011. Chardon et al. (2011) have proposed large-scale remobilization of the older gneissic basement, as well as, emplacement of juvenile granites between 2559 Ma and 2507 Ma, close to the crustal scale shear zone along the eastern margin of the Chitradurga schist belt. Based on these observations and our isotope studies, it is proposed that gold mineralising fluids were derived from mantle/juvenile magmatic melts and were channelled through crustal scale shear zones to give rise to the gold deposits in the GGF.  相似文献   

13.
Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in δ18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in δ18O of pedogenic carbonate recorded after this eruption. The δ13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
《International Geology Review》2012,54(15):1909-1921
This paper reports the carbon and oxygen isotope compositions of lacustrine carbonate sediments from the Palaeogene Shahejie Formation, Qikou depression, Bohaiwan Basin, with the aim of determining the palaeoenvironmental conditions in the region. Results from Es2, the second member of the Shahejie Formation, showed values of δ13C and δ18O from –1.2‰ to +2.4‰ (average +0.6‰) and from –6.8‰ to –4.7‰ (average –5.7‰), respectively, suggesting a relatively hot climate attending deposition. The slightly closed nature of the lake, which contains brackish water, resulted in higher carbonate δ13C and δ18O values than in a meteoric environment. The values of δ13C and δ18O preserved within the carbonates of the overlying lower Shahejie I (Es1) varied between +1.3‰ and +4.9‰ (average +3.2‰) and from ?4.4‰ to ?1.8‰ (average ?3.1‰), respectively, indicating that the climate became colder at that time. Subsequently, a marine transgression caused the salinity of the lake water to increase. The values of δ13C and δ18O were controlled by salinity. The high δ13C values were also influenced by the rapid burial of the lake organisms and by algal photosynthesis. Values of δ13C and δ18O from carbonates in upper Es1 ranged from ?8.0‰ to +11.0‰ (average +10.1‰) and from ?5.0‰ to ?1.5‰ (average ?3.4‰), respectively, indicating a slight increase in the temperature over time. In the closed and reducing environment, extremes in δ13C values resulted from biochemical fermentation. The positive δ13C excursion recorded in the carbonates of the Shahejie Formation in the Qikou depression indicates that the palaeoclimate underwent a significant transformation during the Eocene and the Oligocene.  相似文献   

15.
REE-fluorocarbonates as major REE minerals in the Bayan Obo deposit,the largest REE deposit in the world,were analyzed for their stable isotopic compositions,The δ^13 C and δ^18 O values of huanghoite,cebaite and bastnaesite from late-stage veins vary in the ranges of 7.8--4.0‰ and 6.7-9.4‰,respectively,These data are relatively similar to those of bastnaesites from banded ores:δ^13C-5.6--5.2‰ andδ^18O3.6-5.5‰.The REE fluorocarbonates from both late-staege veins and banded ores are characterized by lower δ^13 C and δ^18O values,especially the δ^18O values of bastnaesites from banded ores.Compared with them,the disseminated bastnaesits the dolomite-type ores possess rather highδ^13 C and δ^18O values,i.e.,-2.1-0.4‰ and 8.6-12.9‰ respectively.The high values are typical of the sedimentary host dolomite rocks as well as of the dolomite-type-ores.The carbon and oxygen isotopic characteristics of REE fluorocarbonate minerals provide new evidence for the hypothesis on the origin of Bayan Obo deposit-epigenetic hydrothermal metasomatism.  相似文献   

16.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

17.
Multicellular animals first appeared on the earth during the Ediacaran period. However, the relationship between the abrupt biological evolution and environmental changes is still ambiguous. In order to examine seawater temperature and the carbon cycle through the Ediacaran, we analyzed the carbon and oxygen isotope compositions of carbonate rocks from drill cores from the Three Gorges area, South China. Importantly, the core samples include the Nantuo tillite, corresponding to the Marinoan glaciation, through the Doushantuo to the lower Dengying Fms. in ascending order.The δ13C profile displays five positive and five negative anomalies (PI-1 to 5 and NI-1 to 5), and the oxygen isotopes display very high absolute values around 0‰ with the highest at + 1.83‰. The combined δ18O and δ13C chemostratigraphies display both positive and negative correlations between the δ18O and δ13C values. The occurrence of the negative correlations supports the preservation of primary δ18O and δ13C values.The sample NI-4 has a negative correlation of the δ18O and δ13C excursions. The correlation supports a primary signature for both δ18O and δ13C variations. The positive δ18O excursion, accompanied by evidence of a eustatic sea-level fall, provides direct evidence for global cooling in the mid-Ediacaran; the 580 Ma Gaskiers Glaciation is a potential candidate for this global cooling event. The negative δ13C excursion was possibly caused by an increase in remineralization of dissolved organic carbon (DOC) due to enhanced continental weathering during the glaciation.Sample NI-5 is characterized by very low δ13C values, down to ? 10‰, corresponding to the Shuram-Wonoka-Pertatataka Excursion. The cause of the δ13C negative excursion is still not clear. However, a ubiquitous occurrence in excursions worldwide, and the lower δ13C values in deeper sections favor the enhancement of remineralization and respiration rather than secondary alteration, a restricted sea environment and lithification in coastal areas.  相似文献   

18.
We report stable isotope ratios (δ13C, δ18O), minor and trace elements (Mn, Fe, Sr, Mg) together with Ca concentrations from bivalve shells and belemnites from the Middle-Upper Jurassic Sundance Seaway (western United States), we compare them with coeval open-ocean Tethyan data, and reconstruct the palaeo-circulation of seaway waters. The Sundance Seaway was a 2000 km long epicontinental sea with a single entrance at mid latitudes (55–60°N), which would have fostered substantial evolution of seawater chemistry relative to its open-ocean source. Samples are distributed across the 13-million-year marine history of the seaway, and across a 540 km east-west transect spanning Wyoming. Delta13C values are in the same range as Tethyan data, and this suggests that they might record global changes in the carbon cycle, with one exception in the Oxfordian. Delta18O values from the seaway are in contrast highly depleted compared with Tethyan data (−2 to −6‰), and they indicate unrealistically high palaeotemperatures (20–40 °C), assuming an isotopic composition of seawater of −1‰, as generally used for the Jurassic. Given more realistic temperature estimates from Mg/Ca ratios of bivalve shells (10–25 °C), we explain such negative δ18O values by the southward inflow of normal-salinity, isotopically depleted (−3, −4‰), Arctic water into the seaway. Such water would become progressively more saline and denser as it flowed towards the southernmost portion of the seaway. In the Late Jurassic, characterised by wetter climate conditions, less dense Sundance waters may have instead exhibited a northward flow, reducing the southward surface flow from the Arctic. The observed partial geochemical decoupling of Sundance Seaway water masses from the open ocean strongly recommends caution in interpreting the geochemical record of ancient shallow seas, where local, regional and global drivers of change all need to be considered.  相似文献   

19.
The fluid inclusions in minerals and isotope composition of sulfur in sulfides and carbon and oxygen in carbonates are studied for the Novoshirokinskii gold-polymetallic deposit. The ore-forming fluids are characterized by the following physico-chemical and isotope-geochemical parameters: temperature of 290–100°C, salinity of 13–2.5 wt % NaCl-equiv., δ18O from +8 to 0‰, δ13C of 2.5 ± 0.5‰, and δ34S of 10.5 ± 1.0‰. It is concluded that the Late Proterozoic-Early Cambrian carbonaceous-terrigenous and carbonate rocks were involved in the Late Jurassic ore-magmatic system.  相似文献   

20.
In the Eastern Dharwar craton, among the many shear zone-hosted lode gold deposits, those at Ramagiri and Penakacherla are located near the western margin of the craton. Mineralized quartz (± sulfide ± carbonate) veins are hosted by the schistose (metavolcanic and carbonaceous metasedimentary) rocks, in close spatial association with granitoids having quartz and quartzofeldspathic veins representing hydrothermal activities associated with them. Mineralized quartz veins from the ore zones (in Ramagiri and Penakacherla regions) and quartz (or pegmatitic) veins from the surrounding granitic terrane were chosen for δ18O analysis. Samples from the schistose and granitic domains show δ18Oquartz values in the range of 10.4–14.9 and 9.3–10.9‰ respectively. The ore-zone fluids from the Ramagiri and Penakacherla regions give δ18O values of 7.9 ± 1.5 and 5.1 ± 0.8‰, calculated at pressure-corrected temperatures obtained from fluid inclusion microthermometry. The late-magmatic fluid is relatively 18O-poor with δ18O values estimated at 4.5 ± 0.7‰ and the value is closer to what is obtained for the ore zones. Based on the δ18O values reported and a possible magmatic contribution to ore fluid deciphered from fluid inclusion characteristics, a genetic relationship between granitic magmatism and gold mineralization is surmised. The observed increase in the 18O/16O ratio from the magmatic fluid to ore fluid in the shear zone is attributed to interaction of the magmatic fluid with host metasediments, that agrees well with the variation in the CO2/CH4 ratio of carbonic component in such fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号