首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Multivariate statistical analysis and inverse geochemical modelling techniques were employed to deduce the mechanism of groundwater evolution in the hard-rock terrain of Telangana, South India. Q-mode hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to extract the hydrogeochemical characteristics and classify the groundwater samples into three principal groups. Use of thermodynamic stability diagrams and inverse geochemical modelling in PHREEQC identified the chemical reactions controlling hydrogeochemistry of each of the groups obtained from statistical analysis. The model output showed that a few phases are governing the water chemistry in this area and the geochemical reactions responsible for evolution of groundwater chemistry along the flow path are (i) dissolution of evaporite minerals (dolomite, halite); (ii) dissolution of primary silicate minerals (albite, anorthite, K-feldspar, biotite); (iii) precipitation of secondary silicate minerals (kaolinite, quartz, gibbsite, Ca-montmorillonite) along with anhydrite and calcite; and (iv) reverse ion exchange processes.  相似文献   

2.
Hydrochemical, inverse geochemical modelling and isotopic approaches are used to assess the hydrogeochemical evolution of groundwater from the basement aquifers in the southeastern part of the Plateaux Region, Togo. Groundwater originates from present-day rainwater infiltration and is mostly fresh and slightly acidic to neutral. Hydrochemical facies are predominantly mixed cations-HCO3 associated with Ca/Mg-Cl, Na-HCO3 and Na-Cl water types in equilibrium with kaolinite and Ca/Mg-smectites. They are related to silicates hydrolysis, anthropogenic contamination, nitrification/denitrification, mixing along flowpaths and dissolution/precipitation of secondary minerals. The pattern of flow paths is in accordance with an increasing trend in total dissolved solids (TDS) toward the potentiometric depression located in the central and southern parts of the aquifer system. Inverse geochemical modelling using the NETPATH-WIN model showed the relative importance of biotite, plagioclase and amphibole weathering and dissolution of secondary carbonate minerals along the flowpath, suggesting that an abundance of minerals is not necessarily the main factor controlling the groundwater chemistry evolution.  相似文献   

3.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   

4.
Krainov  S. R.  Belousova  A. P.  Ryzhenko  B. N. 《Water Resources》2001,28(5):491-501
Generalized observational data on groundwater chemistry and the results of modeling geochemical processes allowed us to establish that the formation of high-carbonate alkaline waters follows two ways, i.e., calcium and soda. It is shown that the formation of alkaline waters in semiarid and arid zones can be facilitated by acid atmospheric precipitation, which forms the concentration of Ca in groundwater sufficiently high to initiate ion exchange processes resulting in the formation of H2CO3–Na waters. Ion exchange is shown to be a boundary process, which facilitates the transition from calcium to soda way of groundwater metamorphization with subsequent increase in the carbonate content and alkalinity of groundwater.  相似文献   

5.
Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)‐containing minerals has been observed in both laboratory and field studies. These reactive iron minerals form under iron‐ and sulfate‐reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are chemically reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents by reactive iron minerals, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, dehydrohalogenation, and hydrolysis reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) have the potential to serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity for degradation of chlorinated solvents can be approximated as follows: disordered FeS > FeS > Fe(0) > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite. Reaction kinetics are also influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as monitored natural attenuation.  相似文献   

6.
Identifying the key factors controlling groundwater chemical evolution in mountain-plain transitional areas is crucial for the security of groundwater resources in both headwater basins and downstream plains. In this study, multivariate statistical techniques and geochemical modelling were used to analyse the groundwater chemical data from a typical headwater basin of the North China Plain. Groundwater samples were divided into three groups, which evolved from Group A with low mineralized Ca-HCO3 water, through Group B with moderate mineralized Ca-SO4-HCO3 water, to Group C with highly saline Ca-SO4 and Ca-Cl water. Water-rock interaction and nitrate contamination were mainly responsible for the variation in groundwater chemistry. Groundwater chemical compositions in Group A were mainly influenced by dissolution of carbonates and cation exchange, and suffered less nitrate contamination, closely relating to their locations in woodland and grassland with less pronounced human interference. Chemical evolution of groundwater in Groups B and C was gradually predominated by the dissolution of evaporites, reverse ion exchange, and anthropogenic factors. Additionally, the results of the inverse geochemical model showed that dedolomitization caused by gypsum dissolution, played a key role in the geochemical evolution from Group A to Group B. Heavy nitrate enrichment in most groundwater samples of Groups B and C was closely associated with the land-use patterns of farmland and residential areas. Apart from the high loads of chemical fertilizers in irrigation return flow as the main source for nitrate contamination, the stagnant zones, flood irrigation pattern, mine drainage, and groundwater-exploitation reduction program were also important contributors for such high mineralization and heavy NO3 contents in Group C. The important findings of this work not only provide the conceptual framework for the headwater basin but also have important implications for sustainable management of groundwater resources in other headwater basins of the North China Plain.  相似文献   

7.
ABSTRACT

Hydrogeochemical investigations were carried out with an objective to identify the processes affecting the chemistry of groundwater in the Coimbatore district of Tamil Nadu, India. Thirty-three groundwater samples were collected from representative wells for chemical analysis. Groundwater types identified from piper plots were Ca-Mg-Cl and Na-Cl. The dominance of ions was in the order of Na>Ca>Mg>K and Cl>HCO3>SO4>CO3. Spatial variation diagrams of ions were generated using the geostatistical analyst tool ArcGIS 9.3. According to these diagrams, most of the ions were higher in the northeast and southeast regions. This is attributed to the flow direction of the groundwater and high residence times. Gibbs diagrams identified rock–water interaction as an important geochemical process in the district. Evaporation, ion exchange, silicate weathering and dissolution of carbonate minerals were identified as other important hydrogeochemical processes which influence the groundwater chemistry of the study area.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M. Besbes  相似文献   

8.
The hydrogeochemistry of shallow groundwater has been characterized in the Allt a'Mharcaidh catchment in the Scottish Cairngorms in order to: (i) assess the spatial and temporal variation in groundwater chemistry; (ii) identify the hydrogeochemical processes regulating its evolution; and (iii) examine the influence of groundwater on the quality and quantity of stream flow. Shallow groundwater in superficial drift deposits is circumneutral (pH∽7·1) and base cation concentrations are enriched compared with precipitation and drainage water from overlying podzolic soils. Modelling with NETPATH suggests that the dominant geochemical processes that account for this are the dissolution of plagioclase, K-feldspar and biotite. Groundwater emerging as springs from weathered granite underlying high altitude (>900 m) alpine soils shows similar characteristics, though weathering rates are lower, probably as a result of reduced residence times and lower temperatures. Chemical hydrograph separation techniques using acid neutralizing capacity (ANC) and Si as tracers show that groundwater is the dominant source of baseflow in the catchment and also buffers the chemistry of stream water at high flows: groundwater may account for as much as 50–60% of annual runoff in the catchment. Climate and land use in the Cairngorms are vulnerable to future changes, which may have major implications for hydrogeological processes in the area. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
The Maqarin site in Jordan has been investigated for three decades as a natural analogue for the long term changes of materials in contact with hyper-alkaline solutions. Similar processes are expected in radioactive waste disposal sites, where cement based materials are in contact with natural rocks or other e.g. clay based materials. In this context, a numerical reactive transport model was used to study local geochemical alterations and induced porosity changes for the Maqarin marl rock in contact with the hyper-alkaline solution. The geochemical setup for the rock mineralogy and the pore water was calibrated to match measurements from the Maqarin site. The setup includes several clay and zeolite minerals, considers cation exchange processes, and a state-of-the-art model for cement phases. Similar to earlier calculations by Steefel and Lichtner (1998) who used a much simpler geochemical model, the pore clogging occurred after several hundred years at a distance of 5–10 mm from the contact to the hyper-alkaline solution. In our calculations, this was caused by a massive precipitation of ettringite and C–S–H minerals. We performed a sensitivity study by varying the intrinsic diffusion coefficient, the Archie’s law exponential factor, and the mineral surface area available for dissolution and precipitation. We found that the dissolution of clay minerals controls the availability of Al, which is needed for ettringite and C–S–H phase precipitation. Thus, the amount and kinetically controlled dissolution of clay minerals controls the spatial and temporal evolution of porosity changes. The simulations reveal that neither cation exchange processes nor the formation of zeolite minerals strongly influence the geochemical evolution of the system.  相似文献   

10.
Reclaimed water is efficiently used to recover the dry river, but river water and groundwater may be impacted considering the water quality. Thus, it is critical to study the factors controlling water chemistry. Samples of reclaimed water, river and groundwater were collected monthly from January to September in 2010, in Huai River (North China). And samples were analyzed for major 15 physio-chemical parameters. Using hierarchical cluster analysis, 9 months are divided into two distinct groups, which show the clear temporal variation. In reclaimed water and river water, one group includes February, while the other includes other months. In shallow and deep groundwater, one group includes months from January to April, while the other encompasses others. Monitoring stations are classified into three groups. Group A with high value of ions and nitrogen (order: NH4-N > NO3-N > NO2-N) includes reclaimed water and river water. Group B with moderate concentration and nitrogen (order: NO3-N > NH4-N > NO2-N) includes all shallow groundwater and one deep groundwater. Group C with the low value and nitrogen (order: NO3-N > NO2-N > NH4-N), includes two deep groundwater. Using multivariate analysis and ionic relationships, river water chemistry is found to be controlled by reclaimed water and evaporation process; chemistry in shallow groundwater and one deep groundwater, with type of Na–Ca(Mg)–HCO3–Cl, is controlled by dissolution of calcite, carbonate weathering. Additionally, reactions of nitrification, denitrification and cation exchange occur in the infiltration of reclaimed water; chemistry in the other deep groundwater, with type of Ca–Mg–HCO3–Cl, is controlled by dissolution of calcite, carbonate weathering and denitrification.  相似文献   

11.
Much of what is known about groundwater circulation and geochemical evolution in carbonate platforms is based on platforms that are fully confined or unconfined. Much less is known about groundwater flow paths and geochemical evolution in partially confined platforms, particularly those supporting surface water. In north‐central Florida, sea level rise and a transition to a wetter climate during the Holocene formed rivers in unconfined portions of the Florida carbonate platform. Focusing on data from the Santa Fe River basin, we show river formation has led to important differences in the hydrological and geochemical evolution of the Santa Fe River basin relative to fully confined or unconfined platforms. Runoff from the siliciclastic confining layer drove river incision and created topographic relief, reorienting the termination of local and regional groundwater flow paths from the coast to the rivers in unconfined portions of the platform. The most chemically evolved groundwater occurs at the end of the longest and deepest flow paths, which discharge near the center of the platform because of incision of the Santa Fe River at the edge of the confining unit. This pattern of discharge of mineralized water differs from fully confined or unconfined platforms where discharge of the most mineralized water occurs at the coast. Mineralized water flowing into the Santa Fe River is diluted by less evolved water derived from shorter, shallower flow paths that discharge to the river downstream. Formation of rivers shortens flow path lengths, thereby decreasing groundwater residence times and allowing freshwater to discharge more quickly to the oceans in the newly formed rivers than in platforms that lack rivers. Similar dynamic changes to groundwater systems should be expected to occur in the future as climate change and sea level rise develop surface water on other carbonate platforms and low lying coastal aquifer systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The western U.S. is experiencing shifts in recharge due to climate change, and it is currently unclear how hydrologic shifts will impact geochemical weathering and stream concentration–discharge (CQ) patterns. Hydrologists often use CQ analyses to assess feedbacks between stream discharge and geochemistry, given abundant stream discharge and chemistry data. Chemostasis is commonly observed, indicating that geochemical controls, rather than changes in discharge, are shaping stream CQ patterns. However, few CQ studies investigate how geochemical reactions evolve along groundwater flowpaths before groundwater contributes to streamflow, resulting in potential omission of important CQ controls such as coupled mineral dissolution and clay precipitation and subsequent cation exchange. Here, we use field observations—including groundwater age, stream discharge, and stream and groundwater chemistry—to analyse CQ relations in the Manitou Experimental Forest in the Colorado Front Range, USA, a site where chemostasis is observed. We combine field data with laboratory analyses of whole rock and clay x-ray diffraction and soil cation-extraction experiments to investigate the role that clays play in influencing stream chemistry. We use Geochemist's Workbench to identify geochemical reactions driving stream chemistry and subsequently suggest how climate change will impact stream CQ trends. We show that as groundwater age increases, CQ slope and stream solute response are not impacted. Instead, primary mineral dissolution and subsequent clay precipitation drive strong chemostasis for silica and aluminium and enable cation exchange that buffers calcium and magnesium concentrations, leading to weak chemostatic behaviour for divalent cations. The influence of clays on stream CQ highlights the importance of delineating geochemical controls along flowpaths, as upgradient mineral dissolution and clay precipitation enable downgradient cation exchange. Our results suggest that geochemical reactions will not be impacted by future decreasing flows, and thus where chemostasis currently exists, it will continue to persist despite changes in recharge.  相似文献   

13.
Abandoned mining operations continue to severely degrade many ecosystems worldwide by releasing acidic water and/or heavy metals into surface and groundwater. Contaminant concentrations in affected streams vary with discharge in patterns that reflect both geochemical reactions and variable mixing of contaminated and non-contaminated waters. However, controls on concentration-discharge (C-Q) patterns remain unclear, particularly for constituents that experience changing solubility across redox and pH gradients. Understanding the C-Q behaviour of contaminants aids in predicting both downstream transport and effects on aquatic life under variable flow. Here, we examined the C-Q behaviours of non-reactive (Na, K, Ca, Mg, Cl) and reactive (Fe, Mn, Al, H+, SO42−) solutes in a stream contaminated with acid mine drainage in northeastern Ohio, USA. Concentration-discharge patterns at the watershed outlet primarily reflected mixing of contaminated baseflow with intermittent inputs of high pH water draining from a passive limestone treatment system into the stream. The treatment system acted as an ephemeral tributary that mitigated contamination in the stream by diluting solutes, raising pH, and driving metal precipitation, but only when flow was present during wet seasons. Consequently, AMD-derived reactive solutes (H+, Fe, Mn, Al) decreased with increasing stream discharge while relatively conservative solutes (e.g., Ca, Mg, K, Na) decreased only slightly or were chemostatic. This study highlights both the unique C-Q patterns of reactive solutes when compared to those of non-reactive solutes and the potential for intermittent streams to control C-Q behaviour in headwater catchments.  相似文献   

14.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

15.
In order to recognize lateral and seasonal variations in composition of suspended particulate matter (SPM) in the Odra Estuary, samples were taken at four sites in the period July 1996 - July 1997 monthly if possible. The contents of the elements Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, C, S as well as Ba, Cr, Sr, V, Zn, Cu, Zr, and of the minerals illite, chlorite, smectite, kaolinite and others have been determined. The decreasing influence of the river Odra towards the open sea could be realized with the help of the contents of the minerals quartz, smectite, and of the elements Ba, Cr, K, P, Si and other. 60% of the seasonal and lateral variations can be explained by changing contents of total carbon (TC), total organic carbon (TOC), Al, Fe, Si, Ti, P, Mn, and Ba. They are mainly caused by differences in the production of organic matter, resuspension, riverine input, and redox-sensitive processes.  相似文献   

16.
Hydrobiogeochemical processes controlling stream water chemistry were examined in four small (<5 km2) catchments having contrasting bedrock lithologies in the western Sierra Nevada foothills of California. The Mediterranean climate with its cool/wet and hot/dry cycle produces strong seasonal patterns in hydrological, biological and geochemical processes. Stream water solutes fall into three general groups according to seasonal fluctuation in concentration: strong, rainy season minimum–dry season maximum (Cl, SO42−, base cations); weak, rainy season minimum–dry season maximum (Si); and rainy season maximum–dry season minimum (NO3 and K+). Solute dynamics in soil solutions and stream water suggest that mixing of drainage waters from bedrock and soil sources regulate stream water solute concentrations. Patterns are further altered by the leaching of solutes accumulated in the soil over the summer period of desiccation and the temporal discoupling of nutrient cycles that occurs due to differences in the timing between vegetation growth (late spring) and leaching (early winter). Solute concentrations are remarkably similar between watersheds with varying bedrock types, with the exception of nitrate, sulfate and bicarbonate. Three watersheds have nitrogen-bearing metasedimentary bedrock that contributes to elevated nitrate concentrations in stream waters. Watersheds whose bedrock includes mineralized veins of sulfide and carbonate minerals similarly have greater sulfate and bicarbonate concentrations in stream water. Hydrobiogeochemical processes are highly dynamic at the seasonal and storm-event temporal scales and spatially complex at the watershed scale making management of stream water chemical composition, such as nitrate concentrations, very challenging.  相似文献   

17.
Successive classification modeling of multivariate observations was used to objectively identify and quantitatively describe four major hydrogeochemical directions of changes in mine water chemistry and two hydrogeochemical trends for groundwater in the Eastern Donets Basin (two types of vertical hydrogeochemical zonality). Processes along the first hydrogeochemical direction result in the formation of acid sulfate mineralized water, those along the second direction form neutral chloride-sulfate waters, those along the third direction form sulfate-chloride and chloride, and those along the fourth direction form soda, hydrocarbonate-sulfate-chloride waters; the processes of sulfur oxidation and water mixing play the main role in the formation of water chemistry. In the case of groundwater, the first trend (direct zonality) manifests itself in the formation of highly mineralized chloride sodium water (mineralization of up to 60–80 g/l), while the second trend (inverse zonality) results in the formation of moderately mineralized soda hydrocarbonate-chloride and chloride sodium water (1–3 g/l). The genesis of water chemistry is explained with the engagement of infiltration, sedimentation, and evaporation-condensation hypotheses. Giving preference to the evaporation-condensation genesis of groundwater chemistry according to the second trend, the authors came to the conclusion that the Eastern Donets Basin is promising in terms of oil and gas accumulations.  相似文献   

18.
Understanding basic controls on aquifer microbiology is essential to managing water resources and predicting impacts of future environmental change. Previous theoretical and laboratory studies indicate that pH can influence interactions between microorganisms that reduce ferric iron and sulfate. In this study, we test the environmental relevance of this relationship by examining broad‐scale geochemical data from anoxic zones of aquifers. We isolated data from the U.S. Geological Survey National Water Information System for 19 principal aquifer systems. We then removed samples with chemical compositions inconsistent with iron‐ and sulfate‐reducing environments and evaluated the relationships between pH and other geochemical parameters using Spearman's rho rank correlation tests. Overall, iron concentration and the iron‐sulfide concentration ratio of groundwater share a statistically significant negative correlation with pH (P < 0.0001). These relationships indicate that the significance of iron reduction relative to sulfate reduction tends to increase with decreasing pH. Moreover, thermodynamic calculations show that, as the pH of groundwater decreases, iron reduction becomes increasingly favorable relative to sulfate reduction. Hence, the relative significance of each microbial reaction may vary in response to thermodynamic controls on microbial activity. Our findings demonstrate that trends in groundwater geochemistry across different regional aquifer systems are consistent with pH as a control on interactions between microbial iron and sulfate reduction. Environmental changes that perturb groundwater pH can affect water quality by altering the balance between these microbial reactions.  相似文献   

19.
The influence of geochemical processes and quality of groundwater in a rural tract of Damodar Valley region were investigated. The study has distinguished the groundwater as fresh, soft to moderately hard and mainly CaHCO3 type. The paired samples student’s t test shows the significant seasonal variations of pH, HCO3?, and Fe. Amphoteric exchange has lessened HCO3? concentration in post-monsoon which subsequently has caused to drop pH. Quite the reverse, the monsoon precipitation has triggered the additional release of Fe from iron-bearing sediments. The contaminant Cl? is from the domestic wastewater as is evidenced by field observations. The inter-variable relations, cation and anion mechanisms, and mineral saturation indices reveal that the dissolutions of silicate and carbonate minerals are the primary sources of major ions in groundwater. The chloro-alkaline indices showed the role of ion exchange too in water chemistry. The R-mode factor analysis also successfully identified two dominant processes regulating water chemistry—geogenic sources (Ca2+, Mg2+, Na+, and HCO3?) and anthropogenic inputs (mainly Cl?). The groundwater is found unsuitable for drinking at 82 and 93% of wells in pre- and post-monsoon seasons, respectively mainly due to elevated Fe content. The water from more than 90% of wells is appropriate for irrigation uses. The study recommends the proper treatment of contaminated water for consumption and measures to protect the groundwater from the waste water infiltration.  相似文献   

20.
To investigate the hydrogeochemical characteristics of groundwater 23 shallow, 30 intermediate and 38 deep wells samples were collected from Sylhet district of Bangladesh, and analyzed for temperature, pH, Eh, EC,DO, DOC, Na^+, K^+, Ca2+, Mg2+, Cl^-, SO_42-, NO_3^-,HCO_3^-, SiO_2^-, Fe, Mn and As. Besides, 12 surface water samples from Surma and Kushiyara Rivers were also collected and analyzed to understand the influence into aquifers. Results revealed that, most of the groundwater samples are acidic in nature, and Na–HCO_3 is the dominant groundwater type. The mean value of temperature, EC,Na^+, K^+, Ca2+, Mg2+, Cl^-, NO_3^- and SO_42- were found within the range of permissible limits, while most of the samples exceeds the allowable limits of Fe, Mn and As concentrations. However, relatively higher concentration of Fe and Mn were found in deep water samples and reverse trend was found in case of As. The mean concentrations of As in shallow, intermediate and deep wells were 39.3, 25.3and 21.4 lg/L respectively, which varied from 0.03 to148 lg/L. From spatial distribution, it was found that Fe,Mn and As concentrations are high but patchy in northern,north-western, and south-western part of Sylhet region. The most influential geochemical process in study area were identified as silicate weathering, characterized by active cation exchange process and carbonate weathering, which thereby can enhance the elemental concentrations in groundwater. Pearson's correlation matrix, principal component analysis and cluster analysis were also employed to evaluate the controlling factors, and it was found that, both natural and anthropogenic sources were influencing the groundwater chemistry of the aquifers. However, surface water has no significant role to contaminate the aquifers,rather geogenic factors affecting the trace elemental contamination. Thus it is expected that, outcomes of this study will provide useful insights for future groundwater monitoring and management of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号