首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Time-dependent Behaviour of Deep Level Tabular Excavations in Hard Rock   总被引:6,自引:0,他引:6  
Summary Although hard rock is not usually associated with large creep deformation, significant time-dependent behaviour is observed in the tabular excavations of the South African gold mines. Time-dependent closure data was collected in stopes of the Ventersdorp Contact Reef and Vaal Reef. This data typically consists of a primary closure phase after blasting, followed by a steady-state closure phase. This closure behaviour is the result of the rheology of the fracture zone around these excavations and the time-dependent extension of this zone following a mining increment. An elasto-viscoplastic approach was developed to simulate the time-dependent nature of the fracture zone. This model proved successful in simulating the experimental closure profiles. It appears that the closure data may provide useful diagnostic information of the stress conditions in the fracture zone ahead of the face. This may possibly be used to identify hazardous conditions such as areas prone to face bursting. The effect of preconditioning on the time-dependent closure behaviour is also illustrated.  相似文献   

2.
Summary Large deformations of surrounding media around tunnels are often encountered during excavations in rocks with squeezing characteristics. These deformations may sometimes continue for a long period of time. Predictions of deformations of tunnels in such grounds are urgently needed, not because of stability concerns, but also of their sevicability. In the present study, the squeezing phenomenon of rock around tunnels and its mechanism and associated factors are first clarified by carefully studying failures of tunnels, and a survey of tunnels in squeezing rocks in Japan is presented and its results are summarised. Then, a practical method is proposed to predic the squeezing potential and deformation of tunnels in squeezing rock and this method has beeen applied to actual tunnelling projects, where squeezing problems were encountered, to check its applicability and validity. Finally, an extension of this method to the time-dependent behaviour of squeezing rocks is given and an application of this method to an actual tunnel is presented.  相似文献   

3.
Summary  This paper is intended to describe the SHELVIP (Stress Hardening ELastic VIscous Plastic) model, a new viscoplastic constitutive law which has been developed to incorporate the most important features of behaviour observed in tunnels excavated in severe to very severe squeezing conditions. This model couples the elastoplastic and time-dependent behaviour by using a plastic yield surface, as frequently adopted in tunnel design analysis, and the definition of a state of overstress referred to a viscoplastic yield surface. The model is formulated in all its detailed aspects. The related analytical closed-form solution for representing triaxial creep deformations is developed. Also developed is an incremental numerical solution for describing the triaxial stress–strain behaviour under constant strain rate conditions. The model is shown to fit very satisfactorily the results of creep tests on clay shales and relaxation tests on coal specimens, as recently performed for design analysis of tunnels in squeezing conditions. Correspondence: D. Debernardi, Department of Structural and Geotechnical Engineering, Politecnico di Torino, Torino, Italy  相似文献   

4.
Applications of numerical modelling in underground mining and construction   总被引:2,自引:0,他引:2  
Numerical modelling has been used to investigate a variety of problems in underground mining and tunnelling: subsidence induced by longwall coal mining; stresses generated when an open stope is filled cemented backfill and the stability of exposures created during subsequent mining of adjacent stopes; the interaction of two tunnels; and the effects of under-mining a pre-existing tunnel and shaft. In each case, results from nonlinear stress analyses can be used to guide the design of excavations and rock support mechanisms.  相似文献   

5.
The general yield function in the hierarchical approach for constitutive modelling of materials is used with Perzyna's theory to characterize viscoplastic behaviour of geologic materials: a sand and rock salt. Particular attention is given to determination of the constants from laboratory quasistatic or short term, and creep tests. The proposed model is verified with respect to observed laboratory response of the sand and salt. It is implemented in a non-linear finite element procedure and applied to analyse time-dependent behaviour of a cavity in the rock salt.  相似文献   

6.
Naturally fractured mine pillars provide an excellent example of the importance of accurately determining rock mass strength. Failure in slender pillars is predominantly controlled by naturally occurring discontinuities, their influence diminishing with increasing pillar width, with wider pillars failing through a combination of brittle and shearing processes. To accurately simulate this behaviour by numerical modelling, the current analysis incorporates a more realistic representation of the mechanical behaviour of discrete fracture systems. This involves realistic simulation and representation of fracture networks, either as individual entities or as a collective system of fracture sets, or a combination of both. By using an integrated finite element/discrete element–discrete fracture network approach it is possible to study the failure of rock masses in tension and compression, along both existing pre-existing fractures and through intact rock bridges, and incorporating complex kinematic mechanisms. The proposed modelling approach fully captures the anisotropic and inhomogeneous effects of natural jointing and is considered to be more realistic than methods relying solely on continuum or discontinuum representation. The paper concludes with a discussion on the development of synthetic rock mass properties, with the intention of providing a more robust link between rock mass strength and rock mass classification systems.  相似文献   

7.
Summary Squeezing rock conditions have posed and continue to pose a major obstacle to the construction of tunnels through mountains, as experience dating back more than a century shows. The paper deals with the study of past experiences in the light of present geotechnical engineering knowledge. Many of the transalpine tunnels were constructed before geotechnical engineering had been developed, and the principles underlying squeezing were not yet understood. Also construction techniques have changed with time. By studying past experience in the light of our present knowledge in geotechnical engineering (rock and soil mechanics), one may gain more insight into the nature and causes of squeezing ground behaviour. Here, a number of older and newer case histories are summarised, providing substantial insight into the phenomenon of squeezing rock. Squeezing rock behaviour is influenced by rock type and structure. Usually, in squeezing zones the rock is strongly jointed and fractured and has low strength. Overburden has also a significant effect and squeezing behaviour may occur abruptly in a tunnel once a limiting overburden has been exceeded. Water pressures in strongly jointed and often crushed rock are important and so are the adopted construction procedures and sequences. A support of substantial structural strength may be necessary to prevent long-term deformations and to withstand increased loading on the tunnel liner from the rock mass surrounding the tunnel.  相似文献   

8.
Time-dependent response of deep tunnels is studied considering the progressive degradation of the mechanical properties of the rock mass. The constitutive model is based on a rock-aging law for the uniaxial strength of the rock and for the Young’s modulus. A semi-analytical solution is developed for the stresses and displacements around a deep circular tunnel taking into account the face advance. The evolution of the plastic and damage zones over time is determined. Numerical examples are presented for the case of Saint-Martin-La-Porte access adit in France of the Lyon–Turin Base Tunnel. The computed results which are compared with the field data in terms of the convergence of tunnel wall and of the displacements inside the rock mass monitored by multi-point extensometers show the efficiency of the approach to simulate the time-dependent deformation of a tunnel excavated in squeezing ground. Simple relationships are proposed to evaluate the parameters of the constitutive model directly from those of the empirical convergence law presented in previous work.  相似文献   

9.
10.
The squeezing potential of rocks around tunnels; Theory and prediction   总被引:7,自引:4,他引:7  
Summary The deformational behaviour of tunnels, which underwent large deformations, socalled squeezing, have been recently receiving great attention in the field of rock mechanics and tunnelling. Contrary to rockbursting phenomenon in which the deformation of the medium takes place instantaneously, the deformation of the surrounding rock in squeezing phenomenon takes place slowly and gradually when the resulting stress state following the excavation exceeds the strength of the surrounding medium. Although there are some proposals for the definition of squeezing rocks and prediction of their squeezing potential and deformations of tunnels in literature, it is difficult to say that they are concise and appropriate.In the first half of this paper, the squeezing phenomenon of rock about tunnels and its mechanism and associated factors are clarified by studying carefully observed failures in-situ and laboratory model tests. Then, an extensive survey of tunnels in squeezing rocks in Japan is presented and the results of this survey are summarised. In the second half of the paper, a new method is proposed to predict the squeezing potential and deformations of tunnels in squeezing rock. Then, the method is applied to actual tunnelling projects, where squeezing problems have been encountered, to check its validity and applicability. As a concrete example, an application of the method to predict the squeezing potential and deformations of the rock along a 300 m long section of an actual tunnel was made.  相似文献   

11.
The construction of underground tunnels is a time-dependent process. The states of stress and strain in the ground vary with time due to the construction process. Stress and strain variations are heavily dependent on the rheological behavior of the hosting rock mass. In this paper, analytical closed-form solutions are developed for the excavation of a circular tunnel supported by the construction of two elastic liners in a viscoelastic surrounding rock under a hydrostatic stress field. In the solutions, the stiffness and installation times of the liners are accounted for. To simulate realistically the process of tunnel excavation, a time-dependent excavation process is considered in the development of the solutions, assuming that the radius of the tunnel grows from zero until its final value according to a time-dependent function to be specified by the designers. The integral equations for the supporting pressures between rock and first liner are derived according to the boundary conditions for linear viscoelastic rocks (unified model). Then, explicit analytical expressions are obtained by considering either the Maxwell or the Boltzmann viscoelastic model for the rheology of the rock mass. Applications of the obtained solutions are illustrated using two examples, where the response in terms of displacements and stresses caused by various combinations of excavation rate, first and second liner installation times, and the rheological properties of the rock is illustrated.  相似文献   

12.
基于西原模型,假设黏塑性体的偏应变张量的一阶导数与瞬态偏应力张量和稳态偏应力张量之差成正比,得到围岩黏塑性区的本构方程。采用拉普拉斯变换与逆变换,推导了圆形隧道黏弹-黏塑性解析解。当 时,该解退化成线弹性本构模型的解答;当 时,该解退化成理想弹塑性本构模型的解答。通过工程实例,分析了围岩位移场、应力场和黏塑性区半径随时间的变化规律。当支护力保持不变时,围岩不同位置位移、围岩黏塑性区半径将随时间增长而持续增大并趋于稳定;围岩黏弹-黏塑性特征对径向应力和黏弹性区切向应力影响较小,对黏塑性区切向应力影响较大,越靠近洞壁处,切向应力随时间变化越剧烈。此外,不同支护力作用下洞壁处的切向应力在支护初期均较大,因此应采用及时支护的策略;考虑到围岩黏弹-黏塑性特征对支护力的影响,建议采取让压支护技术以保证围岩和衬砌的稳定性。  相似文献   

13.
An Orthotropic Cosserat Elasto-Plastic Model for Layered Rocks   总被引:3,自引:1,他引:3  
Summary Modelling the behaviour of rock masses consisting of a large number of layers is often necessary in mining applications (e.g. coal mining). Such a modelling can be carried out in a discontinuum manner by explicit introduction of joints. When the number of rock layers is large, it is advantageous to devise a continuum-based model in which case the joints are considered to be virtually smeared across the mass. In this study, a fully elasto-plastic equivalent continuum model suitable for describing the behaviour of such layered rock masses is considered. The model is based on the Cosserat continuum theory and incorporates the moment stresses in its formulation. In contrast to the earlier Cosserat models, the possibility of rock layer plasticity is considered. The accuracy of the developed Cosserat model is verified against analytical and experimental results. Received October 15, 2000; accepted July 30, 2001 Published online August 2, 2002  相似文献   

14.
This paper considers numerical modelling of rock fracture induced by dynamic bit–rock interaction in percussive drilling. The work presented here extends the author's earlier research on the topic from the axisymmetric case to 3D case. The numerical method for modelling rock fracture includes a constitutive model for rock and a contact mechanics‐based technique to simulate the bit–rock interaction. The constitutive model is based on a combination of the recent viscoplastic consistency model, the isotropic damage concept and a parabolic compression cap. This model is improved here from its earlier state by calibrating the softening laws using fracture energies GIc and GIIc in tension and compression, respectively. Moreover, the viscosity modulus in tension is calibrated based on the dynamic Brazilian disc test. With these enhancements, the developed method is applied to 3D case of the bit–rock interaction problem assuming one symmetry plane. Single impact with single and multiple‐button bits is simulated. In the latter case, an initial borehole is modelled in order to simulate the usual in‐situ drilling conditions. The different failure types observed in the experiments as well as the interaction between the buttons resulting in chipping are realistically captured in the simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Constitutive equations for the mechanical and hydraulic behaviour of saturated porous rock with joint sets of specified orientations are developed by superposing continuum representations for the mechanical and hydraulic properties of the intact rock and each of the joint sets. The resulting continuum theory allows for fluid diffusion through and between interconnected rock pores and joint sets of specified orientation, and also accounts for the anisotropy of the mechanical properties due to joint stiffnesses. The accuracy and reliability of this model are verified by finite element simulation of example problems. The first example considers joint orientation-dependent rock deformation in a hypothetical porous medium with one joint set of different dip angles. More realistic examples related to rock slope stability and reservoir-induced seismicity are also considered in which the constitutive law's utility for modelling time-dependent fluid pressures is illustrated.  相似文献   

16.
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage‐coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non‐linear viscoelastic model for the rate‐independent and rate‐dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three‐dimensional (3D) linear and damage‐coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user‐defined material model for the asphalt mastic to predict global linear and damage‐coupled viscoelastic behaviour of asphalt mixture. For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression‐fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period. In regard to damage‐coupled viscoelastic behaviour, cyclic loading responses of linear and rate‐independent damage‐coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate‐independent damage‐coupled viscoelastic behaviour are also investigated with finite element simulations of asphalt numerical samples. Further study describes loading rate effects on the asphalt viscoelastic properties and rate‐dependent damage behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Most of the railway tunnels in Sweden are shallow-seated (<20 m of rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr–Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.  相似文献   

18.
重大建设项目对施工过程中岩土体稳定性提出了更高的要求,常以一种动态设计施工模式来应对工程体的各类突发状况与病害。流变损伤模型既能反映岩土体在施工过程中变形的时效发展,又能反映其力学性质的时效劣化,继而能较准确地掌握工程体动态稳定性。基于以上考虑,为体现卸载边坡工程在卸载回弹阶段的瞬时塑性特征和时效演化阶段的黏塑性特征,因此,在流变模型中引入加载塑性元件和黏塑性元件,建立了复合黏弹塑(弹-黏-黏弹-黏塑-塑)模型,室内岩石压缩(卸载)蠕变试验证明了该流变模型的合理性,并对其参数进行辨识。在此基础上,从几何研究方法出发,引入反映节理分布的初始损伤张量及一种等效的依据黏塑性偏应变推导出的损伤演化方程,最终建立了一种新型的节理岩体等效流变损伤模型。将此模型用于川东红层某软硬岩互层型路堑边坡的卸载分析,结果表明:随不同的开挖阶段,易损部位(软岩集中段、软岩深埋段、软硬交接硬岩段)在瞬时卸载回弹阶段的塑性损伤和时效演化阶段的黏塑性损伤逐渐积累,边坡浅表部逐渐出现卸载损伤(松弛)带,在损伤累积中边坡各部位蠕变速率呈不同程度的增长。计算结果较好地反映了边坡变形、损伤发展与动态稳定性特征,其研究结果对于指导支护时机及相应的信息化施工具有一定的意义。  相似文献   

19.
This paper attempts to present questions associated with the stability of advanced vault excavations which are driven according to the New Austrian Tunnelling Method (NATM) without lining of the temporary invert. The dimensions of the investigated cross-section correspond to those of the tunnels driven on the new high-speed tracks for the German Federal Railways. Two possible modes of failure are investigated with the aid of continuum mechanics analyses according to the finite element method. Reference is made to structural measures which may positively influence the stability of this construction stage. Furthermore, the manner in which the stress-strain behaviour of a horizontal alternating sequence with open vertical discontinuities may be taken into consideration in a continuum mechanics analysis is also demonstrated. The analysis results presented clearly show that the load-carrying action of the rock mass which characterizes the NATM may be better described by rock mechanics analyses according to the finite element method than by conventional procedures.  相似文献   

20.
Rock mass failure is a particularly complex process that involves the opening and sliding of existing discontinuities and the fracturing of the intact rock. This paper adopts an advanced discretisation approach to simulate rock failure problems within the discontinuous deformation analysis (DDA) framework. The accuracy of this approach in continuum analysis is verified first. Then, the advanced discretisation approach for fracturing modelling is presented, and the discretisation strategy is discussed. Sample rock static failures are simulated and the results are compared with experimental results. Thereafter, with a generalised definition of the artificial joints, this approach is further extended and applied in the simulation of blast-induced rock mass failures in which the instant explosion gas pressure obtained by the detonation pressure equation of state is loaded on the main blast chamber walls and the induced surrounding connected fracture surfaces. In the simulation instance of rock mass cast blasting, the whole process, including the blast chamber expansion, explosion gas penetration, rock mass failure and cast, and the formation of the final blasting pile, is wholly reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号