首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
《Applied Geochemistry》2006,21(5):820-825
An analytical approach, based on the electron paramagnetic resonance (EPR) spectroscopy of Mn(II) in travertines, has been developed in order to obtain relevant information about the local inhomogeneity of calcite and about the thermodynamic conditions which control the formation of travertine deposits. This information is crucial to constrain the precipitation of travertine under different geochemical contexts. An empirical correlation between the spectral features and the zero-field splitting (ZFS) interaction has been established through numerical simulations of EPR spectra. The variability of the investigated parameters and the applicability of the method have been tested on several travertines from Central Italy.  相似文献   

2.
Electron paramagnetic resonance (EPR) spectroscopy analysis of marine samples from different environments appears to differentiate between adsorbed and structural Mn (II) and Fe (III) sites in the sediment. This suggests that EPR may provide a means of distinguishing different environmental influences on sediment. Acid extract solutions from sediment samples exhibit clearly defined EPR spectra due to Mn(II), Ti(III), Fe(III), and VO(IV), which are amenable to qualitative and quantitative analysis at concentrations below one part per million. Spectra of several shellfish vary considerably, both between species, and within a species, depending on sampling localities. Resonances from Mn(II), Mo(V), and Fe(III) can be obtained. Mn(II) is substituted for Ca(II) in the calcite structure of some shells. The low detection limits, small sample size, required and identification of oxidation states by EPR complement other analytical techniques and may prove useful in marine systems.  相似文献   

3.
The adsorption of three copper species, the hydrated cupric ion, bisglycine Cu(II) and a Cu(II)-humic acid complex, on montmorillonite and imogolite at pH 7 was investigated by electron paramagnetic resonance (EPR) spectroscopy. The spectra of the supernatant solutions indicated that adsorption of the glycine complexes was very much less than that of the uncomplexed ion for both minerals and that montmorillonite adsorbed significantly more Cu from the humic acid solution than did imogolite. In every case the adsorbed Cu was characterized by more than one type of chemical environment and the spectral parameters show differences between the adsorbed species depending on their freedom of movement and their mode and site of adsorption. Qualitatively similar spectra were obtained when the uncomplexed ion was adsorbed on either of the mineral species and it is suggested that simple Cu(II) ions were involved and that their coordination environments comprised water molecules and hydroxyl groups. With the bisglycine Cu(II) complexes, the spectra were characterized by two components which may be accounted for by adsorption at two different types of site in the structures. In each case one component had parameters that are similar to those of the bisglycine Cu(II) in the solid state, but the second component in the spectra of the montmorillonite sample was quite different to that obtained with imogolite. The Cu(II)-humic acid complex with montmorillonite gave spectra that were similar to that from copper humate, but with imogolite the spectra from the Cu(II)-humic acid system were similar to those obtained with the uncomplexed Cu(II) ion, indicating that imogolite is able to extract copper from humic acid.  相似文献   

4.
An extensive study of natural and synthetic Fe-bearing sphalerites (Fe-content ranging from 0.005 afu to 0.250 afu) has been carried out through the combined investigations of the temperature dependence of the magnetic susceptibility and of the 57Fe Mössbauer spectroscopic features. Magnetic susceptibility measurements evidence, in the low temperature regime, the presence of clustered Fe even in the most diluted samples, whereas all the Mössbauer spectra are described in terms of variable proportions of three components, namely one single and two doublets absorption, centred at the same isomer shift, relative to Fe ions and to different Fe clusters, respectively. The comparison of all the experimental results points out a self-affinity of Fe ions in sphalerite favoured by the superexchange interaction, which stabilises the formation of clusters even in diluted samples and may be related to both macroscopic inhomogeneous distribution and crystal zoning.  相似文献   

5.
An EPR and SQUID magnetometry study of Cu2FeSnS4 (stannite) and Cu2ZnSnS4 (kesterite) has been performed in order to gain a deeper insight into the crystal chemistry of these minerals, in which the mixed character of bonds lends uncertainty to the determination of the metal valence states. EPR investigations were performed down to almost liquid nitrogen temperature on both natural and synthetic samples of stannite and kesterite. The interpretation of their parameters (g- and T-tensors) was refined by computer simulation. The main feature of all the spectra is the unstructured signal centered at about 0.310 T due to the presence of Cu(II). The absence of structure in the signal is due to spin-spin exchange interaction between Cu(II) and Fe(II), pointing to a diluted distribution of Cu(II). The temperature dependence of the Cu(II) signal can be related to a topological variation of the first-neighbors coordination. The SQUID measurements, while allowing a more precise interpretation of the EPR data, led to a full characterization of magnetic behavior of stannite and kesterite down to liquid helium temperature, evidencing antiferromagnetic interactions between the Fe(II) ions in all samples but in synthetic kesterite. From the EPR and SQUID experimental data no evidence was provided for the existence of two different structures for stannite and kesterite. Received: 2 August 1999 / Accepted: 7 January 2000  相似文献   

6.
基于特征谱带的高光谱遥感矿物谱系识别   总被引:28,自引:0,他引:28  
文中初步提出并建立矿物识别谱系的分层识别技术以及部分离子、矿物的光谱识别规则。矿物光谱包含一系列特征吸收谱带。这些特征谱带在不同的矿物中具有较稳定的波长位置和较稳定的独特波形 ,能够指示离子类矿物、矿物的存在 ,是利用高光谱进行矿物识别的基础。文中分析了部分在自然界广泛存在的一些阴阳离子 (如CO2 -3 ,Fe2 + ,Fe3 + ,Al3 + ,Mn2 + ,Al—OH和Mg—OH等 )的可识别特征光谱 ,总结部分离子类矿物或矿物识别规则 ,并以美国Cuprite地区的AVIRIS数据进行矿物识别试验 ,利用矿物谱系识别技术从离子类矿物到单矿物再到更精细类矿物逐层开展识别 ,取得了较好的效果 ,初步实现利用宏观的手段 (遥感技术 )进行微观 (矿物 )的探测。  相似文献   

7.
A magnetic and spectroscopic characterisation has been performed on a natural bornite sample from the Natural History Museum of the University of Florence. The combination of magnetic measurements and continuous-wave electron paramagnetic resonance (cw-EPR) spectroscopy at different temperatures and frequencies provided information about the distribution and valence states of Cu and Fe in bornite. The studied sample was found to obey the Curie–Weiss law with a transition from a paramagnetic to an antiferromagnetic phase at 64 K; its possible attribution to a disordered spin glass phase was ruled out by ac susceptibility measurements. Q- and X-band cw-EPR measurements confirmed the presence of Fe(III) as fundamental valence state in bornite: the single EPR line registered in the temperature range from 300 to 65 K can be assigned, in fact, to the Fe(III) single ions. Some Cu(II) signals were revealed in the low temperature EPR spectra and attributed to an early stage of the surface alteration. The width of the Fe(III) EPR spectrum, which hinders any characteristic spectral structure, can be ascribed to the exchange interaction. The pure antiferromagnetic character of the magnetic transition confirms the ordering between Fe and Cu in the bornite structure, at least at low temperature (≤70 K). Moreover, the relatively high Nèel temperature suggests the accepted model of Collins et al.’s (Can J Phys 59:535–539, 1981) to conveniently explain the overall magnetic properties in the range 298–4 K. Despite the increasing of the susceptibility in the paramagnetic range, in fact, the integrated EPR line area decreases by lowering the temperature, thus suggesting a progressive rising of the antiferromagnetic interactions among next-nearest-neighbouring paramagnetic centres.  相似文献   

8.
A study has been made of solid and solution electron paramagnetic resonance (EPR) spectra of humic acids from different horizons in a podzolic soil. Hyperfine splitting was observed in the solution spectra of humic acids from all horizons and depended on the strength of alkali and the period of dissolution. The upper organic horizons L, F and O1 contained humic acids with some spectral characteristics in common with lignin. Humic acid from the lower horizons showed different spectra. At least 5 different radical signals were present.  相似文献   

9.
Quebec chrysotile asbestos fibres have been examined by EPR spectroscopy at room T and 77 K. Finely divided samples show an absorption due to manganese(II) at g = 2.0with a hyperfine coupling of 90 gauss. Several types of ferric ions are present in addition to magnetite. These include surface adsorbed hydroxides and lattice bound ions. From the EPR spectrum of structurally bound iron in long fibres oriented perpendicularly to the magnetic field, it was found that the ferric ions are in a rhombic environment. EPR thus shows promise as a tool for the identification and characterization of asbestos fibres.  相似文献   

10.
闪锌矿中杂质Fe存在形式的重新认识   总被引:5,自引:1,他引:5  
闪锌矿作为一种重要的金属硫化物已得到广泛的研究,但在对闪上矿中杂质Fe存在形式的认识上却存在许多问题。本文对不同含Fe量的天然闪锌矿测定并分析了Fe的K边EXAFS谱,同时对低温光吸收谱及穆斯堡尔进行了研究。结果表明,Fe在闪锌矿中主要以六配位形式存在。  相似文献   

11.
Abstract. The Mutnovskoe deposit located in the Porozhisto‐Asachinskaya metallogenic province of South Kamchatka, Russia, is a polymetallic vein and Au‐Ag quartz vein associated type of hydrothermal deposit. The Mutnovskoe deposit is located inside a paleo‐caldera structure at the center of the Mutnovsko‐Asachinskaya geothermal field of Pliocene ‐ Quaternary age, where active gold deposition is identified in hot spring precipitate. The Mutnovskoe deposit is subdivided into the north flank, the central flank and the south flank based on the vein distributions and mineral parageneses. The mineralized vein system is oriented N‐S hosted in diorite ‐ gabbroic diorite stock, volcanic rocks and sedimentary rocks of Miocene ‐ Pleistocene age. The mineralization stage I (polymetallic vein) mainly in the central and the south flanks is Zn‐Pb‐Cu‐Au‐Ag contained in sphalerite, galena and tetrahedrite‐tennantite group mineral. The stage II (Au‐Ag quartz vein) occurs in the north and the central flanks. The stage III (Mn‐sulfide and Mn‐Ca‐carbonate vein) occurs in the whole deposit area. Stage II is the typical Au‐Ag quartz‐adularia vein of low‐sulfidation type. Stage III is alabandite‐rhodochrosite‐quartz‐calcite vein. The K‐Ar ages are 1.3±0.1 Ma for stage I sericite in alteration zone, and 0.7±0.1 Ma for the stage II adularia in mineralized vein. Based on the fluid inclusion study, range of ore forming temperature of the Mutnovskoe deposit is 200 to 260d?C (av. 230d?C). Salinities of fluid inclusions indicate 2.2 to 5.7 wt% NaCl in sphalerite and 0.8 to 3.3 wt% NaCl in quartz for the stage I. Mineral paragenesis of the polymetallic vein (stage I) is characterized by a district zoning of tennantite and Cd‐rich sphalerite in the south flank and tetrahedrite and Mn‐rich sphalerite in the central flank, which is due to the fractional crystallizations of ore‐forming fluid. Depositional condition of the low sulfidation state is inferred for the Mutnovskoe deposit, where the polymetallic vein of the south flank is in relatively higher sulfidation state than the central flank.  相似文献   

12.
闪锌矿内Fe、Cd、Mn等元素含量不但影响闪锌矿的晶胞参数,而且蕴藏着丰富的矿床成因信息。闽中梅仙矿田丁家山铅锌矿区存在磁铁矿型和磁黄铁矿型两类矿石。本文通过X射线原位衍射和电子探针分析分别对两类矿石中闪锌矿的晶胞参数和Zn、Fe、Cd、Mn元素含量进行了测试,结果表明,闪锌矿晶胞参数具有磁黄铁矿型矿石磁铁矿型矿石理论值的特征,引起晶胞参数差异的主要原因是闪锌矿内Fe、Mn元素的含量。此外,两类矿石闪锌矿内Fe元素含量差距悬殊,Zn、Fe、Cd元素之间的替代关系和替代强度差异明显,结合研究区地质特征,认为这两类矿石可能是两次不同成矿作用的产物。  相似文献   

13.
The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province, located in southwestern margin of the Yangtze Block, is an important part of the large-scale low-temperature metallogenic domain in southwestern China. The Maliping Pb-Zn deposit, situated in the central part of Zhaotong-Qujing metallogenic belt, was found in northeastern Yunnan Province recently. The orebody is hosted in Late Cambrian Yuhucun Formation, occurring as stratabound, tense and venis. The mineral assemblage of the Maliping deposit is relatively simple. The main sulfide minerals are sphalerite and galena with minor pyrite. Gangue minerals include mainly dolomite, calcite, quartz and barite. LA-ICPMS spots and mapping analysis for the different sulfides from Maliping Pb-Zn deposit, and the distribution and existing forms of germanium, cadmium, indium and other trace elements were investigated. The results show that different sulfides are characterized by different contents of trace elements. Mn, Cu, Sn, Cd, In and Ge are mainly enriched in sphalerite, while galena from this deposit is enrichment of Ag, Sb and Se, and pyrite is characterized by enrichment of As, Co and Ni. Comparing with the content of dispersed elements in different sulfides, the results indicate that sphalerite is the primary carrier mineral of Ge, In and Cd. Cd, Ge, In, Mn, As, Sb and Ag occur as isomorphous substitution in the sphalerite, and Cu mostly exists in sphalerite as isomorphism but part of Cu occurs as micro-inclusions (chalcopyrite) in sphalerite. Considered the distinct positive relationship between Cu and Ge, the results imply that the substitution mechanism of Ge and Cu is possibly 3Zn(2+) <-> Ge4+ + 2Cu(+). Additionally, sphalerite from Maliping Pb-Zn deposit is characterized by enrichment of Cd, Ge and depleted in Mn, Fe, Co and Sn which coincides with the feature of MVT Pb-Zn deposit and differs from the sedimentary-exhalative deposit and magmatic-hydrothermal deposit. On account of the geological features, other geochemical researches and its ore-forming temperature belonging to low temperature, it is suggested that the Maliping deposit belongs to an MVT Pb-Zn deposit. Notably, we imply that ore-forming fluid extracted indium of magmatic and volcaniclastic rocks from the metamorphic basement, resulting in the enrichment of indium in sphalerite from the deposit.  相似文献   

14.
Due to the combined influences such as ore-forming temperature, fluid and metal sources, sphalerite tends to incorporate diverse contents of trace elements during the formation of different types of Lead-zinc (Pb-Zn) deposits. Therefore, trace elements in sphalerite have long been utilized to distinguish Pb-Zn deposit types. However, previous discriminant diagrams usually contain two or three dimensions, which are limited to revealing the complicated interrelations between trace elements of sphalerite and the types of Pb-Zn deposits. In this study, we aim to prove that the sphalerite trace elements can be used to classify the Pb-Zn deposit types and extract key factors from sphalerite trace elements that can discriminate Pb-Zn deposit types using machine learning algorithms. A dataset of nearly 3600 sphalerite spot analyses from 95 Pb-Zn deposits worldwide determined by LA-ICP-MS was compiled from peer-reviewed publications, containing 12 elements (Mn, Fe, Co, Cu, Ga, Ge, Ag, Cd, In, Sn, Sb, and Pb) from 5 types, including Sedimentary Exhalative (SEDEX), Mississippi Valley Type (MVT), Volcanic Massive Sulfide (VMS), skarn, and epithermal deposits. Random Forests (RF) is applied to the data processing and the results show that trace elements of sphalerite can successfully discriminate different types of Pb-Zn deposits except for VMS deposits, most of which are falsely distinguished as skarn and epithermal types. To further discriminate VMS deposits, future studies could focus on enlarging the capacity of VMS deposits in datasets and applying other geological factors along with sphalerite trace elements when constructing the classification model. RF’s feature importance and permutation feature importance were adopted to evaluate the element significance for classification. Besides, a visualized tool, t-distributed stochastic neighbor embedding (t-SNE), was used to verify the results of both classification and evaluation. The results presented here show that Mn, Co, and Ge display significant impacts on classification of Pb-Zn deposits and In, Ga, Sn, Cd, and Fe also have relatively important effects compared to the rest elements, confirming that Pb-Zn deposits discrimination is mainly controlled by multi-elements in sphalerite. Our study hence shows that machine learning algorithm can provide new insights into conventional geochemical analyses, inspiring future research on constructing classification models of mineral deposits using mineral geochemistry data.  相似文献   

15.
We have applied Scanning Transmission Soft X-ray Microscopy (STXM) to investigate the charge state distribution of Mn in two kinds of Mn-biominerals, Mn nodules collected from Lake Michigan sediments and Mn precipitates formed by spores of a marine bacillus SG-1 under transport limited reaction conditions. A data analysis technique was developed, which allows for extraction of spatially resolved 2-d charge state maps of manganese on a submicron level. We find that the charge state of Mn dominates the spectral shape of L-edge spectra of environmentally important single oxidation state Mn minerals and that spectra of mixed oxidation state oxides can be modelled by a combination of appropriate single oxidation state reference spectra. Two-dimensional maps of charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-micronodules. Spots of preferred accumulation of Mn(II) were found, which indicates biogenic precipitation of Mn(II)-species as a first step of nodule formation. The presence of Mn(III) in the studied sediment samples suggests the involvement of one-electron oxidation processes and reaction conditions which inhibit or slow down the disproportionation of Mn(III)-products. Under transport limited conditions, Mn oxidation products formed by spores of the marine bacillus SG-1 can vary from cell to cell. The presence of significant amounts of Mn(III) containing species points to the involvement of one-electron oxidation reactions as in the case of the micro-nodules. Our technique and the results obtained form a new basis for the mechanistic understanding of the formation of Mn biominerals in the environment.  相似文献   

16.
Zincian spinels (gahnites) from the Mamandur Zn-Pb-Cu prospect of the Southern Granulite Terrain have been studied. Gahnites in the quartzofeldspathic gneiss occur either as (a) porphyroblastic grains closely in association with cordierite and sphalerite or as (b) inclusions in poikiloblastic quartz grains, restricted within quartz veinlets. Compositionally these gahnites belong to two different clusters corresponding to two modes of occurrences. The origin of the porphyroblastic gahnites is linked with the process of desulphidation of sphalerite whereas those occurring as inclusions within poikiloblastic quartz are direct crystallisation products from silica rich hydrothermal solution. A new compositional field for this latter group of gahnites is proposed here.  相似文献   

17.
A series of experiments was conducted to better understand the bacterial influence on the release of trace metals during oxidation of sphalerite mineral and element cycles in acid mine drainage (AMD) systems. Batch experiments were carried out as biotic and abiotic control at pH 3. Acidithiobacillus ferrooxidans, sulfur and Fe(II) oxidizer, was used in the biotic sphalerite experiment. The abiotic control experiment was run without adding the bacteria. The release behavior of six trace metals (As, Cd, Co, Pb, Cu and Mn), Fe and Zn were determined during the period of 54 days. Compared to the abiotic experiments, enhanced oxidation of sphalerite by bacteria produced high sulfate (~2,000 mg/L) and Fetot (139 mg/L) along with the low pH (<2.3). Consistent with this, the concentration of trace metals (As, Cd, Co, Pb, Cu and Mn) was significantly higher in the biotic experiments than those in the abiotic experiments. Results indicate that the distributions of Co and Cd in both biotic and abiotic experiments are directly related to the sphalerite dissolution whereas Pb, Cu distribution shows no strong relation to sphalerite dissolution especially in the abiotic experiments. Pb distribution in the solution appears to be controlled by pH-dependent solubility. Approximately 80% of the trace metals were removed from the solution at the end of the biotic experiments along with biologically induced Fe precipitation. Experimental results showed that bacteria play major role not only in the release of trace metal from sphalerite but also in controlling concentration of the metals in the solution by producing Fe-oxyhydroxides. The study suggest that in order to develop an effective rehabilitation strategy for AMD, it is necessary to understand bio/geochemical processes governing mobilization and deposition of trace metals in the environment.  相似文献   

18.
云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成   总被引:24,自引:9,他引:15  
叶霖  高伟  杨玉龙  刘铁庚  彭绍松 《岩石学报》2012,28(5):1362-1372
云南澜沧老厂是三江成矿带南段最重要铅锌多金属矿床之一,通过LA-ICPMS和ICP-MS微量元素组成分析结果表明,矿床中闪锌矿属于铁闪锌矿,形成于中温环境,以富Fe、Mn、Cd和In等元素为特征,其中Fe、Mn、Cd、In等元素以类质同象形式赋存于闪锌矿中,而Pb、Cu 、Sn和Bi等元素含量变化范围较大,以显微包裹体(方铅矿和黄铜矿等)赋存于闪锌矿中。本矿床闪锌矿中Fe和Mn等微量元素组成与VMS矿床类似,但In和Cd的异常富集可能暗示其独特的成矿机制。总体而言,其闪锌矿微量元素组成特征和与燕山-喜山期花岗岩叠加改造作用有关的喷流沉积铅锌矿床(如云南白牛厂和广东大宝山)相似,而明显不同与矽卡岩型矿床(如核桃坪与鲁子园),更不同于MVT型铅锌矿床(牛角塘、会泽和勐兴)和金顶铅锌矿床。结合矿床产出地质特征,笔者认为云南澜沧老厂铅锌多金属矿区经历了古、中、新特提斯期不同程度的拉张与闭合发展演化,使矿床多期同位叠加成矿特征明显,其闪锌矿微量元素组成具喷流沉积成因特征,深部喜山期花岗斑岩与铅锌成矿作用关系不大,但在其侵入过程中叠加改造作用使闪锌矿等硫化物组合及其微量元素组成发生一定程度变化(如局部富集Sn和Sb等元素)。此外,两种测试方法结果对比可以看出,在硫化物单矿物微量元素分析中,LA-ICPMS相对于ICP-MS分析具有更高精度,不仅可以进行硫化物原位分析,并能即时了解微量元素在硫化物中赋存状态,而且克服了ICP-MS分析中由于单矿物选样不纯致使测试误差大等弱点。  相似文献   

19.
位于扬子板块西南缘的"川滇黔接壤铅锌矿集区"是我国西南大面积低温成矿域的重要组成部分,麻栗坪铅锌矿床位于该矿集区昭通-曲靖成矿带中段,是近年来滇东北地区新发现的铅锌矿床。本文以麻栗坪铅锌矿不同硫化物为研究对象,通过LA-ICPMS原位点测试和元素Mapping分析,尝试揭示该矿床中Ge、Cd和In等微量元素在不同硫化物中分布规律与赋存状态。本次研究发现,麻栗坪矿床不同硫化物中富集的微量元素明显不同,闪锌矿主要富集Mn、Cu、Sn、Cd、In和Ge,而方铅矿主要富集Ag、Sb和Se,黄铁矿则富集As、Co和Ni。闪锌矿是分散元素Ge、In和Cd的主要载体矿物,且Cd、Ge、In、Mn、As、Sb和Ag以类质同象形式赋存于闪锌矿中;而Cu则主要以类质同象形式存在,部分Cu以黄铜矿的显微包裹体形式赋存于闪锌矿中,其中以类质同象赋存于闪锌矿中Cu和Ge呈现明显的相关性,可能暗示其与Zn的置换方式为:3Zn2+Ge4++2Cu+。总体上,该矿床闪锌矿以富集Cd、Ge,贫Fe、Mn、Co、Sn为特征,这些微量元素组成与典型MVT型矿床基本一致,明显有别于喷流沉积和岩浆热液型矿床,而与中低温条件下形成的闪锌矿微量元素组成相似。结合该矿床后生成矿特征明显等地质地球化学研究成果,我们认为该矿床应属于MVT型铅锌矿床。值得注意的是,该矿床闪锌矿相对富集In,可能暗示其形成具有特殊性,这可能与其成矿流体在长距离运移过程中所流经地层有关,该类流体活化萃取了基底地层的中-酸性岩浆岩或火山碎屑岩中的In,致使矿床中闪锌矿相对富集In。  相似文献   

20.
Thirty four-frequency line profiles of Class II methanol masers have been analyzed to investigate carefully the coincidences of various spectral features. Data at 6.7, 12.2, 107, and 156.6 GHz have been analyzed. Two clusters of Class II methanol maser lines at 6.7 and 12.2 GHz are observed in the spectra of many sources. These maser-line clusters are located on either side of the thermal methanol lines at 107 and 156.6 GHz. To avoid the effect of amplification in these thermal methanol lines, a similar analysis was performed for 80 sources having both maser emission at 6.7 GHz and thermal CS emission. The relative distributions of the methanol maser lines and the thermal CS line confirm on the basis of richer statistics that the maser lines are located in two clusters on either side of the thermal feature. It is proposed that the two maser-line clusters correspond to two edges of a Keplerian disk. The thermal methanol and CS emission is formed in dense molecular cores, whose centers are coincident with the disk centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号