首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proposal to study the original and new agegraphic dark energy in DGP braneworld cosmology is presented in this work. To verify our model with the observational data, the model is constrained by a variety of independent measurements such as Hubble parameter, cosmic microwave background anisotropies, and baryon acoustic oscillation peaks. The best fitting procedure shows the effectiveness of agegraphic parameter n in distinguishing between the original and new agegraphic dark energy scenarios and subsequent cosmological findings. In particular, the result shows that in both scenarios, our universe enters an agegraphic dark energy dominated phase.  相似文献   

2.
In this paper interacting chameleon-tachyon model with agegraphic dark energy is revisited. The model in two cases of matter and radiation dominated universe is best fitted with the observational data for distance modulus. Stability of the model is investigated. The model then tested against observational data for Hubble parameter. With respect to the best fitted model parameters, our results show that while both scenarios are in good match with the observational data in low redshifts, the model in radiation dominated case better fits the data in high redshifts.  相似文献   

3.
In this paper, we study a cosmological application of the new agegraphic dark energy density in the f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in a spatially flat universe. Our calculations show, taking n<0, that it is possible to have w Λ crossing −1. This implies that one can generate a phantom-like equation of state from a new agegraphic dark energy model in a flat universe in the modified gravity cosmology framework. Also, we develop a reconstruction scheme for the modified gravity with f(R) action.  相似文献   

4.
We study stability formulation of holographic dark energy in Brans-Dicke theory. The model is constrained with observations. The results verifies the cosmic acceleration in near past. With the stability analysis we find that the universe transits from quintessence to phantom state in near future while approaching a stable state.  相似文献   

5.
We study the correspondence between the interacting new agegraphic dark energy and the polytropic gas model of dark energy in the non-flat FRW universe. This correspondence allows us to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.  相似文献   

6.
In this paper, we propose two new models in f(T) gravity to realize universe acceleration and phantom crossing due to dark torsion in the formalism. The model parameters are constrained and the observational test are discussed. The best fit results favors an accelerating universe with possible phantom crossing in the near past or future followed respectively by matter and radiation dominated era.  相似文献   

7.
8.
The paper deals with a spatially homogeneous and anisotropic universe filled with perfect fluid and dark energy components. We consider the f(R,T) theory according to holographic and new agegraphic dark energy in the Bianchi type I universe. In this study, we concentrate on two particular models of f(R,T) gravity namely, R+2f(T) and f(R)+λT. We conclude that the derived f(R,T) models can represent phantom or quintessence regimes of the universe.  相似文献   

9.
In this paper, we study a cosmological model with the sign-changeable interaction between agegraphic dark energy (ADE) and dark matter. For the accelerated expansion of the universe, the model parameters n and β should satisfy the condition n>1 and $-\frac{2}{3}<\beta<0$ . We also investigate the effect of the parameters n and β on the evolutive behavior of our universe. Furthermore, by analysis it is shown that the equation of state of ADE with the sign-changeable interaction can cross the phantom divide from w d >?1 to w d <?1 for the appropriate n and β. This is different from that of ADE with usual interaction, whose equation of state changes from w d <?1 to w d >?1.  相似文献   

10.
We consider a spatially homogeneous and isotropic flat Robertson-Walker model filled with a scalar (or tachyonic) field minimally coupled to gravity in the framework of higher derivative theory. We discuss the possibility of the emergent universe with normal and phantom scalar fields (or normal and phantom tachynoic fields) in higher derivative theory. We find the exact solution of field equations in normal and phantom scalar fields and observe that the emergent universe is not possible in normal scalar field as the kinetic term is negative. However, the emergent universe exists in phantom scalar field in which the model has no time-like singularity at infinite past. The model evolves into an inflationary stage and finally admits an accelerating phase at late time. The equation of state parameter is found to be less than −1 in early time and tends to −1 in late time of the evolution. The scalar potential increases from zero at infinite past to a flat potential in late time. More precisely, we discuss the particular case for phantom field in detail. We also carry out a similar analysis in case of normal and phantom tachyonic field and observe that only phantom tachyonic field solution represents an emergent universe. We find that the coupling parameter of higher order correction affects the evolution of the emergent universe. The stability of solutions and their physical behaviors are discussed in detail.  相似文献   

11.
The cosmological reconstruction of modified F(R) and F(G)F(\mathcal{G}) gravities with agegraphic dark energy (ADE) model in a spatially flat universe without matter field is investigated by using e-folding “N” as a forward way. After calculating a consistent F(R) in ADE’s framework, we obtain conditions for effective equation of state parameter w eff, and see that reconstruction is possible for both phantom and non-phantom era. These calculations also are done for F(G)F(\mathcal{G}) gravity and the condition for a consistent reconstruction is obtained.  相似文献   

12.
We investigate the validity of the generalized second law of gravitational thermodynamics in a non-flat FRW universe containing the interacting generalized Chaplygin gas with the baryonic matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the interacting generalized Chaplygin gas as a unified candidate for dark matter and dark energy, the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the equation of state of the interacting generalized Chaplygin gas model.  相似文献   

13.
In this paper, we investigate a cosmological model with the sign-changeable interaction between new agegraphic dark energy (NADE) and dark matter. By analysis it is shown that the equation of state (EoS) of NADE can cross the phantom divide under the condition of the model parameter β<0. In addition, we plot the trajectories of the interacting NADE model for different values of the parameters n and β in the statefinder plane. It is found that the statefinder trajectories can be distinguished by both n and β. Furthermore, we study the interacting NADE model by means of the w?w′ analysis.  相似文献   

14.
15.
In this paper, we have presented an FLRW universe containing two-fluids (baryonic and dark energy), by assuming the deceleration parameter as a linear function of the Hubble function. This results in a time-dependent deceleration parameter (DP) having a transition from past decelerating to the present accelerating universe. In this model, dark energy (DE) interacts with dust to produce a new law for the density. As per our model, our universe is at present in a phantom phase after passing through a quintessence phase in the past. The physical importance of the two-fluid scenario is described in various aspects. The model is shown to satisfy current observational constraints such as recent Planck results. Various cosmological parameters relating to the history of the universe have been investigated.  相似文献   

16.
We generalize the holographic dark energy model described in Hubble length IR cutoff by assuming a slowly time varying function for holographic parameter c 2. We calculate the evolution of EoS parameter and the deceleration parameter as well as the evolution of dark energy density parameter of the model in flat FRW universe. We show that in this model the phantom line is crossed from quintessence regime to phantom regime which is in agreement with observation. The evolution of deceleration parameter of the model indicates the transition from decelerated to accelerated expansion consistently with observation. Eventually, we show that the holographic dark energy model with Hubble horizon IR cutoff can interpret the pressureless dark matter era at the early time and dark energy dominated phase later. The singularity of the model is also calculated.  相似文献   

17.
In this letter, we have considered a flat FRW universe. Instead of considering only one candidate for the dark energy, we have considered the interaction between phantom field and modified Chaplygin gas. It has been shown that the potential of the phantom field increases from a lower value with evolution of the universe. It has been observed that the field has an increasing tendency and the potential has also an increasing tendency with passage of cosmic time. In the evolution of the universe the crossing of w=−1 has been realized by this interacting model.  相似文献   

18.
We study some holographic dark energy models in chameleonic Brans-Dicke field gravity by taking interaction between the dark energy components in FRW universe. Firstly, we take the holographic dark energy model with Granda-Oliveros cut-off and discuss interacting as well as non-interacting cases. Secondly, we consider the holographic dark energy with both power-law as well as logarithmic corrections using Hubble scale as infrared cut-off in interacting case only. We describe the evolution of some cosmological parameters for these holographic dark energy models. It is concluded that the phantom crossing can be achieved more easily in the presence of chameleonic Brans-Dicke field as compared to simple Brans-Dicke as well as Einstein’s gravity. Also, the deceleration parameter strongly confirms the accelerated expanding behavior of the universe.  相似文献   

19.
In this article we study the properties of the flat FRW chameleon cosmology in which the cosmic expansion of the Universe is affected by the chameleon field and dark energy. In particular, we perform a detailed examination of the model in the light of numerical analysis. The results illustrate that the interacting chameleon filed plays an important role in late time universe acceleration and phantom crossing.  相似文献   

20.
In this paper, we investigate the behavior of equation of state parameter and energy density for dark energy in the framework of f(T) gravity. For this purpose, we use anisotropic LRS Bianchi type I universe model. The behavior of accelerating universe is discussed for some well-known f(T) models. It is found that the universe takes a transition between phantom and non-phantom phases for f(T) models except exponential and logarithmic models. We conclude that our results are relativity analogous to the results of FRW universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号