首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

2.
Groundwaters were collected around the Spence porphyry copper deposit, Atacama Desert, northern Chile, to study water-porphyry copper ore bodies interaction and test hypotheses regarding transport of metals through thick overburden leading to the formation of soil geochemical anomalies. The deposit contains 400 Mt of 1% Cu and is completely buried by piedmont gravels of Miocene age. Groundwaters were recovered from the eastern up hydraulic gradient (upflow) margin of the Spence deposit, from within the deposit, and for two kilometers down flow from the deposit. Water table depths decrease from 90 m at the upflow margin to 30 m 1.5 km down flow. Groundwaters at the Spence deposit are compositionally variable with those upflow of the deposit characterized by relatively low salinities (900-7000 mg/L) and Na+-SO42−-type compositions. These waters have compositions and stable isotope values similar to regional groundwaters recovered elsewhere in the Atacama Desert of Northern Chile. In contrast, groundwaters recovered within and down flow of the deposit range in salinity from 10,000 to 55,000 mg/L (one groundwater at 145,000 mg/L) and are dominantly Na+-Cl-type waters. Dissolved sulfate values are, however, elevated compared to upflow waters, and δ34SCDT decreases into the deposit (from >4‰ to 2‰), consistent with increasing influence of sulfur derived from oxidation of sulfide minerals within the deposit. The increase in salinity and conservative tracers (Cl, Br, Li+, and Na+) and the relationship between oxygen and hydrogen isotopes suggests that in addition to water-rock reactions within the deposit, most of the compositional variation can be explained by groundwater mixing (with perhaps a minor role for evaporation). A groundwater-mixing scenario implies a deeper, more saline groundwater source mixing with the less saline regional groundwater-flow system. Flow of deeper, more saline groundwater along pre-existing structures has important implications for geochemical exploration and metal-transport models.  相似文献   

3.
《Applied Geochemistry》1988,3(2):185-203
Chemical and isotopic analyses of water from drill holes and mines throughout the Fennoscandian Shield show that distinct layers of groundwater are present. An upper layer of fresh groundwater is underlain by several sharply differentiated saline layers, which may differ in salinity, relative abundance of solutes, and O, H, Sr and S isotope signature. Saline groundwater can be classified into four major groups based on geochemistry and presumed origin. Brackish and saline waters from 50–200 m depth in coastal areas around the Baltic Sea exhibit distinct marine chemical and isotopic fingerprints, modified by reactions with host rocks. These waters represent relict Holocene seawater. Inland, three types of saline groundwater are observed: an uppermost layer of brackish and saline water from 300–900 m depth; saline water and brines from 1000–2000 m depth; and superdeep brines which have been observed to a depth of at least 11 km in the drill hole on the Kola Peninsula, U.S.S.R. Electrical and seismic studies in shield areas suggest that such brines are commonly present at even greater depths. The salinity of all inland groundwaters is attributed predominantly to water-rock interaction. The main solutes are Cl, Ca, Na and Mg in varying proportions, depending on the host rock lithology. The abundance of dissolved gases increases with depth but varies from site to site. The main gas components are N2, CH4 (up to 87 vol.%) and locally H2. The δ13C value for methane is highly variable (−25 to −46%), and it is suggested that hydrothermal or metamorphic gases trapped within the surrounding rocks are the most obvious source of CH4. The uppermost saline water has meteoric oxygen-hydrogen isotopic compositions, whereas values from deeper water plot above the meteoric water line, indicating considerably longer mean residence time and effective low temperature equilibration with host rocks. Geochemical and isotopic results from some localities demonstrate that the upper saline water cannot have been formed through simple mixing between fresh water and deep brines but rather is of independent origin. The source of water itself has not been satisfactorily verified although superdeep brines at least may contain a significant proportion of relict Precambrian hydrothermal or metamorphic fluids.  相似文献   

4.
The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature groundwaters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg 1?1. The isotopic composition of these shallow waters reflects local, present day precipitations.In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated “pockets”. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. The concentrations of some major and most minor elements in these fluids appear to be governed by reactions with secondary mineral assemblages.  相似文献   

5.
In the Schwarzwald area, southwest Germany, more than 400 hydrothermal veins hosting different gangue and ore mineral assemblages cross-cut the crystalline basement rocks. Many of the post-Variscan fluorite-barite-quartz veins are considered to have precipitated through mixing of a deep saline brine with meteoric, low salinity waters. This hypothesis was tested using carbon, sulfur, and oxygen isotope data of sulfides, sulfates and calcite, coupled with fluid inclusion studies. Primary hydrothermal calcites from the deposits show a positive correlation of their δ13C (V-PDB) and δ18O (V-SMOW) values, which range from −12 to −3‰ and from 12 to 18.5‰, respectively. Carbon and oxygen isotope compositions of paragenetically young, remobilized calcite types are shifted towards higher values and range from −12 to −1‰ and from 20 to 25‰, respectively. We developed an improved calculation procedure for modeling the covariation of carbon and oxygen isotopes in calcite resulting from mixing of two fluids with different isotopic compositions and total carbon concentrations. In our model, the carbon speciation in the two model fluid end-members and the fluid mixtures are calculated using a speciation and reaction path code. The carbon and oxygen isotope covariation of primary Schwarzwald calcites can effectively be modeled by a mixing trend of a deep saline brine and a meteoric, low salinity water. Sulfur isotope data of barites from 44 hydrothermal fluorite-barite-quartz veins vary from 9 to 18‰ (CDT), sulfide ore minerals show δ34S values between −14.4 and 2.9‰. Calculated sulfide-sulfate equilibrium temperatures are in the range between 300 and 350 °C. These temperatures differ significantly from the formation temperatures of 150 to 200 °C of most of the deposits as estimated from fluid inclusions, and are interpreted as preserved paleotemperatures of the deep aquifer. This assumption has been carefully checked against possible contamination of an equilibrated sulfide-sulfate system from the deep aquifer with sulfate from surface-derived sources, considering also the kinetics of the sulfide-sulfate isotope exchange. A combination of the S isotopic results with microthermometric fluid inclusion data and constraints on the temperature of the meteoric water was used to calculate mixing ratios of the two fluid end-members. The results indicate that mass fractions of the deep saline brine in the mixed fluid were between 0.5 and 0.75. Considering all geologic, geochemical and isotopic information, we propose that the majority of the post-Variscan hydrothermal veins in the Schwarzwald area were precipitated by district-scale mixing of a homogeneous deep saline brine with meteoric waters.  相似文献   

6.
Changes in the climatic conditions during the Late Quaternary and Holocene greatly impacted the hydrology and geochemical evolution of groundwaters in the Great Lakes region. Increased hydraulic gradients from melting of kilometer-thick Pleistocene ice sheets reorganized regional-scale groundwater flow in Paleozoic aquifers in underlying intracratonic basins. Here, we present new elemental and isotopic analyses of 134 groundwaters from Silurian-Devonian carbonate and overlying glacial drift aquifers, along the margins of the Illinois and Michigan basins, to evaluate the paleohydrology, age distribution, and geochemical evolution of confined aquifer systems. This study significantly extends the spatial coverage of previously published groundwaters in carbonate and drift aquifers across the Midcontinent region, and extends into deeper portions of the Illinois and Michigan basins, focused on the freshwater-saline water mixing zones. In addition, the hydrogeochemical data from Silurian-Devonian aquifers were integrated with deeper basinal fluids, and brines in Upper Devonian black shales and underlying Cambrian-Ordovician aquifers to reveal a regionally extensive recharge system of Pleistocene-age waters in glaciated sedimentary basins. Elemental and isotope geochemistry of confined groundwaters in Silurian-Devonian carbonate and glacial drift aquifers show that they have been extensively altered by incongruent dissolution of carbonate minerals, dissolution of halite and anhydrite, cation exchange, microbial processes, and mixing with basinal brines. Carbon isotope values of dissolved inorganic carbon (DIC) range from −10 to −2‰, 87Sr/86Sr ratios range from 0.7080 to 0.7090, and δ34S-SO4 values range from +10 to 30‰. A few waters have elevated δ13CDIC values (>15‰) from microbial methanogenesis in adjacent organic-rich Upper Devonian shales. Radiocarbon ages and δ18O and δD values of confined groundwaters indicate they originated as subglacial recharge beneath the Laurentide Ice Sheet (14-50 ka BP, −15 to −13‰ δ18O). These paleowaters are isolated from shallow flow systems in overlying glacial drift aquifers by lake-bed clays and/or shales. The presence of isotopically depleted waters in Paleozoic aquifers at relatively shallow depths illustrates the importance of continental glaciation on regional-scale groundwater flow. Modern groundwater flow in the Great Lakes region is primarily restricted to shallow unconfined glacial drift aquifers. Recharge waters in Silurian-Devonian and unconfined drift aquifers have δ18O values within the range of Holocene precipitation: −11 to −8‰ and −7 to −4.5‰ for northern Michigan and northern Indiana/Ohio, respectively. Carbon and Sr isotope systematics indicate shallow groundwaters evolved through congruent dissolution of carbonate minerals under open and closed system conditions (δ13CDIC = −14.7 to−11.1‰ and 87Sr/86Sr = 0.7080-0.7103). The distinct elemental and isotope geochemistry of Pleistocene- versus Holocene-age waters further confirms that surficial flow systems are out of contact with the deeper basinal-scale flow systems. These results provide improved understanding of the effects of past climate change on groundwater flow and geochemical processes, which are important for determining the sustainability of present-day water resources and stability of saline fluids in sedimentary basins.  相似文献   

7.
Primary massive sulfide gossans (MSG) in the Bathurst Mining Camp (BMC), New Brunswick, Canada, are characterized by relative enrichment of Au, Sb, and As, formation of jarosite group minerals (jarosite, plumbojarosite, and argentojarosite) and little or no fractionation in the rare earth elements (REE), including preservation of large positive Eu anomalies (average [Eu/Eu*]NASC = 4.14 in MSG; 6.61 in massive sulfide mineralization; 0.60 in host rocks). The chemical and mineralogical characteristics of MSG (e.g., Halfmile Lake deposit) imply low pH (<3) and relatively oxidizing conditions during gossan formation; oxidation of a volcanogenic massive sulfide body (comprising pyrite, pyrrhotite, sphalerite, galena, and chalcopyrite) with a falling water table. The lack of light REE or heavy REE fractionation and preservation of positive Eu anomalies characteristic of the original (465 Ma) hydrothermal fluid is consistent with relatively large water-rock ratios during massive sulfide mineralization oxidation, and removal of the REE predominantly as sulfate complexes (LnSO4+, Ln(SO4)2). Low pH groundwaters recovered from past producing mines in the BMC display REE patterns reflecting those inferred to have occurred during gossan formation. Gossan at the Restigouche deposit, in contrast to the Halfmile Lake deposit, displays mineralogical and chemical evidence for having been chemically reworked since primary gossan formation. Evidence for chemical reworking includes loss of primary massive sulfide mineralization textures, replacement of plumbojarosite with anglesite, almost complete removal of jarosite minerals, loss of Au, Sb, and As and apparent preferential removal of Eu, resulting in loss of positive Eu anomalies for most samples (average [Eu/Eu*]NASC = 1.21 in the gossan, with many displaying strong negative anomalies; 3.65 in massive sulfide mineralization; 0.54 in host rocks). Based on geochemical modeling, conditions inferred for the chemical reworking of the Restigouche deposit include near neutral conditions and either relatively oxidizing conditions with Eu2+ hosted in a preferentially weathered mineral host (possibly through substitution for Pb in plumbojarosite and beudantite) or cycling between reduced and oxidized conditions during gossan reworking.  相似文献   

8.
Twenty-four brine samples from the Heletz-Kokhav oilfield, Israel, have been analyzed for chemical composition and Li isotope ratios. The chemical composition of the brines, together with geological evidence, suggests derivation from (Messinian) seawater by evaporation that proceeded well into the gypsum stability field but failed to reach the stage of halite crystallization. The present salinity of the samples (18-47 g Cl/L) was achieved by dilution of the original evaporitic brine by local fresh waters. Like brines from other sedimentary basins, the Li/Cl ratios in the Heletz-Kokhav samples show a prominent Li enrichment (five-fold to eight-fold) relative to modern seawater. The isotopic ratios of Li, expressed in the δ 6Li notation, vary from −26.3 to −17.9‰, all values being significantly higher than that of modern seawater (−32‰) irrespective of their corresponding Li concentration (1.0-2.3 mg/L). The isotopic composition of Li and the Li/Cl ratio in the oilfield brines were acquired in two stages: (a) The original evaporated seawater gained isotopically light Li during the diagenetic interaction between the interstitial Messinian brine and the basin sediments. A parent brine with an elevated Li/Cl ratio was formed. The brine was later diluted in the oilfields. (b) The δ 6Li values of the final brines were determined during epigenetic interaction with the Heletz-Kokhav aquifer rocks. At the same time, the Li/Cl ratio inherited from stage (a) remained largely unchanged. This work represents the first use of lithium isotopic composition to elucidate the origin and evolution of formation waters in sedimentary basins.  相似文献   

9.
10.
Chemical and isotopic data for 23 geothermal water samples collected in New Zealand within the Taupo Volcanic Zone (TVZ) are reported. Major and trace elements including Li, B and Sr and their isotopic compositions (δ7Li, δ11B, 87Sr/86Sr) were determined in high temperature geothermal waters collected from deep boreholes in different geothermal fields (Ohaaki, Wairakei, Mokai, Kawerau and Rotokawa geothermal systems). Lithium concentrations are high (from 4.5 to 19.9 mg/L) and Li isotopic compositions (δ7Li) are homogeneous, ranging between −0.5‰ and +1.4‰. In particular, it is noteworthy that, except for the samples from the Kawerau geothermal field having slightly higher δ7Li values (+1.4%), the other geothermal waters have a near constant δ7Li signature around a mean value of 0‰ ± 0.6 (2σ, n = 21). Boron concentrations are also high and relatively homogeneous for the geothermal samples, falling between 17.5 and 82.1 mg/L. Boron isotopic compositions (δ11B) are all negative, and display a range between −6.7‰ and −1.9‰. These B isotope compositions are in agreement with those of the Ngawha geothermal field in New Zealand. Lithium and B isotope signatures are in a good agreement with a fluid signature mainly derived from water/rock interaction involving magmatic rocks with no evidence of seawater input. On the other hand, Sr concentrations are lower and more heterogeneous and fall between 2 and 165 μg/L. The 87Sr/86Sr ratios range from 0.70549 to 0.70961. These Sr isotope compositions overlap those of the Rotorua geothermal field in New Zealand, confirming that some geothermal waters (with more radiogenic Sr) have interacted with bedrocks from the metasedimentary basement. Each of these isotope systems on their own reveals important information about particular aspects of either water source or water/rock interaction processes, but, considered together, provide a more integrated understanding of the geothermal systems from the TVZ in New Zealand.  相似文献   

11.
Over the last decade it has become apparent that Li isotopes may be a good proxy to trace silicate weathering. However, the exact mechanisms which drive the behaviour of Li isotopes in surface environments are not totally understood and there is a need to better calibrate and characterize this proxy. In this study, we analysed the Li concentrations and isotopic compositions in the various surface reservoirs (soils, rocks, waters and plants) of a small forested granitic catchment located in the Vosges Mountains (Strengbach catchment, France, OHGE http://ohge.u-strasbg.fr). Li fluxes were calculated in both soil profiles and at the basin scale and it was found that even in this forested basin, atmospheric inputs and litter fall represented a minor flux compared to input derived from the weathering of rocks and soil minerals (which together represent a minimum of 70% of dissolved Li). Li isotope ratios in soil pore waters show large depth dependent variations. Average dissolved δ7Li decreases from −1.1‰ to −14.4‰ between 0 and −30 cm, but is +30.7‰ at −60 cm. This range of Li isotopic compositions is very large and it encompasses almost the entire range of terrestrial Li isotope compositions that have been previously reported. We interpret these variations to result from both the dissolution and precipitation of secondary phases. Large isotopic variations were also measured in the springs and stream waters, with δ7Li varying from +5.3‰ to +19.6‰. δ7Li increases from the top to the bottom of the basin and also covaries with discharge at the outlet. These variations are interpreted to reflect isotopic fractionations occurring during secondary phase precipitation along the water pathway through the rocks. We suggest that the dissolved δ7Li increases with increasing residence time of waters through the rocks, and so with increasing time of interaction between waters and solids. A dissolution precipitation model was used to fit the dissolved Li isotopic compositions. It was found that the isotopic compositions of springs and stream waters are explicable by an isotopic fractionation of −5‰ to −14‰ (best fit −10.8‰), in agreement with Li incorporation into clay. In soil solutions, it was found that isotopic fractionation during secondary precipitation is larger (at least −23‰), suggesting a major role for different secondary phases, such as iron oxides that maybe incorporate Li with a higher isotope fractionation.  相似文献   

12.
《Applied Geochemistry》2000,15(6):695-723
Ground and surface waters collected from two undisturbed Zn–Pb massive sulphide deposits (the Halfmile Lake and Restigouche deposits) and active mines in the Bathurst Mining Camp (BMC), NB, Canada were analysed for the rare earth elements (REE). REE contents are highly variable in waters of the BMC, with higher contents typical of waters with higher Fe and lower pH. There are significant differences between ground- and surface waters and between groundwaters from different deposits. The REE contents of surface waters are broadly similar within and between deposit areas, although there are spatial variations reflecting differences in pH and redox conditions. Surface waters are characterised by strong negative Ce anomalies ([Ce/Ce*]NASC as low as 0.08), produced by oxidation of Ce3+ to Ce4+ and preferential removal of Ce4+ from solution upon leaving the shallow groundwater environment. Groundwaters and seeps typically lack significant Ce anomalies reflecting generally more reducing conditions in the subsurface environment and indicating that Ce oxidation is a rapid process in the surface waters. Deeper groundwaters at the Halfmile Lake deposit are characterised by REE patterns that are similar to the host lithologies, whereas most groundwaters at the Restigouche deposit have LREE-depleted patterns compared to NASC. Halfmile Lake deposit groundwaters have generally lower pH values, whereas Restigouche deposit groundwaters show greater heavy REE-complexation by carbonate ions. Shallow waters at the Halfmile Lake and Stratmat Main Zone deposits have unusual patterns which reflect either the adsorption of light REE onto colloids and fracture-zone minerals and/or precipitation of REE–phosphate minerals. Middle REE-enrichment is typical for ground- and surface waters and is highest for neutral pH waters. The labile portion of stream sediments are generally more middle REE-enriched than total sediment and surface waters indicating that the REE are removed from solution by adsorption to Fe- and Mn-oxyhydroxides in the order middle REE≥light REE>heavy REE.  相似文献   

13.
Salinization is a process impacting groundwater quality and availability across much of southern Louisiana, USA. However, a broad divergence of opinion exists regarding the causes of this elevated salinity: updip-migrating marine waters from the Gulf of Mexico, saline fluids migrating up fault planes, movement of water from salt domes, and/or remnant seawater from the last major marine transgression. The Mississippi River Alluvial Aquifer (MRAA) in south-central Louisiana is recharged by the Mississippi River, and there are discharge zones to the west and east. Recharge waters from the Mississippi River are fresh, but Cl levels in the western portions of the aquifer are as high as 1000 mg/L. The aquifer is an important source of water for several municipalities and industries, but prior to this study the source(s) of the elevated salinity or whether the salinization can be remediated had not been determined.The low Br/Cl ratios in the groundwaters are consistent with a saline endmember produced by subsurface dissolution of salt domes, not a marine source. The H and O isotopic systematics of the aquifer waters indicate meteoric sources for the H2O, not marine waters or diagenetically-altered deep brines. The westward salinization of aquifer water represents a broad regional process, instead of contamination by point sources. Mapping of spatial variations in salinity has permitted the identification of specific salt domes whose subsurface dissolution is producing waters of elevated salinity in the aquifer. These include the Bayou Choctaw and St. Gabriel domes, and possibly the Bayou Blue dome. Salinization is a natural, on-going process, and the potential for remediation or control is slight, if not non-existent.  相似文献   

14.
In this study, compositions and δ13C and δ2H isotopic values of hydrocarbon gases from 5 mines in the Witwatersrand basin, South Africa, support the widespread occurrence of microbially produced methane in millions of years-old fissure waters. The presence of microbial methane is, to a large extent, controlled by the geologic formations in which the gases are found. Samples from the Witwatersand Supergroup have the largest microbial component based on δ13C and δ2H signatures and CH4/C2+ values. Based on mixing between a microbial CH4 component and a more 13C-enriched and 2H-depleted C2+-rich end member, conservative estimates of the % contribution of microbial CH4 to the gas samples range from >90% microbial CH4 at Beatrix, Masimong, and Merriespruit, to between 5 and 80% microbial CH4 at Evander, and <18% microbial CH4 at Kloof. The Witwatersrand basin’s history of thermal alteration of organic-rich ancient sedimentary units suggests a thermogenic origin for this 13C-enriched end member. Alternatively, the potential for an abiogenic origin similar to hydrocarbon gases produced by water-rock interaction at other Precambrian Shield mines is discussed. Microbial methane is predominantly found in paleo-meteoric fissure waters with δ18O and δ2H values that fall on the meteoric waterline, and have temperatures between 30 to 40°C. In contrast, fissure waters with a larger component of nonmicrobial hydrocarbon gases show a trend towards more enriched δ18O and δ2H values that fall well above the meteoric waterline, and temperatures of 45 to 60°C. The enrichment in 18O and 2H in these samples, and their high salinity, are similar to the isotopic and compositional characteristics of saline groundwaters and brines produced by water-rock interaction at Precambrian Shield sites elsewhere. The reported 100 Ma ages of fissure waters from the Witwatersrand and Ventersdorp formations suggest that these microbial hydrocarbon gases are the product of in situ methanogenic communities in the deep subsurface of the Witswaterand basin. Small subunit ribosomal RNA genes were amplified using archaeal-specific primer sets from DNA extracts derived from several of these waters. Fissure waters with a high proportion of microbial methane also contained sequences resembling those of known methanogens.  相似文献   

15.
The geothermal field at Hofsstadir northern Snæfellsnes peninsula, Iceland produces low-temperature geothermal water with about 5.4‰ salinity. The fluid temperature is 87 °C, near the reservoir temperature of 90 °C as assessed from mineral solution/equilibrium conditions. The stable isotopic ratios δ2H and δ18O show that the water is significantly lighter than present day precipitation anywhere on the Snæfellsnes peninsula. It is offset from the meteoric water line towards isotopically depleted 18O values, most likely due to CO2(g) – H2O exchange at earlier times during evolution of the system. Such a concentration of stable isotopes is unique for Icelandic groundwaters and has not been encountered anywhere else in Iceland. The water may either have its origin far north of the Bay of Breidafjörður in the highland of the western fjordlands or dating back to a Pre-Holocene age when local precipitation was considerably lighter due to the cold climate at that time. The water is highly concentrated in Ca in comparison with seawater and also compared to that of geothermal saline water elsewhere, which indicates intensive and prolonged water–rock interaction. The 14C concentration is low, about 7.4 pMC (percent modern C), compared to the cold local groundwater of about 74.6 pMC. δ13C for the thermal and cold waters is −4.9‰ and −2.3‰, respectively. The geothermal water is used for heating the small town of Stykkishólmur through a central heat exchanger plant due to the high salinity of the water. The outbuilding of a health resort has been planned and the water has been used successfully for the treatment of psoriasis and is claimed to have beneficial effects in bathing therapy for rheumatism as well as for drinking cures.  相似文献   

16.
The isotopic composition of U in nature is generally assumed to be invariant. Here, we report variations of the 238U/235U isotope ratio in natural samples (basalts, granites, seawater, corals, black shales, suboxic sediments, ferromanganese crusts/nodules and BIFs) of ∼1.3‰, exceeding by far the analytical precision of our method (≈0.06‰, 2SD). U isotopes were analyzed with MC-ICP-MS using a mixed 236U-233U isotopic tracer (double spike) to correct for isotope fractionation during sample purification and instrumental mass bias. The largest isotope variations found in our survey are between oxidized and reduced depositional environments, with seawater and suboxic sediments falling in between. Light U isotope compositions (relative to SRM-950a) were observed for manganese crusts from the Atlantic and Pacific oceans, which display δ238U of −0.54‰ to −0.62‰ and for three of four analyzed Banded Iron Formations, which have δ238U of −0.89‰, −0.72‰ and −0.70‰, respectively. High δ238U values are observed for black shales from the Black Sea (unit-I and unit-II) and three Kupferschiefer samples (Germany), which display δ238U of −0.06‰ to +0.43‰. Also, suboxic sediments have slightly elevated δ238U (−0.41‰ to −0.16‰) compared to seawater, which has δ238U of −0.41 ± 0.03‰. Granites define a range of δ238U between −0.20‰ and −0.46‰, but all analyzed basalts are identical within uncertainties and slightly lighter than seawater (δ238U = −0.29‰).Our findings imply that U isotope fractionation occurs in both oxic (manganese crusts) and suboxic to euxinic environments with opposite directions. In the first case, we hypothesize that this fractionation results from adsorption of U to ferromanganese oxides, as is the case for Mo and possibly Tl isotopes. In the second case, reduction of soluble UVI to insoluble UIV probably results in fractionation toward heavy U isotope compositions relative to seawater. These findings imply that variable ocean redox conditions through geological time should result in variations of the seawater U isotope compositions, which may be recorded in sediments or fossils. Thus, U isotopes might be a promising novel geochemical tracer for paleo-redox conditions and the redox evolution on Earth. The discovery that 238U/235U varies in nature also has implications for the precision and accuracy of U-Pb dating. The total observed range in U isotope compositions would produce variations in 207Pb/206Pb ages of young U-bearing minerals of up to 3 Ma, and up to 2 Ma for minerals that are 3 billion years old.  相似文献   

17.
There is considerable debate about the mode and age of formation of large (up to ∼200 m long) hematite and goethite ironstone bodies within the 3.2 to 3.5 Ga Barberton greenstone belt. We examined oxygen and hydrogen isotopes and Rare Earth Element (REE) concentrations of goethite and hematite components of the ironstones to determine whether these deposits reflect formation from sea-floor vents in the Archean ocean or from recent surface and shallow subsurface spring systems. Goethite δ18O values range from −0.7 to +1.0‰ and δD from −125 to −146‰, which is consistent with formation from modern meteoric waters at 20 to 25 °C. Hematite δ18O values range from −0.7 to −2.0‰, which is consistent with formation at low to moderate temperatures (40-55 °C) from modern meteoric water. REE in the goethite and hematite are derived from the weathering of local sideritic ironstones, silicified ultramafic rocks, sideritic black cherts, and local felsic volcanic rocks, falling along a mixing line between the Eu/Eu* and shale-normalized HREEAvg/LREEAvg values for the associated silicified ultramafic rocks and felsic volcanic rocks. Contrasting positive Ce/Ce* of 1.3 to 3.5 in hematite and negative Ce/Ce* of 0.2 to 0.9 in goethite provides evidence of oxidative scavenging of Ce on hematite surfaces during mineral precipitation. These isotopic and REE data, taken together, suggest that hematite and goethite ironstone pods formed from relatively recent meteoric waters in shallow springs and/or subsurface warm springs.  相似文献   

18.
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l− 1 and from 2.6 to 3800 μg·l− 1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwaters < steam-heated groundwaters < NaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water-rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite + pyrite + pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.  相似文献   

19.
Highly mineralized waters of different chemical types and origin occur in the flysch formations and their bedrocks in the western part of the Polish Carpathians. The marine sedimentation water of the flysch formations is not preserved, as the most mineralized and the heaviest isotopic values of flysch waters are characterized by δ18O and δ2H values in the ranges of 5–7‰ and −(20–30)‰, respectively. Their origin is related to the dehydration of clay minerals during burial diagenesis, with molecules of marine water completely removed by molecules of released bound water. They are relatively enriched in Na+ in respect to the marine water, supposedly due to the release of Na+ during the illitization of smectites and preferable incorporation of other cations from the primary brine into newly formed minerals. In some parts of younger formations, i.e. in the Badenian sediments, brines occur with isotopic composition close to SMOW and Cl contents greatly exceeding the typical marine value of about 19.6 g/L, supposedly due to ultrafiltration. Most probably, the marine water of the flysch formations was similarly enriched chemically in its initial burial stages. Final Cl contents in diagenetic waters depend on different Cl contents in the primary brines and on relationships between diagenetic and further ultrafiltration processes. In some areas, diagenetic waters migrate to the surface along fault zones and mix with young local meteoric waters becoming diluted, with the isotope composition scattering along typical mixing lines. In areas with independent CO2 flow from great depths, they form chloride CO2-rich waters. Common CO2-rich waters are formed in areas without near-surface occurrences of diagenetic waters. They change from the HCO3–Ca type for modern waters to HCO3–Mg–Ca, HCO3–Na–Ca and other types with elevated TDS, Mg2+ and/or Na contents for old waters reaching even those of glacial age. Bedrocks of the flysch are represented by Mesozoic and Paleozoic mudstones, sandstones and carbonates, and in some areas by Badenian sediments. Brines of the Mesozoic and Paleozoic bedrocks are usually significantly enriched in Ca2+ and Mg2+ in comparison with the Badenian brines. By analogy to the deepest brines in the adjacent Upper Silesian Coal Basin, they are supposed to originate from paleometeoric waters of a hot climate.  相似文献   

20.
Boron isotope compositions (δ11B) and B concentrations of rains and snows were studied in order to characterize the sources and fractionation processes during the boron atmospheric cycle. The 11B/10B ratios of instantaneous and cumulative rains and snows from coastal and continental sites show a large range of variations, from −1.5 ± 0.4 to +26.0 ± 0.5‰ and from −10.2 ± 0.5 to +34.4 ± 0.2‰, respectively. Boron concentrations in rains and snows vary between 0.1 and 3.0 ppb. All these precipitation samples are enriched in 10B compared to the ocean value (δ11B = +39.5‰). An empirical rain-vapour isotopic fractionation of +31‰ is estimated from three largely independent methods. The deduced seawater-vapour fractionation is +25.5‰, with the difference between the rain and seawater fractionations principally reflecting changes in the speciation of boron in the liquid with ∼100% B(OH)3 present in precipitations. A boron meteoric water line, δD = 2.6δ11B − 133, is proposed which describes the relationship between δD and δ11B in many, but not all, precipitations. Boron isotopic compositions of precipitations can be related to that of the seawater reservoir by the seawater-vapour fractionation and one or more of (1) the rain-vapour isotopic fractionation, (2) evolution of the δ11B value of the atmospheric vapour reservoir via condensation-precipitation processes (Rayleigh distillation process), (3) any contribution of vapour from the evaporation of seawater aerosols, and (4) any contribution from particulate matter, principally sea salt, continental dust and, perhaps more regionally, anthropogenic sources (burning of biomass and fossil fuels). From the δ11B values of continental precipitations, a sea salt contribution cannot be more than a percent or so of the total B in precipitation over these areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号