首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   1篇
自然地理   4篇
  2022年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
The phototrophic communities in meromictic, perennially ice-covered Lake A, on Ellesmere Island in the Canadian High Arctic, were characterized by pigment analysis using high performance liquid chromatography. Samples were taken to determine the vertical changes down the water column as well as a variation between years. These analyses showed that Lake A had distinct phototrophic communities in its oxic and anoxic layers. The pigment analyses indicated that phototrophic biomass in the upper, oxic waters was dominated by picocyanobacteria, while in the lower, anoxic layer photosynthetic green sulphur bacteria were dominant. Interannual variation in pigment concentrations was related to the penetration of photosynthetically active radiation in the water column, suggesting that light availability may be limiting the net accumulation of photosynthetic bacterial biomass in Lake A. Pigment analysis of the surface sediments indicated that deposition was dominated by the photosynthetic sulphur bacterial contribution. The sedimentary record of bacterial pigments in polar meromictic lakes offers a promising tool for the reconstruction of past changes in ice cover and therefore in climate.  相似文献   
2.
Sediment aggregates (“sedimentary pellets”) within the sedimentary record of Lake A (83°00′ N, 75°30′ W), Ellesmere Island, Canada, are used to construct a 1000 year proxy record of ice-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted to form during fall or early winter when littoral sediment adheres to ice forming around the lake’s periphery or during summer through the development of anchor ice. The sediment likely collects in ice interstices and is concentrated in the upper ice layers through summer surface ice melt and winter basal ice growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover allows for their deposition across the lake basin. Sedimentary pellet frequency within multiple sediment cores is used to develop a chronology of ice-cover fluctuations. This proxy ice-cover record is largely corroborated by a record of unusual sedimentation in Lake A involving iron-rich, dark-orange to red laminae overlying more diffuse laminae with a lighter hue. This sediment sequence is hypothesized to represent years with reduced ice cover through increased chemocline ventilation and iron deposition. During the past millennium, the most notable period of inferred reduced ice cover is ca. 1891 AD to present. Another period of ice cover mobility is suggested ca. 1582–1774 AD, while persistent ice cover is inferred during the 1800s and prior to 1582 AD. The proxy ice-cover record corresponds well with most regional melt-season proxy temperature and paleoecological records, especially during the 1800s and 1900s.
Jessica D. TomkinsEmail:
  相似文献   
3.
We describe a method for preserving the upper sediments of fragile sediment cores during transport from field sites and assess potential effects on subsequent laboratory analyses. This method addresses the need to minimize disturbance to the surfaces of unfrozen sediment cores used for paleoenvironmental or other high-resolution sedimentological analyses during transport. A polymer gel (sodium polyacrylate) applied above the sediment surface acts as a barrier to movement while also preserving surface undulations. The gel seal can preserve even exceptionally fine sedimentary structures (<0.2 mm) in the upper sediments of lacustrine and fiord sediment cores, but may react with organic material (e.g. algal mats) present on some sediment surfaces. This reaction creates an adhesive layer at the gel’s base but it can be handled effectively during sampling. The gel seal minimizes surface deformation and preserves surficial sediments better than traditional seals made of water-absorbent floral foam, wax or paper towel. In addition to permitting detailed sedimentary and subfossil investigations of the sediment–water interface, this method shows no detectable effects on measurements of total organic carbon or total nitrogen values in the sediment. This method is inexpensive, non-hazardous and applicable to many coring systems and sediment types.  相似文献   
4.
Diatoms were examined in three lacustrine sediment records from Alert, northern Ellesmere Island, and from Isachsen, Ellef Ringnes Island. Diatom assemblages changed markedly since the mid-19th century following relatively stable community composition that spanned centuries to millennia. Three different assemblages, primarily composed of Fragilaria pinnata, Diadesmis spp., or Pinnularia spp., dominated the pre-1850 period at the three sites, but were replaced with different, more diverse assemblages in recent sediments. These species shifts occurred in the mid- to late-19th century in the Isachsen sites, and in the mid- to late-20th century in our Alert site. This difference in timing appears to be a result of the different sensitivities of lakes and ponds to environmental change, rather than of site-specific chemical properties. Reconstructions of pH using diatom inference models indicated increases from 0.5 to 0.8 pH units at these sites over this period of assemblage change. The diatom-inferred pH record from Alert showed agreement with measured climate data from Alert over the last 30 years. These marked community changes suggest that these sensitive high arctic sites have recently crossed important ecological thresholds due to environmental change, most likely related to recent warming.  相似文献   
5.
The Upper Garonne Basin included the largest glacial system in the Pyrenees during the last glacial cycle. Within the long-term glacial retreat during Termination-1 (T-1), glacier fluctuations left geomorphic evidence in the area. However, the chronology of T-1 glacial oscillations on the northern slopes of the Central Pyrenees is still poorly constrained. Here, we introduce new geomorphological observations and a 12-sample dataset of 10Be cosmic-ray exposure ages from the Ruda Valley. This U-shaped valley, surrounded by peaks exceeding 2800 m a.s.l., includes a sequence of moraines and polished surfaces that enabled a reconstruction of the chronology of the last deglaciation. Following the maximum ice extent, warmer conditions prevailing at ~15–14 ka, during the Bølling–Allerød (B–A) Interstadial, favoured glacial retreat in the Ruda Valley. Within the B–A, glaciers experienced two phases of advance/stillstand with moraine formation at 13.5 and 13.0 ka. During the early Younger Dryas (YD), glacial retreat exposed the highest surfaces of the Saboredo Cirque (~2300–2350 m) at 12.7 ka. Small glaciers persisted only inside the highest cirques (~2470 m), such as in Sendrosa Cirque, with moraines stabilising at 12.6 ka. The results of this work present the most complete chronology for Pyrenean glacial oscillations from the B–A to the YD.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号