首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Summary Based on observed rainfall data of India Meteorological Department (IMD), correlation coefficients (CCs) have been computed between Indian summer monsoon rainfall (ISMR) and sea surface temperature (SST) anomalies over different Nino regions and standardised pressure difference between Tahiti and Darwin. Significant positive CCs are found between the Southern Oscillation Index (SOI) in winter and subsequent June rainfall over India. Concurrent with and subsequent to Indian summer monsoon, SOI shows significant positive CC with the mean rainfall of July to September (JAS). Significant negative CCs are found between JAS mean rain and the concurrent and following SST anomalies over Nino-3.4 region. On the basis of these correlations, it is proposed that the entire period of summer monsoon from June to September could be divided into two sub-periods such as: early summer (June) and mid-late summer (July to September) monsoon for prediction of ISMR in the extended range.In order to examine the characteristics of atmospheric circulation during some El-Nino years, divergent flow at 200hPa and omega field at 500hPa based on NCEP/NCAR reanalysis have been studied in detail. Major significant southward shift of upper level divergent field from India are related to El-Nino and this shift may be responsible for causing droughts during several El-Nino years over India. Also vertical wind fields at 500hPa show sinking motion over large parts of India and west Pacific and ascending motion over southern Indian Ocean, central and eastern Pacific during major drought years.  相似文献   

2.
利用美国NOAA卫星观测的SOI(Southern Oscillation Index,南方涛动指数)资料以及NCEP/NCAR、CMAP月平均资料,采用相关分析等方法,研究了南方涛动年际变化与夏季亚澳季风环流及海洋性大陆区域气候异常的联系。结果表明:南方涛动具有显著的年际变化特征,这种年际变化对夏季亚澳季风区及海洋性大陆区域的环流、降水及温度异常有重要影响。当SOI正位相时,赤道以南的澳大利亚东部地区以及西北太平洋海域高层为气旋,低层为反气旋,赤道地区的东部太平洋低层为辐散中心,高层为辐合中心,有利于下沉运动维持;加里曼丹岛附近低层辐合,高层辐散,有利于上升运动维持;海洋性大陆地区降水为显著的正异常,东亚地区降水存在较弱的正异常;海洋性大陆地区以及我国青藏高原到东海一带温度为正异常,孟加拉湾及印度半岛区域温度为负异常。  相似文献   

3.
The Indian summer monsoon is a highly energetic global atmospheric circulation system. Although the El Nino Southern Oscillation (ENSO) has been statistically effective in explaining several past droughts in India, in recent decades the ENSO-monsoon relationship has weakened over the Indian subcontinent. In this context, a teleconnection with other dominant modes is of interest. The present study focuses on the mutual impact of the North Atlantic Oscillation (NAO) and Southern Annular Mode (SAM) on the regional variability of the Indian summer monsoon. Strong El Nino and La Nina years are excluded to find the interaction between extratropics and Indian summer monsoon. During the synchronous effect of these extratropical modes, the intensity as well as the spatial distribution of rainfall anomalies varies significantly in the western coastal region, eastern part of central and northeast India. The decrease in rainfall along the southwest coastal regions is related to the reduced zonal moisture transport. Significant reduction in moisture transport occurs in the positive phase of SAM and the negative phase of the NAO. The thermal gradient developed between the Indian landmass and southern tropical ocean differs significantly during the simultaneous impact of these modes. Moreover, the spatial variation and change in intensity of summer monsoon (July–August) parameters associated with SAM depend on the respective phase of the NAO. These results will help to open new areas of research on the simultaneous teleconnection of the two hemispheric modes on circulation features and weather systems.  相似文献   

4.
A detailed study of long-term variability of winds using 30 years of data from the European Centre for Medium-range Weather Forecasts global reanalysis (ERA-Interim) over the Indian Ocean has been carried out by partitioning the Indian Ocean into six zones based on local wind extrema. The trend of mean annual wind speed averaged over each zone shows a significant increase in the equatorial region, the Southern Ocean, and the southern part of the trade winds. This indicates that the Southern Ocean winds and the southeast trade winds are becoming stronger. However, the trend for the Bay of Bengal is negative, which might be caused by a weakening of the monsoon winds and northeast trade winds. Maximum interannual variability occurs in the Arabian Sea due to monsoon activity; a minimum is observed in the subtropical region because of the divergence of winds. Wind speed variations in all zones are weakly correlated with the Dipole Mode Index (DMI). However, the equatorial Indian Ocean, the southern part of the trade winds, and subtropical zones show a relatively strong positive correlation with the Southern Oscillation Index (SOI), indicating that the SOI has a zonal influence on wind speed in the Indian Ocean. Monsoon winds have a decreasing trend in the northern Indian Ocean, indicating monsoon weakening, and an increasing trend in the equatorial region because of enhancement of the westerlies. The negative trend observed during the non-monsoon period could be a result of weakening of the northeast trade winds over the past few decades. The mean flux of kinetic energy of wind (FKEW) reaches a minimum of about 100?W?m?2 in the equatorial region and a maximum of about 1500?W?m?2 in the Southern Ocean. The seasonal variability of FKEW is large, about 1600?W?m?2, along the coast of Somalia in the northern Indian Ocean. The maximum monthly variability of the FKEW field averaged over each zone occurs during boreal summer. During the onset and withdrawal of monsoon, FKEW is as low as 50?W?m?2. The Southern Ocean has a large variation of about 1280?W?m?2 because of strong westerlies throughout the year.  相似文献   

5.
徐群  施丹平 《大气科学》1993,17(4):462-468
上年6月南方涛动指数(SOI)和盛夏(7-8月)我国东部季风雨带位置及江淮下游雨量存在显著的相关,经过分析,发现此种遥联是通过长达15个月的如下海-气相互作用形成的:偏强(弱)的南方涛动会伴随着赤道中-东太平洋海面水温偏低(高);此种趋势会从上年6月持续到次年初春,而同时冬季中太平洋中低纬经向海温梯度(△T)即趋向减弱(增强),向中高纬的热量输送偏少(多).△T和随后春夏各月北半球100hPa高度场和500-100hPa厚度场的相关计算表明,正高相关区从热带中太平洋区逐步向东亚中纬输送,这可能反映出高空热量经由一系列行星波西传并于盛夏抵达东亚中纬,从而影响到100hPa层青藏高压东部的伸缩、我国东部季风雨带的南北位置和江淮下游的旱涝趋势.  相似文献   

6.
Summary  One of the major forcings for the interannual variability of the Asian Summer Monsoon is the Sea Surface Temperature (SST) distribution in the tropical Pacific Ocean. El Ni?o years are characterized by a negative Southern Oscillation Index (SOI) and decreased monsoon rainfall over India leading to drought conditions. On the other hand, La Nina years are characterized by a positive SOI and generally good monsoon conditions over India. The monsoon ENSO relation is not a consistent one. The monsoons of 1991 and 1994 are good examples. The spring SOI was the same (−1.3) during both years. However, the All India Summer Monsoon Rainfall (AISMR) was 91.4% of normal in 1991 and 110% in 1994. Though the SOI was same during the spring of both years, the spatial distribution of SSTs was different. In the present study, the impacts of different SST distributions in the tropical Pacific Ocean, on the monsoons of 1991 and 1994 have been examined, to assess the UKMO-unified model’s sensitivity of SST. It is observed that the simulated monsoon was much stronger in 1994 than in 1991, in terms of precipitation and circulation. The wind and the Outgoing Long-wave Radiation (OLR) simulated by the model are compared with NCEP/NCAR reanalyses data, while precipitation is compared with Xie-Arkin merged rainfall data. Received November 26, 1998  相似文献   

7.
Analysis of 149 raingauge series (1946–1988) shows a weak positive correlation between late summer rainfalls (January–March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds over the southern African plateau. These results are consistent with the strong droughts observed over all southern Africa during ENSO events since 1970.  相似文献   

8.
Summary Climatic determinants of summer (Nov-Mar) rainfall over southern Africa are investigated through analysis of sea surface temperatures (SST), outgoing longwage radiation (OLR) and tropospheric wind with respect to the Southern Oscillation Index (SOI) and the stratospheric quasi-biennial oscillation (QBO). Index-to-field correlation maps are presented at various lags for the austral spring and summer seasons to establish the spatial dependence and evolution of coherent, statistically significant features. The SOI signal is reflected in upper-level zonal wind anomalies over the equatorial Atlantic Ocean during spring. SSTs in the central Indian Ocean are significantly negatively correlated with the SOI in summer. On the other hand, OLR correlations are weak over southern Africa in the summer, implying that the SOI signal may not dominate interannual convective variability.QBO correlations with SST are relatively weak, but with 200 hPa zonal winds over the western equatorial Ocean, positive correlations are noted. A standing wave pattern is described in the sub-tropics. The OLR correlation pattern represents a dipole with increased convection over eastern and southern Africa in contrast to reduced convection over Madagascar when the QBO is in west phase.Contingency analyses indicate that the global indices are unreliable predictors in isolation. However the characteristics and domain of influence of SOI and QBO signals are identified and may offer useful inputs to objective multivariate models for different modes of southern African rainfall variability.With 12 Figures  相似文献   

9.
The weakening relationship of El Nino with Indian summer monsoon reported in recent years is a major issue to be addressed. The altered relationships of Indian monsoon with various parameters excite to search for other dominant modes of variability that can influence the precipitation pattern. Since the Indian summer monsoon circulation originates in the oceanic region of the southern hemisphere, the present study investigates the association of southern extratropical influence on Indian summer monsoon using rainfall and reanalysis parameters. The effect of Southern Annular Mode (SAM) index during the month of June associated with the onset phase of Indian summer monsoon and that during July–August linked with the active phase of the monsoon were analysed separately for a period from 1951 to 2008. The extra-tropical influence over the monsoon is illustrated by using rainfall, specific humidity, vertical velocity, circulation and moisture transport. The June high SAM index enhances the lower level wind flow during the onset phase of monsoon over Indian sub-continent. The area of significant positive correlation between precipitation and SAM in June also shows enhancement in both ascending motion and specific humidity during the strong phase of June SAM. On the other hand, the June high SAM index adversely affects July–August monsoon over Indian subcontinent. The lower level wind flow weakens due to the high SAM. Enhancement of divergence and reduction in moisture transport results in the Indian monsoon region due to the activity of this high southern annular mode. The effect is more pronounced over the southwest region where the precipitation spell has high activity during the period. Significant correlation exists between SAM and ISMR, even after removing the effect of El Nino. It indicates that the signals of Indian summer monsoon characteristics can be envisaged to a certain extend using the June SAM index.  相似文献   

10.
Summary An investigation of the relationships between New South Wales (NSW) seasonal rainfalls and fluctuations of geopotential height at four Australian radiosonde stations is presented. The connection between the Southern Oscillation Index (SOI) and the geopotential height was explored up to the mid-troposphere. The study determined that the 800 and 600 hPa heights at Woomera show stronger and more consistent correlations with winter and spring rainfalls respectively, than occur between SOI and rainfall. The 900 hPa height at Brisbane is also strongly correlated with autumn rainfall for much of coastal NSW. These correlations are found to be stable during high and low phases of the SO cycle. It was found that the effects of the considered geopotential data on rainfall are independent of the influence of the SO phenomenon. The study also found that the fluctuations of geopotential heights at Woomera are related to rainfall variability over a wide region of southern Australia. At Darwin the 800 hPa surface appears to be the highest altitude at which there is any influence from the Southern Oscillation during winter. Furthermore, airmass movement over inland NSW is quite strongly related to SOI but coastal airmass movement is only weakly related to SOI. A mechanism for the influence of the Southern Oscillation on NSW rainfall is suggested.With 9 Figures  相似文献   

11.
The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows(CEFs) and the implications for the Asian summer monsoon were explored in this study.The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level,respectively.The low-level Somali(LLS) CEFs were significantly connected with the rainfall in most regions of India(especially the monsoon regions),except in a small area in southwest India.In comparison to the climatology,the lowlevel Australia(LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs.The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China.The sea-surface temperature anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer,with implications for the seasonal prediction of summer rainfall in East Asia.The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with El Nino-Southern Oscillation.In addition,both the LLA and LLS CEFs exhibited interdecadal shifts in the late 1970s and the late 1990s,consistent with the phase shifts of Pacific Decadal Oscillation(PDO).  相似文献   

12.
The long-term variability of the Indian summer monsoon rain-fall and related regional and global param-eters are studied. The cubic spline is used as a digital filter to smooth the high frequency signals in the time series of the various parameters. The length of the data series varies from 95 to 115 years during the period 1871-1985. The parameters studied within the monsoon system are: (a) monsoon rainfall of the country as a whole; (b) number of break-monsoon days during July and August; (c) number of storms/ depressions in Bay of Bengal and Arabian Sea during summer monsoon season; and (d) dates of onset of summer monsoon over South Kerala Coast. The parameters studied outside the monsoon system are: (a) the Wright’s Southern Oscillation Index (June-July-August); (b) the January mean Northern Hemi-spheric surface air temperature anomaly; and (c) the East-equatorial Pacific sea surface temperature anomaly.In order to examine the variability under various degrees of the smoothing, the series are filtered with splines of 50% variance reduction frequency of one cycle per 10, 20 and 30 years. It is observed that the smoothed time series of the parameters within the monsoon system comprise a common slowly varying com-ponent in an episodic manner distinctly showing the excess and deficient rainfall epochs. The change of intercorrelations between the time series with increasing degree of smoothing throws some light on the time scales of the dominant interactions. The relation between Southern Oscillation and East equatorial Pacific sea surface temperature and the Indian summer monsoon seems to be dominant on the interannual scale. The low frequency variations are found to have significantly contributed to the instability of the correlations of monsoon rainfall with parameters outside the monsoon system.  相似文献   

13.
In many regions of the world, planning agricultural and water management activities is usually done based on probabilities for monthly rainfall, taking on values on specified intervals of values. These intervals of monthly rainfall amounts are commonly grouped into three categories: drought, normal rainfall, and abundant rainfall. Changes in the probabilities for occurrence of monthly rainfall amounts within these climatic rainfall categories will influence the decisions farmers and water managers will take (for example, crops to cultivate, flood preparedness, and operations of water reservoirs). This research explores the changes produced by the SO (Southern Oscillation) on the probability that the areal average of monthly rainfall (AAvMR) takes on values belonging to specified climatic rainfall categories. The semi-arid region under study is a major agricultural region in central Argentina; weather effects on agriculture in this region influence the world market of several crops. The evolution of the Southern Oscillation was divided into three phases: LSOI (low Southern Oscillation index phase, that includes ENSO events), NSOI (neutral SOI phase), and HSOI (high SOI phase that includes La Niña–SO events). The following are the criteria defining the three phases of the SO: (1) low SOI (ENSO), where the five-month moving average of the SO index, SOI, is less than −0.5 standard deviation during at least five consecutive months, and is equal to or less than −1 standard deviation during at least one month; (2) high SOI (La Niña–SO), where the SOI is greater than 0.5 standard deviation during at least five consecutive months, and is equal to or greater than 1 standard deviation during at least one month; and (3) neutral SOI (transition between extremes), where the SOI does not correspond to low SOI nor to high SOI. It was found that the Southern Oscillation influences the probability distribution of monthly rainfall only in four months of the year. Findings show that monthly rainfall has a complex response to the evolution of the SO. The response is not restricted to higher probability for occurrence of abundant rainfall or drought categories during low SOI (ENSO) or high SOI (La Niña–SO) episodes, respectively. The LSOI (ENSO) phase influences the AAvMR in several ways: depending on the month, it increases or decreases the probability of the abundant rainfall category. LSOI (ENSO) also increases or decreases, depending on the month, the probability of the normal rainfall category. It also decreases the probability that AAvMR takes on values in the drought category. A similar kind of complex response of monthly rainfall amounts occurs when the active phase is the HSOI (La Niña–SO). The responses are: (1) the probability of the category `drought' increases only in three months of the year, (2) increase or decrease of the probability of the normal rainfall category, depending on the month, and (3) decrease of the probability of the abundant rainfall category. Finally, the effects of NSOI (neutral phase of the SO) are not negligible. Depending on the month, NSOI episodes increase or decrease the probability of drought, or abundant rainfall, or normal rainfall categories.  相似文献   

14.
500 hPa ridge positions over the Indian and the West Pacific regions during April are related with the summer monsoon rainfall over India. The ridge position over the Indian region shows better relation with monsoon rainfall than that shown by the ridge over the Pacific region. The multiple correlation of these ridge positions with monsoon rainfall exceeds 0.7. These predictive relationships are better than those shown by other parameters, viz. (1) Northern Hemispheric surface temperature; (2) East-Pacific sea surface tempera-ture; (3) El-Nino events and (4) Tahiti-Darwin pressure difference, and index of southern oscillation, over the 30-year samples analysed.  相似文献   

15.
夏季中国南方流域性致洪暴雨与季风涌的关系   总被引:28,自引:1,他引:28  
陶诗言  卫捷 《气象》2007,33(3):10-18
中国淮河以南地区夏季最易受到洪水灾害的威胁,这种致洪暴雨一般出现在沿着河谷走向的静止锋上。在引发致洪暴雨的环流系统中,季风涌的作用非常重要,它提供了暴雨产生所必须的水汽。分析了1998、2003、2005及2006年中国南方流域性致洪暴雨和东亚季风涌,以及与赤道附近大气环流的30~60天振荡(称作Madden—Julian Oscillation,简称MJO)活动的关系。当来自赤道印度洋的MJO引起南海地区西风的加强;南海西风的加强,触发中国南部大陆出现季风涌;季风涌与来自北方的冷空气交绥,造成静止锋上的致洪暴雨。由此提出我国南方夏季流域性致洪暴雨中、短期预报的基本思路。  相似文献   

16.
Summary Relationships of Indian monsoon rainfall with Sea Surface Temperature (SST) and Southern Oscillation Index (SOI) tendencies from DJF to MAM and those between concurrent SST and SOI tendencies are important in view of their large-scale character. Some of these have application in the field of forecasting. Bias on these or any other relationships can possibly arise from a few years of extreme data. Whether the bias results in suppression of an existing relationship, in creating a relationship when none exists, or strenghthening or weakening an existing relationship, over any period, needs to be examined, and if found so, the bias should be removed and bias-free relationships should be discussed and considered for applications. This problem has been examined in respect of the forementioned relationships by following an objective procedure for removing the bias. Removal of the bias has made a notable difference in respect of the strength as well as significance of the relationship over some periods, for some relationships. The main features of the relationships free from such bias are: (a) Indian monsoon rainfall and SST tendency from DJF to MAM before as well as after monsoon are significantly related except within 1904–1940 in respect of relationship with tendency before monsoon, (b) Indian monsoon rainfall and SOI tendency before and after monsoon are significantly related over some non-overlapping component periods only, (c) though the best SST-SOI tendency coupling is for DJF to MAM tendency, no coupling is observed between these tendencies within 1904–1940, (d) linkage of SST tendency from DJF to MAM with the preceding Indian monsoon rainfall appears to be stronger than that with the concurrent SOI tendency and continues even during the period of no coupling between the tendencies, thus bringing out the dominating active role played by the Indian monsoon.With 3 Figures  相似文献   

17.
Summary The Indian coast stretching more than 7,500 km constitutes the major portion of the South Asian coastline in the North Indian Ocean region. The South Asian region is significantly influenced by meteorological/oceanographic phenomena like monsoons, El Ni?o/Southern Oscillation (ENSO) and tropical cyclones. Direct/indirect impacts of these phenomena, which exhibit large interannual variabilities, on sea level changes in this region are considerable. Our results show that the mean sea level along the eastern coast of India, which is highly vulnerable to the incidence of severe tropical cyclones, is considerably higher than normal during the intense cyclonic period of a year falling in the positive phase of the Southern Oscillation (La Ni?a epoch), thereby enhancing the hazardous potential of tropical cyclones. Further, in the closing phase of the La Ni?a southwest monsoon, higher sea level anomalies prevail along the Indian coast raising the flooding potential of such monsoons. Over the west coast of India significant simultaneous correlations have been found between the amount of southwest monsoon rainfall and the mean sea level during the period from June to September. Over the east coast of India at Visakhapatnam, mean sea level is predictable with a fair degree of confidence one month in advance, by using the Sea Surface Temperature (SST) and the Southern Oscillation Index (SOI) as predictors. These results will be useful in the annual preparedness programmes aimed at mitigating the impacts of natural disasters like tropical cyclones and floods in the South Asian region. Received November 9, 2001  相似文献   

18.
In this study, we investigate a long-term modulation in the relationship between Indian summer monsoon rainfall with the subsequent Australian summer monsoon rainfall. The two monsoon rainfall time series are significantly correlated at 0.3 at the 99 % confidence level. However, the relationship weakens during the 1932–1966 period, with the inter-monsoon correlation for the period falling below statistical significance. We find that this modulation is consistent with a breakdown of the typical El Niño-Southern Oscillation (ENSO) influence on sea surface temperature in the northern region of Australia, during this period. In addition, a change in the relative influences of ENSO and Indian Ocean Basin-wide Warming sea surface temperature anomalies on the Australian summer monsoon rainfall is also apparent across different time periods.  相似文献   

19.
Rainfall over south peninsular India during the northeast (NE) monsoon season (Oct–Dec) shows significant interannual variation. In the present study, we relate the northeast monsoon rainfall (NEMR) over south peninsular India with the major oscillations like El Ni?o Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Equatorial Indian Ocean Oscillation (EQUINOO) in the Indian and Pacific Oceans. For establishing the teleconnections, sea surface temperature, outgoing long wave radiation, and circulation data have been used. The present study reveals that the positive phase of ENSO, IOD, and EQUINOO favor the NEMR to be normal or above normal over southern peninsular India. The study reveals that the variability of NEMR over south peninsula can be well explained by its relationship with positive phase of ENSO, IOD, and EQUINOO.  相似文献   

20.
It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more water vapor transport during summer, as well as early and middle summer. However, the present results indicate that during late summer(from mid-August to the beginning of September), the anomalous anticyclone leads to more rainfall over central southern China(CSC), a region quite different from preceding periods. The uniqueness of late summer is found to be related to the dramatic change in climatological monsoon flows: southerlies over southern China during early and middle summer but easterlies during late summer. Therefore, the anomalous anticyclone, which shows a southerly anomaly over southern China, enhances monsoonal southerlies and induces more rainfall along the rain band during early and middle summer. During late summer,however, the anomalous anticyclone reflects a complicated change in monsoon flows: it changes the path, rather than the intensity, of monsoon flows. Specifically, during late summers of suppressed convection in the tropical WNP, southerlies dominate from the South China Sea to southern China, and during late summers of enhanced convection, northeasterlies dominate from the East China Sea to southern China, causing more and less rainfall in CSC, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号