首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Halten Terrace, offshore mid-Norway, is underlain by a Triassic evaporitic package that is rheologically weak, and led to decoupling of fault systems during Middle Jurassic to Early Cretaceous rifting. We use 2D and 3D reflection seismic data, constrained by wells, from the southern Bremstein Fault Complex of the Halten Terrace to map faults and key stratigraphic horizons, and analyse throw variations along faults, allowing us to constrain patterns of fault segmentation and linkage within the complex. The Bremstein Fault Complex has an overall tilted monoclinal geometry with localised fault systems at base salt level associated with overlying, highly distributed systems of normal faults. Vertical strain partitioning across the evaporite package means that sub-evaporite and supra-evaporite fault populations acted as semi-independent fault systems. Supra-evaporite faults are partly gravity-driven, and controlled by sub-evaporite faulting and consequent tilting of the evaporitic package. This behaviour leads to a wide variety of possible vertical linkage patterns of faults across the evaporite package. A greater variety of lateral segment linkage patterns occurs in evaporite-detached normal fault systems than in normal fault systems developed in the absence of evaporite units. Segment boundary styles can also be modified by migration of evaporite. Some segment boundaries are associated with a footwall anticline and hanging-wall syncline, in contrast to the footwall synclines and hanging-wall anticlines widely described in studies of normal fault systems.  相似文献   

2.
断距纵剖面图 (T H图)是指以断层的垂直断距为横轴、以地层或地质年龄为纵轴所绘制的随地层或地质年龄所变化的断距分布图。断距纵剖面图为确定正断层类型、断层形成时间和断层的纵向演化史提供了一个简单迅捷的工具。概念模型表明,断距纵剖面图可以明确无误地区分出简单后沉积型正断层、后沉积拱顶拉张型正断层、同沉积生长型正断层及其复合型正断层。简单后沉积型正断层的断距不随地层年龄的变化而变化, 其断距纵剖面图为一垂直线段。后沉积拱顶拉张型正断层的断距随地层年龄的增大而减小并趋向零值,同沉积生长型正断层的断距随地层年龄的增大而增大,复合型正断层则具其组合型断距纵剖面形态。除简单后沉积型正断层外,断距纵剖面图中的最大断距点代表了该断层的起始形成年代。  相似文献   

3.
Basement-involved structures associated with reverse, vertical and normal faults commonly involve non-parallel shear within a triangular deformation (trishear) zone located on the front limbs of the structures. Deformation within the trishear zone is characterized by shear gradients and an associated decrease in the dips of the beds in stratigraphically higher units. Geometric models suggest that the layer-parallel strain within the trishear zone depends on the type of fault (normal, reverse, or vertical), the dip and throw of the fault, the dip of the anticlinal or synclinal axial surfaces, and the distance of any unit above the initial tip of the trishear zone, located at the basement-sediment contact. At any given location, reverse faults typically show increasing layer parallel shortening, followed by decreasing layer parallel shortening and a transition to extension, with increasing throw. The transition from contraction to extension occurs at lower values of throw for stratigraphically lower units and also for faults with smaller dips. Vertical and normal faults exhibit increasing layer-parallel extension of all units with increasing throw, with larger extension for stratigraphically lower units. Experimental models suggest that the trishear zone can expand with increasing fault throw. The strain within the trishear zones is accommodated largely by secondary faults, which are rotated with progressive deformation. The strain variations in the experiments closely mimic those predicted by the geometric models for reverse, vertical, and normal faults.  相似文献   

4.
R. T. van Balen  T. Skar 《Tectonophysics》2000,320(3-4):331-345
The Halten Terrace is a structural element of the Meso-Cenozoic mid-Norwegian margin. The pore fluid pressure distribution in the faulted Jurassic formations on the Halten Terrace is characterized by significant lateral variations. In general, the fluid overpressure increases stepwise across faults from east to west, from zero (hydrostatic fluid pressure) to about 30 MPa. Fault-bounded pressure cells can therefore best explain the fluid pressure distribution. The results of analyses of log-derived porosities indicate that the high overpressure in the westernmost pressure cell was built up recently. However, despite the high sedimentation rates during Plio-Pleistocene, the high overpressure cannot be explained by local mechanical compaction. Alternative explanations for the high overpressure proposed by other authors are based on pore fluid volume increase (e.g. hydrocarbon generation). We propose that the high overpressure is caused by fluid flow from the deep Rås Basin to the western part of the Halten Terrace, through fractures in the Mesozoic, deep seated Klakk Fault Complex. Opening of fractures in this fault zone by seismic and static mechanisms is possible in the present-day intraplate stress field, which is characterized by a NW–SE oriented maximum horizontal stress direction. During Miocene, the maximum horizontal stress was E–W oriented, which implies a stress rotation during Pliocene. The E–W orientation of the maximum horizontal stress has impeded the initiation and opening of fractures in the N–S striking Klakk Fault Complex during Miocene. Fluid flow from the Rås Basin through faults of the Klakk Fault Complex can therefore have occured since Pliocene. Thus, the rotation of the intraplate stress directions can explain why the build-up of overpressure on the western part of the Halten Terrace occured recently, as indicated by the results of porosity analyses. Understanding the overpressure evolution of the Halten Terrace is important for exploration in that area, as hydrocarbons have been found in the hydrostatic pressure cells, whereas they are absent in the high overpressure cells.  相似文献   

5.
High-quality three-dimensional (3D) seismic reflection and borehole data from the Egersund Basin, offshore Norway are used to characterise the structural style and determine the timing of growth of inversion-related anticlines adjacent to a segmented normal fault system. Two thick-skinned normal faults, which offset Permian clastics and evaporites, delineate the north-eastern margin of the basin. These faults strike NNW-SSE, have up to 1900 m of displacement and are separated by an ESE-dipping, c. 10 km wide relay ramp. Both of these faults display exclusively normal separation at all structural levels and tip out upwards into the upper part of the Lower Cretaceous succession. At relatively shallow structural levels in the hangingwalls of these faults, a series of open, low-amplitude, fault-parallel anticlines are developed. These anticlines, which are asymmetric and verge towards the footwalls of the adjacent faults, are interpreted to have formed in response to mild inversion of the Egersund Basin. The amplitude of and apparent shortening associated with the anticlines vary along strike, and these variations mimic the along-strike variations in throw observed on the adjacent fault segments. We suggest that this relationship can be explained by along-strike changes in the propensity of the normal faults to reactivate during shortening; wider damage zones and lower angles of internal friction, coupled with higher pore fluids pressures at the fault centre, mean that reactivation is easier at this location than at the fault tips or in the undeformed country rock. Seismic-stratigraphic analysis of growth strata indicate that the folds initiated in the latest Turonian-to-earliest Coniacian (c. 88.6 Ma) and Santonian (c. 82.6 Ma); the control on this c. 6 Myr diachroneity in the initiation of fold growth is not clear, but it may be related to strain partitioning during the early stages of shortening. Anticline growth ceased in the Maastrichtian and the inversion event is therefore interpreted to have lasted at least c. 20 Myr. This study indicates that 3D seismic reflection data is a key tool to investigate the role that normal fault segmentation can play in controlling the structural style and timing of inversion in sedimentary basins. Furthermore, our results highlight the impact that this structural style variability may have on the development of structural and stratigraphic hydrocarbon traps in weakly-inverted rifts.  相似文献   

6.
We investigate the structural style and evolution of a salt-influenced, extensional fault array in the Egersund Basin (Norwegian North Sea) through analysis of 3D reflection seismic and well data. Analysis of fault geometry/morphology, throw distribution and syn-kinematic strata reveal an intricate but systematic style of displacement and growth, suggesting an evolution of (1) initial syn-sedimentary fault growth contemporaneous with salt mobilization initiated during the Late Triassic, (2) cessation of fault activity and burial of the stagnant fault tips, and (3) subsequent nucleation of new faults in the cover above contemporaneous salt re-mobilization initiated during the Late Cretaceous, with downward propagation and linkage with faults. Stage 3 was apparently largely controlled by salt mobilization in response to basin inversion, as reactivated faults are located where the underlying salt is thick, while the non-reactivated faults are found where salt is depleted. Based on the 3D-throw analyses, we conclude that a combination of basement faulting and salt (re-) mobilization is the driving mechanisms behind fault activation and reactivation. Even though the sub- and supra-salt faults are mainly geometrically decoupled through the salt, a kinematic coupling must have existed as sub-salt faults still affected nucleation and localization of the cover faults.  相似文献   

7.
A high-quality 3D seismic volume from offshore Espírito Santo Basin (SE Brazil) is used to assess the importance of gravitational collapse to the formation of crestal faults above salt structures. A crestal fault system is imaged in detail using seismic attributes such as curvature and variance, which are later complemented by analyses of throw vs. distance (T-D) and throw vs. depth (T-Z). In the study area, crestal faults comprise closely spaced arrays and are bounded by large listric faults, herein called border faults. Two episodes of growth are identified in two opposite-dipping fault families separated by a transverse accommodation zone. Statistical analyses for eighty-four (84) faults show that fault spacing is < 250 m, with border faults showing the larger throw values. Fault throw varies between 8 ms and 80 ms two-way time for crestal faults, and 60–80 ms two-way time for border faults. Fault length varies between ∼410 m and 1750 m, with border faults ranging from 1250 m to 1750 m. This work shows that border faults accommodated most of the strain associated with salt growth and collapse. The growth history of crestal faults favours an isolated fault propagation model with fault segment linkage being associated with the lateral propagation of discrete fault segments. Importantly, two episodes of fault growth are identified as synchronous to two phases of seafloor erosion, rendering local unconformities as competent markers of fault reactivation at a local scale. This paper has crucial implications for the understanding of fault growth as a means to assess drilling risk and oil and gas migration on continental margins. As a corollary, this work demonstrates that: 1) a certain degree of spatial organisation occurs in crestal fault systems; 2) transverse accommodation zones can form regions in which fault propagation is enhanced and regional dips of faults change in 4D.  相似文献   

8.
New structural and stratigraphic data for a selected area of the Ligurian Alps are combined in order to assess and discuss the role played by extensional structures in the southernmost segment of the Western Alps during thrusting. Restored cross-sections and field data suggest that the structural style in the external sector of the chain may depend upon the presence of pre-orogenic normal faults ascribed to three extensional events linked to different geodynamic contexts: (i) Permian post-Variscan plate reorganisation, (ii) Mesozoic rifting–drifting phases leading to the opening of the Alpine Tethys, and (iii) Eocenic development of the European foreland basins. During positive inversion in Eocene times, a thin-skinned thrust system developed in this area, followed by a thick-skinned phase. In both situations the inherited extensional structures played fundamental roles: during the thin-skinned phase they conditioned the thrusting sequence, also producing large-scale buckle folds and partial reactivations; during the thick-skinned phase the strain was compartmentalized and partitioned by pre-existing faults.The kinematic model of the external sectors of the Ligurian chain also allows the re-assessment of the Alpine evolution of the front-foreland transition, including: (i) indirect confirmation that in the Eocene the Ligurian Briançonnais and Dauphinois domains were not separated by the Valais-Pyrenean oceanic basin; (ii) that the thin-skinned phase progressively changed into thick-skinned; (iii) the assertion that there were no significant deformations from the Oligocene to the present-day, and the Corsica–Sardinia block rotation only produced a change in orientation of previously formed structures and normal fault system development.  相似文献   

9.
Detailed mapping of throw variations and deformation along two km-scale normal faults in the high-porosity Navajo sandstone, Utah, has been used to investigate fault growth in this lithology. The faults consist of one or more through-going, striated, slip-surfaces, accommodating the greater part of the offset surrounded by a damage zone consisting of deformation band clusters and short, unconnected slip-surfaces. In contrast to previous models for deformation in this lithology, we find that the nucleation of slip-surfaces begins where measurable throw is negligible and deformation bands are forming and increasing in number. The microstructure and porosity of deformation bands and slip surfaces are distinct and independent of the amount of offset that they accommodate, i.e. they represent different and yet contemporaneous deformation mechanisms. The point where measurable throw begins to accumulate (the fault tip) is marked by the first through-going connected slip-surface. Increase in throw towards the centre of the fault results in a three-dimensional strain field, producing orthorhombic structural geometries within the damage zone. We find that the total width of the damage zone increases as offset is accumulated. For these faults, the damage zone width is approximately 2.5 times the total fault throw.  相似文献   

10.
基于物探、钻探等资料,采用地质统计法对东欢坨矿区构造要素进行分析,探讨了断层发育规模、空间展布特征及断层要素与断层性质的相关关系,建立了不同性质断层的落差与延展长度之间的经验公式,从古构造应力场演化角度分析了断裂展布的成因。研究表明:区内地质构造以NE向断层为主,以车轴山向斜轴为界,表现为"两翼分区"、"西逆东正",全区呈现"南北分带"、"南密北稀"的展布特征。定量分析认为断层落差与延伸长度呈正相关关系,断裂密度等值线呈现明显分区性,断裂强度由SE-NE逐渐减弱。  相似文献   

11.
We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128–308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw.Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault arrays to form two along-strike, NW-SE striking fault assemblages, and; [4] termination of fault growth in the latest Maastrichtian. We document high variability of throw along-strike and down-dip for both fault assemblages, thereby providing evidence for lateral and vertical segment linkage. Our results highlight the complexities involved in the growth of both gravity-driven normal fault arrays (such as those present in the Niger Delta and Gulf of Mexico) and basement-linked normal fault arrays (such as those present in the North Sea and Suez Rift) with the interaction of an underlying and reactivating basement framework. This study provides an excellent example of spatial variability in growth of two normal fault assemblages over relatively short spatial scales (∼2 km separation down-dip).  相似文献   

12.
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).  相似文献   

13.
The NW-trending Bucaramanga fault links, at its southern termination, with the Soapaga and Boyacá faults, which by their NW trend define an ample horsetail structure. As a result of their Neogene reactivation as reverse faults, they bound fault-related anticlines that expose the sedimentary fill of two Early Jurassic rift basins. These sediments exhibit the wedge-like geometry of rift fills related to west-facing normal faults. Their structural setting was controlled further by segmentation of the bounding faults at approximately 10 km intervals, in which each segment is separated by a transverse basement high. Isopach contours and different facies associations suggest these transverse anticlines may have separated depocenters of their adjacent subbasins, which were shaped by a slightly different subsidence history and thereby decoupled. The basin fill of the relatively narrow basin associated with the Soapaga fault is dominated by fanglomeratic successions organized in two coarsening-upward cycles. In the larger basin linked to the Boyacá fault, the sedimentary fill consists of two coarsening-upward sequences that, when fully developed, vary from floodplain to alluvial fan deposits. These Early Jurassic rift fills temporally constrain the evolution of the Bucaramanga fault, which accommodated right-lateral displacement during the early Mesozoic rift event.  相似文献   

14.
塔里木盆地巴楚隆起古董山断裂带构造分析   总被引:3,自引:0,他引:3       下载免费PDF全文
古董山断裂构造带位于塔里木盆地西部的巴楚隆起上,走向北西-南东,延伸140 km左右。基于地震剖面的详细解释,识别出4期构造变形:寒武-奥陶纪正断层、二叠纪正断层、中新世冲断层、上新世-更新世冲断层及其伴生的正断层。中新世基底卷入型冲断层是古董山构造带的主控断裂构造,构成断裂带的主体,构造变形样式为断层传播褶皱。寒武-奥陶纪正断层形成复式地垒,隐伏于中新世主干断层之下。二叠纪正断层可能伴生有岩浆活动。先存的正断层和岩浆岩对古董山中新世断裂活动具有明显的控制作用;后期的断裂活动,即上新世-更新世逆冲断层和正断层,对中新世形成的断裂构造有改造作用。古董山断裂带东南端与玛扎塔格构造带西端交汇,但两者不是同一条断裂带。  相似文献   

15.
Overlap lengths, separations and throw gradients were measured on 132 relay zones recorded on coal-mine plans. Throws on the relay-bounding fault traces are usually ≤ 2 m and individual structures are recorded on only one seam. Throw gradients associated with relay zones are not always higher than on single faults, but asymmetry of throw profiles is diagnostic of relay zones. Bed geometries around larger faults in opencast mines are used to assess the displacement accommodated by shear in the vertical plane normal to the faults and displacement transfer accommodated by shear in the fault-parallel plane. Three-dimensional structure is defined for two relay zones, each recorded on five seam plans. These relay zones are effectively holes through the fault surfaces and overlap occurs between salients or lobes of the parent fault surfaces. Lobes initially terminated at tip-lines but, as the faults grew, gradually rejoined the main fault surfaces along branch lines. This type of relay zone originates by bifurcation of a single fault surface at a locally retarded tip-line and is an almost inevitable result of a tip-line irregularity.  相似文献   

16.
塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系   总被引:2,自引:0,他引:2  
通过露头与井下资料的综合分析,塔里木盆地奥陶系碳酸盐岩走滑断裂带断裂相具有多样性,根据内部构造发育程度可以分为断层核发育、断层核欠发育两类。露头走滑带断层核部以裂缝带、透镜体、滑动面等断裂相发育为特征,断裂边缘的破碎带发育裂缝带、变形带。裂缝带主要分布在断层核附近50m的破碎带内,裂缝多开启,渗流性好。断裂核部透镜体发育,在破碎带也有分布,破碎角砾组合的透镜体多致密。滑动面具有平直截切型、渐变条带型等两种类型,多为开启的半充填活动面。变形带多为方解石与碎裂岩充填,破碎带局部部位裂缝与溶蚀作用较发育。利用地震剖面、构造图、相干图等资料可以判识塔里木盆地内部奥陶系碳酸盐岩走滑断裂相的特征及其发育程度,沿走滑断裂带走向上断裂相具有分段性与差异性,根据渗流性可以定性区分高渗透相、致密相区。沿断裂带高渗透相区是碳酸盐岩缝洞体储层发育的有利部位。断裂相的横向变化造成油气分布的区段性,形成高渗透相输导模式、致密相遮挡模式等两类成藏模式。走滑断裂带碳酸盐岩断裂相的特征及其控藏作用对油气勘探开发储层建模具有重要意义。  相似文献   

17.
Small regional folds, such as the Clover Hollow anticline of the Narrows thrust-sheet in southwest Virginia, U.S.A., are considered to be large buckle folds expressing lateral shortening above a subsurface décollement. Cleavage, mesoscopic and regional folds, and contraction faults have developed in these rocks under anchimetamorphic conditions, in a single, protracted deformation during thrust-sheet emplacement. The contraction faults dominate the structure at all scales. Three fault associations (isolated contraction faults, contraction faults in series and complex fault zones with intense folding) determine the pattern and intensity of local structures. Regional displacement transfer of strain along and across faults has produced local variations in structural style. Duplex-like systems of second-order faults terminate laterally into zones of intense folding and third-order faulting. Fold tightness, cleavage intensity, strain magnitude and total longitudinal strain (εT) are maximum in these regions. Contraction faults in this thrust-sheet have propagated along zones of high strain rate associated with mesoscopic folding and intense cleavage. Regional hinge migration, and greater structural complexity along the southeast limb of the Clover Hollow anticline, are considered to be due to emplacement of the adjacent thrust-sheet.  相似文献   

18.
伸展盆地区断裂构造特征与成因   总被引:4,自引:0,他引:4  
近十年来断裂构造研究进展迅速,研究思路发生了重大转变,强调应变与应力在断裂形成过程中的同等重要性。重点论述了断裂位移特征及影响因素,断裂位移在断层中部最大,端部最小至零,具有与断层规模无关的特征,但它受断裂分段、连接、近端过程等影响而发生变化。位移作为应变的结果,控制着横向褶皱的形成和分布、沉积中心的迁移(断裂单侧扩展时)或沉积位置不变但范围扩大(断裂双侧扩展时)以及沉积充填结构等。探讨了断裂三维几何形态分类及断裂形成与形态的控制因素:深部与浅部耦合(基底构造的活化与沉积盖层的响应),建造与改造的耦合,边界条件与构造应力场,沉积压实和埋藏作用等。提出了断裂分级和组合规律,总体上伸展区断裂可分五级,一级控盆,二级控坳,三级控带,四级控圈,五级复杂化;不同级别的断裂三维组合规律可分为软连接组合和硬连接组合。伸展区断裂生长史可划分为成核、扩展、释压、连接、消亡和活化6个阶段。  相似文献   

19.
In order to determine whether slip during an earthquake on the 26th September 1997 propagated to the surface, structural data have been collected along a bedrock fault scarp in Umbria, Italy. These collected data are used to investigate the relationship between the throw associated with a debated surface rupture (observed as a pale unweathered stripe at the base of the bedrock fault scarp) and the strike, dip and slip-vector. Previous studies have suggested that the surface rupture was produced either by primary surface slip or secondary compaction of hangingwall sediments. Some authors favour the latter because sparse surface fault dip measurements do not match nodal plane dips at depth. It is demonstrated herein that the strike, dip and height of the surface rupture, represented by a pale unweathered stripe at the base of the bedrock scarp, shows a systematic relationship with respect to the geometry and kinematics of faulting in the bedrock. The strike and dip co-vary and the throw is greatest where the strike is oblique to the slip-vector azimuth where the highest dip values are recorded. This implies that the throw values vary to accommodate spatial variation in the strike and dip of the fault across fault plane corrugations, a feature that is predicted by theory describing conservation of strain along faults, but not by compaction. Furthermore, published earthquake locations and reported fault dips are consistent with the analysed surface scarps when natural variation for surface dips and uncertainty for nodal plane dips at depth are taken into account. This implies that the fresh stripe is indeed a primary coseismic surface rupture whose slip is connected to the seismogenic fault at depth. We discuss how this knowledge of the locations and geometry of the active faults can be used as an input for seismic hazard assessment.  相似文献   

20.
The purpose of this paper is to examine the kinematic behaviour of normal fault systems and see what general conditions govern their geometrical evolution. We pay particular attention to seismological and surface data from regions of present day active normal faulting, as the instantaneous three-dimensional geometry at the time of fault movement is better known in active regions than in areas where the faults are now static.Most normal faults are concave upward, or listric. This shape can be produced by geometric constraints, either because the faults reactivate curved thrusts, or because they must be curved to accommodate rotations. Another effect which will produce curved faults is the variation of rheology with depth: brittle failure at shallow depths produces less fault rotation than does distributed creep in the lower part of the crust. An important geometric feature of normal faulting is the uplift of the footwall. The amount of such uplift is related not only to the elastic properties of the lithosphere, but also to the throw and dip of the fault. A striking feature of active normal faults is that they occur in groups in which all the faults dip in the same direction. This behaviour arises because the faults cannot intersect: if they do, one must cease to be active. The rotation which such fault systems produce reduces the dip of the faults until a new steeply dipping fault is formed. Once a new fault cuts pre-existing faults the earlier faults become locked, and a new set of faults must propagate rapidly across the whole region involved. Many of these geometric constraints also apply to thrust faulting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号