首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.  相似文献   

2.
Quantitative and qualitative diatom analyses from the north Nile Delta lakes sediments of Egypt were used to evaluate the paleoenvironmental development of the lakes and climatic changes during the late Holocene. We analyzed 565 samples taken from 19 cores from Manzala, Burullus and Edku lakes. A total of 263 diatom species and varieties were identified. Multivariate statistical analyses distinguished 17 ecological groups that reflect changes in water salinity, lake-level and trophic state of the lakes, which in turn are mainly related to climatic changes and anthropogenic impacts. Manzala and Burullus lakes experienced a series of alternation between fresh, brackish and marine episodes, which were associated with wet and dry climates. Edku Lake cores, however, contained only three ecological groups that are characteristic of brackish water conditions. The general depositional regime in the lakes indicated five environmental phases: (a) a deep freshwater phase when the Nile flood water reach the lakes during humid warm climate; (b) a shallow freshwater phase with some macrophytes during a dry climate; (c) a shallow brackish water phase when Nile floodwater ceased during a dry climate and the lakes shifted to brackish conditions; (d) a mixed environmental phase when the seawater mixed with freshwater from drains and canals (water salinity fluctuated widely from freshwater to estuarine and full marine conditions); (e) a fully marine phase when seawater entered the lakes at all stages of the tide.  相似文献   

3.
Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.  相似文献   

4.
Aquatic macrophytes play a key role in providing habitat, refuge and food for a range of biota in shallow lakes. However, many shallow lakes have experienced declines in macrophyte vegetation in recent decades, principally due to eutrophication. As changes in macrophyte composition and abundance can affect overall ecological structure and function of a lake, an assessment of the timing and nature of such changes is crucial to our understanding of the wider lake ecosystem. In the typical absence of historical plant records, the macro-remains of macrophytes preserved in lake sediments can be used to assess long-term changes in aquatic vegetation. We generated recent (150–200 years) plant macrofossil records for six English lakes subject to conservation protection to define past macrophyte communities, assess trajectories of ecological change and consider the implications of our findings for conservation targets and strategies. The data for all six lakes reveal a diverse submerged macrophyte community, with charophytes as a key component, in the early part of the sedimentary records. The stratigraphies indicate considerable change to the aquatic vegetation over the last two centuries with a general shift towards species more typically associated with eutrophic conditions. A common feature is the decline in abundance of low-growing charophytes and an increase in tall canopy-forming angiosperms such as fine-leaved Potamogeton species, Zannichellia palustris and Callitriche species. We hypothesise, based on findings from long-term datasets and palaeoecological records from enriched shallow lakes where plants are now absent, that the observed shifts provide a warning to managers that the lakes are on a pathway to complete macrophyte loss such that nutrient load reduction is urgently needed. It is the sound understanding of present-day plant ecology that affords such reliable interpretation of the fossil data which, in turn, provide valuable context for current conservation decisions.  相似文献   

5.
We sampled living and subfossil phantom midge (Diptera: Chaoboridae) larvae from surface sediments of 21 small lakes in Southern Sweden to examine the influence of fish and selected abiotic variables on the abundance and species composition of chaoborid assemblages. We expected total Chaoborus abundance to be inversely correlated with fish abundance and Chaoborus species most sensitive to fish predation to be found only in fishless lakes. We aimed to use the observed relationships to develop models to reconstruct past fish abundances from chaoborid remains and the abiotic environment. C. flavicans occurred in almost every lake, whereas subfossil C. obscuripes were found in the surface sediments of only one fishless lake. The density of living C. flavicans larvae correlated negatively with fish abundance, lake order and size. The concentration of C. flavicans subfossils was negatively associated with pH, lake size, water transparency and fish abundance. Regression models that included lake morphometry and landscape position as additional predictors of fish abundance performed better than models that used only Chaoborus predictors. The explained variance in fish abundance varied from 52 to 86%. Leave-one-out cross-validation indicated moderate performance of the two best models. These models explained 51 and 56% of the observed untransformed fish density and biomass, respectively. In addition, all Chaoborus models were unbiased in closely following the 1:1 reference line in plots of observed versus predicted values. These results are a promising step in developing midge-based paleolimnological reconstructions of past fish abundance, and the approach might be improved by including chironomid remains in the models.  相似文献   

6.
An estuarine sequence outcropping at La Ballenera Creek (BuenosAires Province), dated between 6,800 and 4,100 14C years BP, wasinvestigated for diatoms and molluscs. The sea level history along the BuenosAires coastline has been reconstructed from discrete beach ridge sequencesalong low-lying plains. The La Ballenera profile is located on a cliffcoast where a sequence recorded environmental changes. Fifty-eightdiatom species were grouped based on their salinity and life formcharacteristics. Cluster analysis allowed the division of the sequence intothree diatom zones. Mollusc tolerances were also used to discern theenvironmental changes induced by sea-level fluctuations. The base of thesequence recorded the initiation of the marine influence about6,790–6,200 years ago. Diatom assemblages consist ofbrackish-freshwater tychoplankton accompanied by brackish benthicdiatoms. Among the molluscs, the freshwater-brackish species Heleobiaparchappii dominates. Between 6,200 and ca. 4,800 14C years BP, anestuarine lagoon environment is indicated by benthic and epiphyticmarine-brackish diatoms, as well as by the estuarine snail Heleobiaaustralis. After 4,800 14C years BP, the diatom assemblages and therelative abundance of freshwater molluscs indicate a marshy environment withlower salinity content. The La Ballenera records the salinity changes thataffect an estuary that infilled during the 2,700 years after the maximum sealevel reached in mid-latitudes of South America.  相似文献   

7.
Paleoecological reconstructions of Holocene sea-level changes in Argentinean coastal regions were based mainly on ecological data gathered from other regions, as there was a lack of information on modern estuarine diatom distributions. The aim of the present work was to assess the spatial variation of diatom assemblages in two representative estuaries of Argentina in order to gather ecological information for paleoecological reconstructions in the region. The two selected estuaries have different geomorphologic features and salinity regimes: Mar Chiquita Lagoon is shallow, which prevents the development of a stable salinity gradient as it occurs in the Quequén Grande River. Surface sediment samples were taken from selected stations representative of the environmental gradient from the inlet to the inner reaches of both estuaries. Cluster analysis defined three diatom zones at Mar Chiquita: marine/brackish assemblages dominate the inlet (zone I), where salinity, tidal range and current speed are higher. The brackish/freshwater tychoplankton Staurosira construens var. venter and Staurosirella pinnata dominate the inner lagoon (zone II), where environmental conditions are very variable and concentrations of suspended sediments are higher. Brackish/freshwater euryhaline diatoms dominate the headwaters (zone III). On the other hand, the Quequén Grande River was divided into three diatom zones: coastal taxa are distributed at the inlet (zone I), while the middle estuary (zone II) is dominated by brackish/freshwater euryhaline taxa. At the upper estuary region (zone III), freshwater diatoms dominate, and the halophobous Nitzschia denticula increased in abundance values. Diatom distributions were most closely related to the salinity gradient at Quequén Grande River than at Mar Chiquita Lagoon. Fossil data of a sequence from Mar Chiquita Lagoon (Las Gallinas Creek) were compared to the modern data set in order to search for analogies between fossil and modern diatom assemblages. DCA results showed that fossil diatom assemblages have modern counterparts. Most diatom assemblages of Las Gallinas Creek fall within Mar Chiquita zone III, representing a shallow brackish/freshwater environment, with low salinity fluctuations (~1–9‰) and no tidal influence. Therefore, our modern diatom data provide useful analogs to interpret paleoenvironments in the region.  相似文献   

8.
Diatom responses to 20th century climate-related environmental change were assessed from three high-elevation lakes in the northern Canadian Cordillera. Dominance of small benthic Fragilaria diatoms reflect the generally cold conditions with long periods of ice cover that have characterized these mountain lakes over at least the last ~300 years until the period of recent warming. At the turn of the 20th century, salient shifts in the diatom assemblages reveal individualistic limnological responses with the onset of climate warming trends in northwest Canada. At YK3 Lake, an oligotrophic, chemically dilute, alpine lake, increased representation of the planktonic Cyclotella pseudostelligera may reflect longer ice-free conditions and/or more stable thermal stratification. By contrast, in the more productive, alkaline lakes (BC2 and Deadspruce lakes), changes to more diverse assemblages of periphytic diatoms suggest greater benthic habitat availability, most likely associated with the enhanced growth of aquatic plants with lengthening of the growing seasons. In addition, diatom assemblages from these lakes suggest less alkaline conditions following the onset of 20th century climate warming. Continued alkalinity reduction throughout the 20th century is qualitatively inferred at the lower elevation, treeline lake (Deadspruce Lake), while greater representation of alkaliphilous Fragilaria diatoms after ~1950 suggested increased alkalinity at the alpine BC2 Lake. Our results confirm the sensitivity of diatoms from high-elevation mountain lakes to regional climate change in northwest Canada. Individualistic limnological responses to 20th century warming are potentially attributed to differences in their physical setting (e.g., bedrock geology, elevation, catchment vegetation) in this complex mountain environment.  相似文献   

9.
Shallow lakes are among the most threatened ecosystems in the world and many contemporary studies have demonstrated declines in biodiversity due to anthropogenic forcing. Mostly, however, these studies have not covered the full period of human-induced diversity change in lakes which is typically over decades-centuries. Here we provide two examples of palaeoecological studies focussed on reconstructing biodiversity changes in contrasting shallow lake environments that demonstrate the efficacy of the approach—a shallow UK lake and a suite of floodplain lakes (called billabongs) in the Murray-Darling basin, Australia. In the Murray-Darling billabongs, complex sedimentary processes operate, sediment chronologies are less certain and replication of sites is needed to confirm patterns. The combination of sediment records from 10 billabongs showed that diatom diversity changes pre- and post-European (>1850) disturbance were inconsistent; however, reductions in diversity were more common and appear to reflect reductions in macrophyte abundance. At Felbrigg Lake, a multi-proxy study with strong chronological control demonstrated divergent responses of macrophyte, diatom, cladoceran and chironomid richness and diversity to a century of eutrophication. Eutrophication of the site was qualitatively inferred from changes in the macrophyte community in turn reconstructed from plant macrofossils. Benthic cladocerans showed a consistent decline in richness through the record, reflecting the gradual reduction in their macrophyte associated habitat over the past century. Diatom richness and diversity responses were complex, with increases in diversity and richness linked to both increases and decreases in macrophyte species richness and abundance. Chironomid richness and diversity patterns were less consistently linked to eutrophication. The loss of the dominant zooplanktivore (perch) in the 1970s was reflected in the richness and diversity profiles for all groups. Our study reveals clear potential for using sediment cores to infer biodiversity change in shallow lakes and shallow lake regions. However, given the contrasting patterns of diversity change for the different biological groups both in Felbrigg Lake and between Felbrigg and the billabongs, caution is required when interpreting whole-ecosystem biodiversity changes (or the absence of change) based on single as opposed to multi-proxy studies.  相似文献   

10.
The zooplankton community structure in lakes is highly influenced by size-selective predation by fish, with small zooplankton species dominating at high predation pressure. Remains of cladocerans are preserved in the sediment and may be used to trace historical changes in fish predation. We determined how contemporary data on planktivorous fish were related to the size of Daphnia ephippia (dorsal length) in the surface sediment (0-1 cm) of 52 mainly shallow lakes with contrasting densities of fish and nutrients (TP: 0.002-0.60 mg P l-1). Density of fish expressed as catch per unit effort, in terms of numbers in multiple mesh-sized gill nets (CPUEn), decreased significantly with increasing mean size of ephippia. The relationship was improved by adding TP as an independent variable, now explaining 90% of the variation in CPUEn on the full data set covering lakes in Denmark, Greenland and New Zealand, and 78% if only data on Danish lakes were used. CPUE by weight of planktivorous fish and mean weight of Daphnia in the pelagial during summer were also related to ephippial size. By including contemporary data on established relationships between the sizes of egg-bearing female Daphnia and ephippia, we inferred changes in the CPUEn, mean size of ephippia-bearing Daphnia and summer mean body weight of Daphnia from ephippial size in four lakes during the past 1-2 centuries. In a hypertrophic lake subject to periodic fish kills, Daphnia mean body weight was high and CPUEn was low compared with those in two eutrophic lakes, while CPUEn was low and Daphnia body weight was high in the least eutrophic, clearwater lake. Estimated CPUEn and Daphnia mean weight in the surface sediment of these four lakes corresponded well with contemporary data. Only small changes in ephippial size with time were observed in the clearwater lake and in one of the lakes that had suffered early eutrophication, while major changes occurred in the two other lakes that had been subjected to a major increase in nutrient input or fish kills. We conclude that Daphnia ephippia preserved in the surface sediments of lakes may be a useful and efficient method to quantify the present-day abundance of planktivorous fish and Daphnia mean size. The method is particularly valid in surveys aimed to give a general picture of the fish stock and the ecological state in a set of lakes in a region rather than a precise estimate for a single lake. Though some evidence is provided, more work is needed to evaluate whether the equations are valid for hind-casting in down-core palaeoecological studies.  相似文献   

11.
Diatoms were examined in three lacustrine sediment records from Alert, northern Ellesmere Island, and from Isachsen, Ellef Ringnes Island. Diatom assemblages changed markedly since the mid-19th century following relatively stable community composition that spanned centuries to millennia. Three different assemblages, primarily composed of Fragilaria pinnata, Diadesmis spp., or Pinnularia spp., dominated the pre-1850 period at the three sites, but were replaced with different, more diverse assemblages in recent sediments. These species shifts occurred in the mid- to late-19th century in the Isachsen sites, and in the mid- to late-20th century in our Alert site. This difference in timing appears to be a result of the different sensitivities of lakes and ponds to environmental change, rather than of site-specific chemical properties. Reconstructions of pH using diatom inference models indicated increases from 0.5 to 0.8 pH units at these sites over this period of assemblage change. The diatom-inferred pH record from Alert showed agreement with measured climate data from Alert over the last 30 years. These marked community changes suggest that these sensitive high arctic sites have recently crossed important ecological thresholds due to environmental change, most likely related to recent warming.  相似文献   

12.
Small, shallow, temperate lakes are predominant landscape features in North America, however, little is known about their long-term ecosystem dynamics, and few data exist on the chironomid fauna they harbor. Using multivariate analyses, we defined relationships between sub-fossil chironomid assemblage composition and environmental variables in 26 shallow lakes of northeastern USA and quantified how differences in taxonomic resolution affect transfer function model performance. Using redundancy analysis, we found that chironomid assemblages are best explained by turbidity, dissolved inorganic carbon and drainage basin/lake area ratio. Turbidity explained the greatest proportion of variance found in the chironomid assemblage (10.4%), followed by total nitrogen. Through ordination analyses and an analysis of similarity, we found that macrophyte density was also a significant predictor of chironomid assemblages. We used partial least squares analysis to develop a robust model for quantitative reconstruction of turbidity, with r jack2 = 0.62. When using a more coarsely resolved taxonomic dataset, we found that model performance statistics were weaker, suggesting the need for fine-resolution taxonomy. Overall, our findings highlight the importance of variables related to lake trophic state in structuring chironomid assemblages in shallow, temperate lakes and provide tools for inferring past ecological changes in these ecosystems.  相似文献   

13.
Fish introduction and eutrophication are important disturbances to aquatic ecosystems, especially to oligotrophic plateau lakes that are generally considered to be very vulnerable ecosystems. Planktivorous fish Neosalanx taihuensis were introduced to Lake Fuxian, an oligotrophic (TP 17 μg/l) deep (average depth 89.7 m) plateau lake in southwest China, in the middle of the 1980s. After the introduction, N. taihuensis became the dominant fish species, and the total fish yield increased about threefold. Although the lake is still oligotrophic, the trophic state of Lake Fuxian has started to shift with increasing nutrient supply (eutrophication) due to an increase in human activities in the drainage basin. This study investigated the effects of N. taihuensis introduction and eutrophication on the cladoceran community of Lake Fuxian by examining changes in cladoceran assemblages and abundance, as well as the morphological features of Bosmina microfossils in the lake sediment. Absolute abundance of total Bosmina increased substantially after the middle of the 1980s. In addition, dominance of Bosmina with straight antennules was replaced by Bosmina with hooked antennules. The morphological variables (length of carapace, antennule and mucro) of Bosmina all decreased when planktivorous fish N. taihuensis achieved relatively large numbers. Eutrophication was the most important process determining cladoceran abundance, while fish introduction played an important role in structuring the cladoceran community in this oligotrophic, deep plateau lake.  相似文献   

14.
The status of tropical glaciers is enormously important to our understanding of past, present, and future climate change, yet lack of continuous quantitative records of alpine glacier extent on the highest mountains of tropical East Africa prior to the 20th century has left the timing and drivers of recent glacier recession in the region equivocal. Here we investigate recent changes (the last 150–700 years) in lacustrine sedimentation, glacier extent, and biogeochemical processes in the Rwenzori Mountains (Uganda- Democratic Republic of Congo) by comparing sedimentological (organic and siliciclastic component determined by loss-on-ignition; LOI) and organic geochemical profiles (carbon and nitrogen abundance, ratio, and isotopic composition of sedimentary organic matter) from lakes occupying presently glaciated catchments against similar profiles from lakes located in catchments lacking glaciers. The siliciclastic content of sediments in the ‘glacial lakes’ significantly decreases towards the present, whereas ‘non-glacial lakes’ generally show weak trends in their siliciclastic content over time, demonstrating that changes in the siliciclastic content of glacial lake sediments primarily record fluctuations in glacier extent. Radiometric dating of our sediment cores indicates that prior to their late 19th-century recession Rwenzori glaciers stood at expanded ‘Little Ice Age’ positions for several centuries under a regionally dry climate regime, and that recession was underway by 1870 AD, during a regionally wet episode. These findings suggest that the influence of late 19th century reductions in precipitation in triggering Rwenzori glacier recession is weaker than previously thought. Our organic geochemical data indicate that glacier retreat has significantly affected carbon cycling in Afroalpine lakes, but trends in aquatic ecosystem functioning are variable among lakes and require more detailed analysis.  相似文献   

15.
A 1.2 m sediment core from Lake Forsyth, Canterbury, New Zealand, records the development of the catchment/lake system over the last 7000 years, and its response to anthropogenic disturbance following European settlement c. 1840 AD. Pollen was used to reconstruct catchment vegetation history, while foraminifera, chironomids, Trichoptera, and the abundance of Pediastrum simplex colonies were used to infer past environmental conditions within the lake. The basal 30 cm of core records the transition of the Lake Forsyth Basin from a tidal embayment to a brackish coastal lake. Timing of closure of the lake mouth could not be accurately determined, but it appears that Lake Forsyth had stabilised as a slightly brackish, oligo-mesotrophic shallow lake by about 500 years BP. Major deforestation occurred on Banks Peninsula between 1860 AD and 1890 AD. This deforestation is marked by the rapid decline in the main canopy trees (Prumnopitys taxifolia (matai) and Podocarpus totara/hallii (totara/mountain totara), an increase in charcoal, and the appearance of grasses. At around 1895 AD, pine appears in the record while a willow (Salix spp.) appears somewhat later. Redundancy analysis (RDA) of the pollen and aquatic species data revealed a significant relationship between regional vegetation and the abundance of aquatic taxa, with the percentage if disturbance pollen explaining most (14.8%) of the constrained variation in the aquatic species data. Principle components analysis (PCA) of aquatic species data revealed that the most significant period of rapid biological change in the lakes history corresponded to the main period of human disturbance in the catchment. Deforestation led to increased sediment and nutrient input into the lake which was accompanied by a major reduction in salinity. These changes are inferred from the appearance and proliferation of freshwater algae (Pediastrum simplex), an increase in abundance and diversity of chironomids, and the abundance of cases and remains from the larvae of the caddisfly, Oecetis unicolor. Eutrophication accompanied by increasing salinity of the lake is inferred from a significant peak and then decline of P. simplex, and a reduction in the abundance and diversity of aquatic invertebrates. The artificial opening of the lake to the Pacific Ocean, which began in the late 1800s, is the likely cause of the recent increase in salinity. An increase in salinity may have also encouraged blooms of the halotolerant and hepatotoxic cyanobacteria Nodularia spumigena.  相似文献   

16.
Epiphytic diatoms as flood indicators   总被引:1,自引:0,他引:1  
The hydroecology of floodplain lakes is strongly regulated by flood events. The threat of climate warming and increasing human activities requires development of scientific methods to quantify changes in the frequency of short-lived flood events, because they remain difficult to identify using conventional paleolimnological and monitoring approaches. We developed an approach to detect floods in sediment records by comparing the abundance and composition of epiphytic diatom communities in flooded and non-flooded ponds of the Peace-Athabasca Delta (PAD), Canada, that grew on submerged macrophytes (Potamogeton zosteriformis, P. perfoliatus) and an artificial substrate (polypropylene sheets) during the open-water season of 2005. Analysis of similarity tests showed that epiphytic diatom community composition differs significantly between flooded and non-flooded ponds. After accounting for the “pond effect,” paired comparisons of the three substrates determined that variation in community composition between the artificial substrate and macrophytes was similar to that between the macrophyte taxa. Similarity percentage analysis identified diatom taxa that discriminate between flooded and non-flooded ponds. The relative abundance of ‘strong flood indicator taxa’ was used to construct an event-scale flood record spanning the past 180 years using analyses of sedimentary diatom assemblages from a closed-drainage pond (PAD 5). Results were verified by close agreement with an independent paleoflood record from a nearby flood-prone oxbow pond (PAD 54) and historical records. Comparison of epiphytic diatoms in flooded and non-flooded lakes in this study provides a promising approach to detect changes in flood frequency, and may have applications for reconstructing other pulse-type disturbances such as hurricanes and pollutant spills.  相似文献   

17.
Reference conditions and changes in limnological conditions during the 20th century have been inferred in a palaeolimnological study of sediments from six lakes of the District of Sortavala, Karelian Republic, Russia. The area is former Finnish territory, which was in intensive use for arable field cultivation until the World War II, when the area was ceded to the Soviet Union. After the war, farming was resumed by cattle sovkhozes, and the fields were mainly used as pasture without regular ploughing. We have studied the history of eutrophication and recovery in some lakes related with the changes of agricultural intensity. The trophic level of the lakes was studied by sedimentary diatom assemblages, including reconstructions of total phosphorus levels in the lakes based on a weighted averaging transfer function. Pollen analyses were used to assess the changes in the land use near the lakes. Valuable background data on all the lakes used in the present study are provided by a doctoral thesis done on their limnology from the 1920s. According to our results, the four lakes situated on the clayey lowlands near the coast of Lake Ladoga were eutrophicating during the first half of the 20th century, and in two of them, a rapid recovery is evident. In two lakes situated in hilly landscape with limited agricultural activities, only minor changes are recorded in the diatom profiles.  相似文献   

18.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

19.
Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments   总被引:1,自引:0,他引:1  
A reliable geochemical paleo-indicator for phosphorus remains elusive, despite the importance of understanding historical changes in the nutrient status of aquatic ecosystems. We assessed the potential of phytate (salts of myo-inositol hexakisphosphate) as a novel phosphorus-specific paleo-indicator by measuring its concentrations in dated sediments from an embayment in Helsinki, Finland, with a known 200-year history of trophic changes. Phytate was extracted in a solution containing sodium hydroxide and EDTA and detected by solution 31P NMR spectroscopy with spectral deconvolution. Concentrations varied markedly with sediment depth and paralleled previously determined changes in diatom assemblages and geochemical indicators linked to trophic status. In contrast, total sediment phosphorus did not reflect phosphorus inputs to the embayment, presumably due to the mobilization of inorganic phosphate under anoxic conditions during periods of high pollutant loading. Importantly, phytate appeared to be stable in these brackish sediments, in contrast to other organic and inorganic phosphates which declined abruptly with depth. We therefore conclude that phytate represents a potentially important indicator of historical changes in phosphorus inputs to water bodies, although additional studies are required to confirm its stability under conditions likely to be encountered in lakes and coastal ecosystems.  相似文献   

20.
Paleolimnological data are presented on trophic development, climatic change and sea level variations in Rocha Lagoon, a 72 km2 coastal lagoon in southern Uruguay. Using a sediment core that extended from 7000 to about 3700 yr BP, analyses of organic matter, carbonate, diatoms and chrysophyte cysts were used to track the early Holocene paleolimnological conditions of Rocha Lagoon. Opal phytoliths were also counted and identified, both temperature and humidity indices were calculated, and Opal Phytolith Association Zones (OPAZ) were identified by performing Principal Coordinates Analysis (PCO). Diatom Association Zones (DAZ) corresponding to marine/brackish and brackish/freshwater episodes were closely related to changes in trophic state. Those DAZ representing marine/brackish stages exhibited a lower trophic state than those DAZ dominated by brackish and freshwater diatoms. This highlights that during the first Holocene marine transgression, Rocha Lagoon did not continuously exhibit marine/brackish conditions as reported in previous papers. Instead, three brackish/freshwater episodes related to sea level variation and changes in humidity were identified. The first episode, by ~6000 yr BP, was related to sea level change as no significant changes in either temperature or humidity indices were observed. The second episode, between 5000 and 4400 yr BP, was related to both a sea level decrease and an increase in humidity, as a transition from humid to very humid climate was inferred. Concomitant decreases in salinity and increases in trophic state were also observed. The third episode, after ~4000 yr BP, was related to the end of the first Holocene regressive phase when sea level was slightly below present levels. Further decreases in salinity and increases in trophic state were detected. The paleoclimatic trends inferred in this study were in close agreement with other regional studies on climatic change, as cool temperatures were inferred. However, major changes in humidity were also detected. A humid to very humid climate was inferred for ~7000–4500 yr BP, but the occurrence of a semiarid/arid climate was inferred for ~4500–3700 yr BP. Our data suggest that during transgressive and regressive events there might be higher frequency and lower amplitude sea level oscillations that might lead to changes in salinity and trophic state of coastal aquatic systems. Such oscillations could only be tracked by high resolution analyses of sedimentary records and could be best interpreted with complementary data on paleoclimate. In addition, microfossils such as diatoms and opal phytoliths were shown to be very sensitive to such paleoenvironmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号