首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
青藏高原近40年来的降水变化特征   总被引:21,自引:7,他引:21  
张磊  缪启龙 《干旱区地理》2007,30(2):240-246
利用我国青藏高原地区的1961-2000年56个气象站的逐月降水资料,通过计算降水量的距平百分率,分析了青藏高原自1961至2000年以来降水量变化的趋势和1961-2000年以来各季降水量变化趋势,发现:青藏高原近40年来降水量呈增加趋势,降水量的线性增长率约为1.12mm/a。再将高原划分为四个季节,分析了各季40年来的降水量的变化情况得出:春季降水量年际变化较大,秋季降水量变化不明显。夏季降水量值较大而降水变化幅度较小,冬季降水量变化则与夏季相反。通过将青藏高原分为南北两个地区,分析了两个区的年降水量和四个季节的降水量的变化得出:高原南区1961-2000年降水量呈增加的趋势,降水量的线增长率为1.97 mm/a,春季和冬季降水量年际变化较大,夏季降水量变化不明显,秋季降水量略有增加;北区年降水量和夏季的降水量变化较小,秋季降水量的年际变化较大,冬季降水量变化最大。对青藏高原的南北两区用Mann-Kendall方法进行突变分析,显示高原南区分别在1978年和1994年发生突变,北区没有发现突变。  相似文献   

2.
西藏高原降水变化趋势的气候分析   总被引:84,自引:8,他引:76  
杜军  马玉才 《地理学报》2004,59(3):375-382
利用西藏1971~2000年月降水量、降水日数资料,分析了近30年高原降水的变化趋势。结果发现,西藏大部分地区年降水量变化为正趋势,降水倾向率为1.4~66.6 mm/10a,而阿里地区呈较为明显的减少趋势。年降水日数变化阿里地区、林芝地区东部为负趋势,正趋势以那曲地区中西部、昌都地区北部最为明显。20世纪70年代高原西部为正距平、东部为负距平,20世纪80年代大部分地区为负距平,20世纪90年代高原西部为负距平,东部为正距平。近30年来西藏高原平均年、四季降水量均呈增加趋势,年降水量以19.9 mm/10a的速率增加,尤其是20世纪90年代增幅较大,1992年以来春、夏季降水明显增加。阿里地区出现了暖干化趋势。年降水异常偏涝年主要出现在20世纪80和90年代。  相似文献   

3.
近34 a青藏高原年降水变化及其分区   总被引:11,自引:6,他引:11  
 对高原地区34 a(1971—2004年)82站共13 883 d的逐日降水量资料进行了统计,用REOF方法进行了分区,并讨论了趋势变化。青藏高原地区属季风降水区,在东亚季风、印度季风、高原季风和西风带系统的影响下,降水的局部特征显著。近34 a来高原上的降水量整体呈增加趋势,从20世纪70年代到90年代初期降水变化不大,90年代中后期开始明显增加,尤其是近3 a增加明显。青藏高原干旱地区降水完全取决于夏季降水量,并且降水的相对变率大。从青藏高原地区年降水的分区情况来看,西藏及四川的西南部降水增加最明显,每10 a增加幅度为54.5 mm,其次是青海的柴达木盆地和青海湖地区及甘肃的河西走廊地区。而青海的东部及三江源地区,祁连山区,四川的西北部地区呈减少趋势。高原上高海拔地区的降水在减少,而低海拔地区在增加。  相似文献   

4.
近44 年来青藏高原夏季降水的时空分布特征   总被引:13,自引:3,他引:10  
利用1961-2004 年青藏高原97 个站点的夏季逐日降水数据,通过累积距平、相关分析、回归分析、经验正交函数分解、功率谱方法等,结合GIS 的空间分析功能,分析了夏季 降水的时空分布特征。结果表明:在青藏高原年降水量比较少的地区,夏季降水占全年降水的比例较高,夏季降水与全年降水的相关性也较强;夏季降水相对变率最大的地区位于青藏 高原西北的最干旱地区,最小的地区是三江源区;夏季降水趋势增加和减少的站点分别为54 个和43 个,通过较显著检验的站点占总数的18.6%;在2000m 以下的站点中,海拔和夏季降水气候倾向率存在较强的正相关,相关度达0. 604 (显著性0.01);1961-1983 年和1984-2004 年两个时间段相比,除了3000~3500m 海拔范围外,其余海拔范围夏季降水气候倾向率都表现为增加;夏季降水可大致分为三种类型场:高原东南部类型场、高原东北部类型场和三江 源类型场,高原东南部类型场和高原东北部类型场表现出南北变化相反的降水特点,分界线大致沿着35oN 线;在90%的置信概率下,三种类型场分别表现出5.33 年、21.33 年和2.17 年的潜在周期;4500 m 以上海拔范围的站点夏季降水周期通过很显著检验(α = 0.01),站点海拔和降水周期存在-0.626 的高相关度;在三江源地区,3500 m 以上的站点夏季降水周期随海拔升高而减小,3500 m 以下的夏季降水周期随海拔高度升高而增加。  相似文献   

5.
近40年西藏怒江河谷盆地的气候特征及变化趋势   总被引:15,自引:1,他引:14  
利用1971-2008年西藏怒江流域9个气象站逐月平均气温、平均最高气温、平均最低气温、降水量、日照时数等资料,分析了近40a怒江流域年、季气象要素的变化趋势.并计算讨论了变化趋势与经纬度、海拔高度的相关.结果表明:近40a流域年平均气温以0.26℃/10a的速率显著升高,增暖趋势比中国东北和西北弱.比淮河和华南强,与青藏高原相近.最高气温和最低气温都出现了增高的趋势,年平均气温日较差表现为一致的减小趋势,为-0.13-0.57℃/10a:年降水量以21.O mm/10a的速宰显著增加,各季降水均呈现增加趋势;年日照时数平均每10年减少31.7 h,以夏季减幅最突出.减幅比黄河流域、青藏高原东侧大;地温升高明显.流域上游季节性冻土最大冻结深度呈显著变浅趋势,以安多最明显.日照时数与降水量负相关显著.与夏、秋季大气水汽压呈显著的负相关;大部分站点日照时数的减少,与大气水汽压的显著增加和降水量的增多关系密切.总云量与日较差存在显著负相关.与夏季降水量呈显著正相关,相对湿度的变化不是总云量减少的主要原因.随着纬度的增加和海拔高度的上升,年平均气温升温幅度在加大,年降水量增幅也增大.日照时数的变化趋势仅与经度有着很好的正相关,随着经度的增加,冬季和夏季日照时数的减幅都在减小.  相似文献   

6.
作为全球海拔最高的独特自然地理单元,青藏高原对局部、区域乃至全球天气和气候系统具有显著影响。基于气象台站观测资料,对1960年以来青藏高原整体和区域尺度的降水量和极端降水量变化特征及其影响因素研究进行了回顾。结果表明:近60年青藏高原年降水量呈现上升趋势,变化速率为3.8~12.0 mm/10a,但其显著性存在争议。冬春两季降水量显著增加,春季降水量上升速率最大,夏秋两季降水量变化趋势不明显。区域尺度上,三江源区年降水量总体呈现上升趋势,变化速率为7.3~20 mm/10a;雅鲁藏布江流域年降水量呈现不明显上升趋势,变化速率为0.4~9.0 mm/10a;祁连山区年降水量显著增加,变化速率1.0~13.2 mm/10a;年降水量增长速率在青海高原为1.9~3.3 mm/10a,西藏高原为12.5 mm/10a,柴达木盆地为6.7~8.6 mm/10a,共和盆地为7.2 mm/10a。青藏高原极端降水量和极端降水日数明显增多,但是极端降水量变化空间异质性特征显著。青藏高原降水变化的影响因素很多,主要包括大尺度大气环流、高原地表状况及气候变暖。未来应采用更多类型数据源监测青藏高原降水变化,尤其是区域或流域尺度,进一步完善青藏高原降水变化机制研究。  相似文献   

7.
夏半年青藏高原“湿池”的水汽分布及水汽输送特征   总被引:8,自引:0,他引:8  
采用1948-2007年共计60年的NCEP/NCAR再分析资料.计算了夏半年(4-9月)青藏高原大气中的可降水量、水汽输送通量和水汽输送通量散度,分析了夏半年青藏高原可降水量的分布和变化特征,青藏高原及其附近的水汽输送.结果表明:在对流层中层的青藏高原上空,夏季是一个明显的大气水汽含量高中心,"湿池"特征非常显著,湿池主要有三个大的可降水量中心,即高原的西南部、东南部和高原南侧.4-9月,高原上的可降水量变化很大,高原的增湿的速度小于减湿的速度.水汽进人高原主要通过三条水汽通道,即西风带水汽输送通道、印度洋-孟别拉湾水汽通道和南海-孟加托湾水汽通道.水汽主要在高原西南侧、喜马拉雅山中段和高原东南侧进入高原.  相似文献   

8.
利用滇西北高原1961-2009年逐月降水量资料,采用多种统计分析方法,研究滇西北高原降水量的时空变化特征。结果表明:滇西北高原冬季、夏季和年平均降水量空间分布的主要特征是一致多雨或少雨型,且均具有经向分布特征,其次为"西北部-东南部"或者"西部-东部"反位相振荡型。冬季、夏季和年平均降水量的两种主要空间分布型所对应的时间系数均以年际变化为主,周期变化主要集中在4年以下的高频振荡时域内,其次是周期为12年的年代际变化。近48年来,滇西北高原冬季和年平均降水量随时间变化总体上均以增加趋势为主,增加趋势不明显,夏季降水量变化则呈减少趋势,其中香格里拉县夏季降水量减少趋势明显。  相似文献   

9.
基于高分辨率格点数据的1961-2013年青藏高原雪雨比变化   总被引:1,自引:0,他引:1  
基于国家气象信息中心发布的1961-2013年全国0.5° × 0.5°逐日降水量和日平均气温格点数据集以及气象站点日降水量和日平均气温实测资料,采用森斜率,M-K突变分析,IDW空间插值以及小波分析等方法,对近53年来青藏高原的降水量,降雨量,降雪量以及雪雨比的时空变化,突变和周期等特征进行了分析.结果表明:① 从时间尺度上看,青藏高原的降水量和降雨量总体呈增加趋势,增加幅度分别为0.6 mm·a-1(p < 0.05)和1.3 mm·a-1(p < 0.001);而降雪量和雪雨比均呈下降趋势,下降幅度分别为0.6 mm·a-1(p < 0.01)和0.5% a-1(p < 0.001).② 从空间分布上看,青藏高原的大部分地区降水量和降雨量呈增加趋势,而降雪量却呈现减少趋势.因此,雪雨比在青藏高原相应呈现减少趋势.③ 突变和周期分析表明,青藏高原降水量,降雨量,降雪量和雪雨比的突变时间分别出现在2005,2004,1996和1998年左右,而周期变化集中为5年,10年,16年,20年左右.④ 青藏高原降水量倾向率和降雨量倾向率均随海拔的升高呈现出先降低后升高的变化趋势,降雪量倾向率随海拔的升高而降低,雪雨比倾向率随海拔的升高呈微弱的下降趋势.  相似文献   

10.
西藏羊卓雍湖流域近45 年气温和降水的变化趋势   总被引:4,自引:0,他引:4  
杜军  胡军  唐述君  鲍建华  拉巴 《地理学报》2008,63(11):1160-1168
利用西藏羊卓雍湖流域气象、水文观测站1961-2005 年逐月的平均气温、降水量等资 料, 分析了近45 年流域气温、降水的年际和年代际变化特征和异常年份, 以及羊湖水位变化趋势及影响因子, 结果表明: 近45 年流域年平均气温以0.25 oC/10a 的速率显著升高, 增温主要表现在秋、冬季。近25 年, 流域平均降水量除冬季呈减少趋势外, 其他各季节表现为显 著的增加趋势, 增幅为11.4~30.0 mm/10a, 夏季增幅最大; 年降水量以54.2 mm/10a 的速率明显增加。20 世纪60 年代至90 年代, 除夏季外, 其他3 季表现为逐年代增温趋势。在夏季, 降水量除80 年代偏少外, 其他3 个年代偏多; 而冬季相反, 80 年代降水偏多, 其他3 个年代偏少。流域年平均气温异常偏高年出现过3 次, 且发生在20 世纪90 年代末至21 世纪初; 60 年代后期和70 年代初降水多异常年份。自1997 年发电以来, 降水量呈增加趋势, 流域平均降水量达409.7 mm, 明显高于平衡降水量, 水位呈较明显的上升趋势。降水增多、日照减少, 以及气温明显升高、冰雪融水增加是造成水位上升的主要原因。  相似文献   

11.
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre-lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi-cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

12.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

13.
西藏大骨节病区的地理环境特征   总被引:6,自引:1,他引:5  
西藏90%以上的大骨节病县分布在高山温带环境中,病区最暖月平均气温在10~18℃之间,≥0℃日数在180~350天之间;病区集中分布在喜马拉雅山与冈底斯山和念青唐古拉山之间以及横断山北段山间地带的山区或高山谷地地区,病县山地、丘陵占78.4%,非病县山地、丘陵面积占66.7%;就海拔高度而言,病区主要分布在3600~4000m之间;病区涉及多种类型的耕作土壤,其中酸性棕壤和暗棕壤、灰褐土和石灰性褐土、褐土性土等淋溶、半淋溶土壤类型是大骨节病集中分布区;在高山土壤类型中病区趋于分布在典型亚高山草甸土和山地灌丛草原土地带,而亚高山草原土带相对较少。西藏大骨节病区地理环境特征既与内地大骨节病区有很强的相似性,又因其独特的地域分异格局而具特殊性。  相似文献   

14.
梅静  孙美平  李霖 《干旱区地理》2022,45(6):1740-1751
基于Shuttleworth-Wallace Hu(SWH)双源蒸散模型对青藏高原那曲、纳木错、藏东南站蒸散发进行估算,在结果验证良好基础上,对青藏高原蒸散发变化特征及各站主要影响因素进行了分析。结果表明:SWH模型在青藏高原3个草甸站适用性良好;年蒸散发介于388~732 mm之间,年内分布呈先增大后减小特征;3站蒸散发组分差异较大,那曲站和纳木错站土壤蒸发对蒸散总量的贡献分别为53%和56%,藏东南站蒸散发则几乎全部由植被蒸腾贡献,占比高达95%;植被叶面积指数为3站蒸散发最主要的影响因素,饱和水汽压差对藏东南站蒸散发影响也较大。研究结果可对青藏高原蒸散发及其组分时空格局与水循环过程研究提供科学依据。  相似文献   

15.
利用遥感数据和气象观测资料探索气候因子对区域植被变化的驱动作用具有重要意义。以1980-2012年气象数据和2000-2012年MODIS-NDVI数据为数据源,借助线性回归和相关分析分别分析了青海和西藏两个地区21世纪以来气候变化对青藏高寒草地的影响机制。结果表明:(1)1980-2012年,青海和西藏地区均呈暖湿化的发展趋势。但21世纪以来,西藏地区降水呈不显著的减少趋势;整个青藏高原中部和西部地区增温趋势明显(>0.05 ℃·a-1)。(2)在年际尺度(2000- 2012年)上,青海地区NDVI呈显著增加的趋势,增长率为0.003·a-1(P<0.05);西藏地区NDVI无变化趋势,区域尺度统计中植被退化与改善相互抵消。在空间上,青藏高原东北部地区NDVI呈良性趋势,部分区域增长斜率超过0.01·a-1。青藏高原南部地区NDVI呈变差趋势,变化斜率为0.008·a-1。(3)区域上的相关分析显示,在青海地区,降水量的增加和温度的升高共同促进了该区域植被的良性发展趋势;在西藏地区,降水量的减少和温度的升高可能是南部地区植被变差的重要原因。  相似文献   

16.
青藏高原盐湖Li地球化学   总被引:4,自引:9,他引:4       下载免费PDF全文
韩凤清 《盐湖研究》2001,9(1):55-61
青藏高原是我国富 L i盐湖的主要分布区域 ,这些富 L i盐湖主要分布在柴达木盆地中部和西藏的中、西部地区。北部柴达木盆地盐湖 L i的储量大、Mg/ L i比值高、卤水 L i含量较高 ,南部西藏盐湖 L i的储量较大、Mg/L i比值低 ,L i含量很高。青藏高原富 L i盐湖主要分布在氯化物型—硫酸盐型过渡区内 ,其 L i含量在 12 0~ 2 6 0 m g/L之间 ;西藏富 L i盐湖主要分布在碳酸盐型—硫酸盐型过渡区内 ,其 L i含量在 2 5 0~ 6 6 0 m g/ L之间。在西藏各类盐湖中碳酸盐型盐湖含 L i较低 ,这很可能与其参加到早期沉淀的碳酸盐矿物晶格中有关。盐湖卤水中 L i的空间分布与其水源补给方向和蒸发环境紧密相关。Mg/ L i比值研究表明 ,盐湖中 Mg和 L i的含量成反比关系 ,即高 Mg环境不利于 L i的富集  相似文献   

17.
Summary. Travel times and waveforms of long-period SH -waves recorded at distances of 10–30° and some SS waveforms are used to constrain the upper mantle velocities down to a depth of 400km beneath both the Indian Shield and the Tibetan Plateau. the shear velocity in the uppermost mantle beneath both the Indian Shield and the Tibetan Plateau is high and close to 4.7 km s−1. the Indian Shield has a fairly thick high velocity lid, and the mean velocity between 40 and 250 km is between 4.58 and 4.68 km s−1. In contrast, S -wave travel times and waveforms of S -waves, as well as a few for SS , show that the mean velocity between 70 and 250km beneath the central and northern part of the Tibetan Plateau is slower by 4 per cent or more than that beneath the Indian Shield and probably is between 4.4 and 4.5km s−1. No large differences in the structure of the two areas below 250 km are required to explain both the arrival times and the waveforms of SH phases crossing Tibet or the Indian Shield. These results show that the structure of Tibet is not that of a shield and imply that the Indian plate is not underthrusting the whole of the Tibetan Plateau at the present time.  相似文献   

18.
Feng  Yuxue  Li  Guangdong 《地理学报(英文版)》2021,31(2):298-324
A scientific evaluation of the broad reciprocal influences between urbanization and the eco-environment in the Tibetan Plateau region is of great significance for increasing the speed and quality of urbanization as well as restoring and improving the eco-environment.Based on a thorough look at the progress made by research on interactions between ur-banization and the eco-environment in the Tibetan Plateau region,this article attempts to construct a complete analytical model of the reciprocal influences that can achieve the whole process of analyzing evaluation indexes,quantifying coupling coordination,identifying cou-pling types,exploring decoupling paths,and predicting future trends.Using multi-scale analysis of the Tibetan Plateau and its provinces and prefecture-level units as a means of comparison,we attempt to clarify differences at different scales,identify problem areas and propose targeted improvement measures.The result shows that the urbanization evaluation indexes for the Tibetan Plateau at different scales rise in stages and that the urbanization index for Qinghai is higher than for Tibet;the changes in the eco-environment index of the two regions are also different,with a downward trend in Qinghai and a trend toward stability in Tibet,and with stratification in the eco-environment indexes of prefecture-level units;the de-gree of coupling coordination between urbanization and the eco-environment at different scales in the Tibetan Plateau region is increasing overall,with the type of coordination changing from uncoordinated deterioration to borderline uncoordinated deterioration,and ultimately changing into scarcely coordinated development,which basically puts the region into the logging urbanization category;and the urbanization and eco-environment indexes display a dynamic trend of alternating between strong decoupling and weak decoupling,in-dicating that there is a negative reciprocal influence between urbanization and eco-environment at different scales and that the phenomenon of passive urbanization is prominent.We predict that in the next 10 years,the system coupling coordination of prefec-ture-level units in the Tibetan Plateau region will steadily increase,but there will be significant discrepancies in the growth rates of different regions.  相似文献   

19.
藏北高原土地沙漠化现状及其驱动机制   总被引:21,自引:0,他引:21  
董玉祥 《山地学报》2001,19(5):385-391
作为青藏高原主体的藏北高原是我国土地沙漠化三大分布区之--青藏高原分布区的代表性地域,是研究现代土地沙漠化过程及其形成机制的重要地区。本文从沙漠化土地的类型、面积与分布等方面详细分析了藏北高原土地沙漠化的现状,定性与定量分析相结合探讨了该区现代沙漠化过程的主要影响因子及其驱动机制。研究结果表明,藏北高原是我国重要的沙漠化土地分布区、沙漠化土地面积大、类型多、程度重、分布广、危害重,其形成与发展是自然因素与人为因素、自然过程与人为过程共同作用的结果,其中气候变化是其主要驱动力。  相似文献   

20.
中国热带,亚热带西部地区热量带的划分   总被引:3,自引:0,他引:3  
庞庭颐 《地理学报》1996,51(3):224-229
我国热带,亚热带西部地区山多,高原广,垂直地带性的影响,给热量带的划分带来了困难,因为垂直气候都具有在该地区纬向气候带的基础上衍生而生的,因此,亚热带西部地区热量带的划分也应以纬向地带性为主,基带气候为中亚热带的云贵高原和金沙江河谷仍应归属于中亚热带,青藏高原破坏了纬向地带性规律,其东侧应有一条亚热带西界,这一界线应是北、中、南亚热带遇到青藏高原后的中断界线,而不是北、中、南亚热带与青藏高原寒气候  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号