首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microearthquake swarms: scaling and lacunarity   总被引:1,自引:0,他引:1  
The continental collision between the African and Eurasian plates in the Iberian peninsula is solved with a NW-SE compression with an extensional basin, the Alboran Sea. To explain this paradox, several models have been proposed, including the subduction process of a lithospheric plate. In this study a relocation of the seismicity of the area using a JHD algorithm for the period 1950–1995 has been performed, which shows a specific hypocentre pattern that is not compatible with plate subduction. In addition, the direction of the stresses acting in the area has been determined through a comprehensive study of all existing focal mechanisms, together with calculations for 19 new earthquakes with sufficient data to determine the focal solution. After considering all these data, the absence of intermediate shocks in the central part of the Alboran basin and the predominantly thrusting mechanisms at the borders of the basin, with pressure axes perpendicular to the front, we consider a delamination process as a possible mechanism acting in the area  相似文献   

2.
Large historical earthquakes in Italy define a prominent gap in the Pollino region of the southern Apennines. Geomorphic and palaeoseismological investigations in this region show that the Castrovillari fault (CF) is a major seismogenic source that could potentially fill the southern part of this gap. The surface expression of the CF is a complex, 10–13 km long set of prominent scarps. Trenches across one scarp indicate that at least four surface-faulting earthquakes have occurred along the CF since Late Pleistocene time, each producing at least 1 m of vertical displacement. The length of the fault and the slip per event suggest M =6.5-7.0 for the palaeoearthquakes. Preliminary radiocarbon dating coupled with historical considerations imply that the most recent of these earthquakes occurred between 380 BC and 1200 AD, and probably soon after 760 AD; no evidence for this event has been found in the historical record. We estimate a minimum recurrence interval of 1170 years and a vertical slip rate of 0.2-0.5 mm yr-1 for the CF, which indicates that the seismic behaviour of this fault is comparable to other major seismogenic faults of the central-southern Apennines. The lack of mention or the mislocation of the most recent event in the historical seismic memory of the Pollino region clearly shows that even in Italy, which has one of the longest historical records of seismicity, a seismic hazard assessment based solely on the historical record may not be completely reliable, and shows that geological investigations are critical for filling possible information gaps.  相似文献   

3.
The Benevento region is part of the southern Apennines seismogenic belt, which experienced large destructive seismic events both in historical and in recent times. The study area lies at the northern end of the Irpinia fault, which ruptured in 1980 with a Ms = 6.9 normal faulting event, which caused about 3000 casualties. The aims of this paper are to image lateral heterogeneities in the upper crust of the Benevento region, and to try to identify the fault segments that are expected to generate such large earthquakes. This work is motivated by the recognition that lithological heterogeneities along major fault zones, inferred from velocity anomalies, reflect the presence of fault patches that behave differently during large rupture episodes. In this paper, we define the crustal structure of the Benevento region by using the background seismicity recorded during 1991 and 1992 by a local seismic array. These data offer a unique opportunity to investigate the presence of structural discontinuities of a major seismogenic zone before the occurrence of the next large earthquake. The main result that we obtained is the delineation of two NW-trending high-velocity zones (HVZs) in the upper crust beneath the Matese limestone massif. These high velocities are interpreted as high-strength regions that extend for 30-40 km down to at least 12 km depth. The correspondence of these HVZs with the maximum intensity regions of historical earthquakes (1688 AD, 1805 AD) suggests that these anomalies delineate the extent of two fault segments of the southern Apenninic belt capable of generating M = 6.5−7 earthquakes. The lateral offset observed between the two segments from tomographic results and isoseismal areas is possibly related to transverse right-lateral faults.  相似文献   

4.
Our objectives are as follows. First, we wish to develop a methodology to recover the long-term component of deformation from any set of distributed, time-averaged geodetic strain measurements that were subject to seismic disturbance, given a catalogue of local seismicity that occurred during the measurement period. Second, using seismic and geodetic data sets that span approximately 100 years, we apply this technique in the western Aegean to assess the role of local seismicity in regional deformation. The methodology is developed using a model for crustal deformation constructed from a long-term, smooth regional strain field combined with instantaneous, local perturbations from upper-crustal earthquakes approximated by static elastic dislocations. By inverting geodetic displacements for the smooth field while simultaneously floating influential but uncertain earthquake source parameters, an estimate of the regional component of deformation that is approximately independent of the seismicity can be made. In the western Aegean we find that the horizontal component of regional deformation can be described with minor inaccuracy by a quadratic relative displacement field. The principal horizontal extensional axes calculated from the regionally smooth displacement field agree in orientation with the T-axes of earthquakes in the region. These observations indicate that the instantaneous elastic strain of the 10 km thick seismogenic layer is driven by a stress field that is smooth on the scale of the geodetic network as a whole, 200-300 km.  相似文献   

5.
In a tectonically active setting large earthquakes are always threats; however, they may also be useful in elucidating the subsurface geology. Instrumentally recorded seismicity is, therefore, widely utilized to extend our knowledge into the deeper crust, especially where basement is involved. It is because the earthquakes are triggered by underground stress changes that usually corresponding to the framework of geological structures. Hidden faults, therefore, can be recognized and their extension as well as orientation can be estimated. Both above are of relevance for assessment on seismic hazard of a region, since the active faults are supposed to be re-activated and cause large earthquakes. In this study, we analysed the 1999 October 22 earthquake sequence that occurred in southwestern Taiwan. Two major seismicity clusters were identified with spatial distribution between depths of 10 and 16 km. One cluster is nearly vertical and striking 032°, corresponding to the strike-slip Meishan fault (MSF) that generated the 1906 surface rupture. Another cluster strikes 190° and dips 64° to the west, which is interpreted as west-vergent reverse fault, in contrast to previous expectation of east vergence. Our analysis of the focal solutions of all the larger earthquakes in the 1999 sequence with the 3-D distribution of all the earthquakes over the period 1990–2004 allows us reinterpret the structural framework and suggest previously unreognized seismogenic sources in this area. We accordingly suggest: (1) multiple detachment faults are present in southwestern Taiwan coastal plain and (2) additional seismogenic sources consist of tear faults and backthrust faults in addition to sources associated with west-vergent fold-and-thrust belt.  相似文献   

6.
Summary. A seismic study of the Lesser Antilles arc has been carried out, first for the period 1950–1978, for which we can use local seismic networks to draw maps of instrumental seismicity, then for the period 1530–1950, for which we have catalogues of felt earthquakes. The striking feature of the spatial distribution of foci is the cluster of epicentres in the northern half of the arc; all large earthquakes ( M > 7.5) are located north of 14° latitude. Seismicity cross-sections through the arc show a variable dipping subduction zone along the arc; the deep seismic zone is steeper in the centre of the arc than on the extremity.
The time-space diagram for historical seismicity, and the evidence of a seismic gap at the east of Guadeloupe lead us to consider the northern half arc as a likely site for a large earthquake in the near future.
The seismic slip rate calculated from all major earthquakes since 1530 is of much greater value than that obtained from recent plate tectonic models, suggesting that the recurrence rate of earthquakes is more than many hundreds of years with a possible aseismic creep.  相似文献   

7.
Earthquake nests     
Summary. Making use of extensive observations of micro-earthquakes available in the Tokyo region, Usami & Watanabe constructed a simple but effective method of exhibiting those regions where small earthquakes have clustered during a 4.5 yr period. Such clusters are defined by contour surfaces, and for convenience are termed earthquake nests .
If we accept the assumption that the magnitude of an earthquake is directly related to the volume previously undergoing intensified strain, and if we regard the nests as measures of such volumes, we can make rough estimates of the magnitudes of potential earthquakes in different parts of the Tokyo region. This method of assigning seismicity can be one way of calculating local risk. Repeated investigations can also detect changes in the tress field.  相似文献   

8.
In 2005 August, an unusual series of 47 earthquakes occurred over a 12-hr period in central Switzerland. The earthquakes occurred at the end of 3-d period of intensive rainfall, with over 300 mm of precipitation. The highest seismicity occurred as two distinct clusters in the region of Muotatal and Riemenstalden, Switzerland, a well-known Karst area that received a particularly large amount of rainfall. The large increase in seismicity, compared to the background, and the short time delay between the onset of the intense rainfall and the seismicity strongly suggest that earthquakes were triggered by rainfall. In our preferred model, an increase in fluid pressure at the surface due to a large amount of rain leads to a local increase in pore fluid pressure at depth. The increase in pore fluid pressure will reduce the shear strength of a porous medium by counteracting normal stress and, at the end, provoke failure. The series of triggered earthquakes in central Switzerland occurred in regions that have been seismically active in the past, showing similar hypocentre locations and magnitudes. This suggests that these earthquakes occurred on existing faults that were critically stressed. We modelled the intense rainfall as a step increase in fluid pressure at the surface that migrates to greater depths following the solution of the one-dimensional diffusion equation in a homogeneous half space. This allowed us to estimate the hydraulic diffusivity by plotting triggered seismicity in a time–depth plot. We found values of hydraulic diffusivity in the range from 0.01 to 0.5 m2 s−1 for our study area. These values are in good agreement with previous studies on earthquakes that were triggered by fluids, supporting the idea that the observed earthquake series was triggered by the large amount of rainfall.  相似文献   

9.
The time-dependence of earthquake occurrence is mostly ignored in standard seismic hazard assessment even though earthquake clustering is well known. In this work, we attempt to quantify the impact of more realistic dynamics on the seismic hazard estimations. We include the time and space dependences between earthquakes into the hazard analysis via Monte Carlo simulations. Our target region is the Lower Rhine Embayment, a low seismicity area in Germany. Including aftershock sequences by using the epidemic type aftershock-sequence (ETAS) model, we find that on average the hypothesis of uncorrelated random earthquake activity underestimates the hazard by 5–10 per cent. Furthermore, we show that aftershock activity of past large earthquakes can locally increase the hazard even centuries later. We also analyse the impact of the so-called long-term behaviour, assuming a quasi-periodic occurrence of main events on a major fault in that region. We found that a significant impact on hazard is only expected for the special case of a very regular recurrence of the main shocks.  相似文献   

10.
We analyse earthquakes recorded at The Geysers geothermal field in California, an area where industrial activity induces seismicity. The seismicity is characterized by the seismic b -value and D , the fractal dimension of earthquake hypocentres measured from sliding windows containing 200 events. We study a group of events strongly clustered around an injection well. Over most of the time period examined we find a positive correlation between b and D . However, during the initiation of injection into a new well we find instead a negative correlation. The differences in correlation are statistically significant at the 1 σ level but only marginally so at the 2 σ level. These results provide evidence for a transient change in the seismic mechanisms operating, and may be explained by a change from conditions of slow stress loading to rapid loading as a result of the build-up of the rate of water injection into the reservoir.  相似文献   

11.
The deep seismicity of the Tyrrhenian Sea   总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

12.
Public concern about earthquakes linked to wastewater injection from fracking operations is rising. However, few have examined how “induced seismicity” is acted upon by state officials. For some, an incremental response to smaller quakes can be viewed as an acceptable risk policy orientation because of the sizeable economic benefits that accompany drilling activities while others prefer risk mitigation policies (such as the use of “threshold policies”) as a better way to address quake-related problems. To account for state response to induced seismicity impacts, we examine three factors: the emergence of quakes as focusing events, the economic importance of oil and gas to state jobs and revenue, and selected characteristics of earthquakes as a policy issue, i.e., complexity and categorical precedence. Using information drawn from documentary sources, we consider which factors are most helpful in accounting for agency decisions aimed at reducing seismic risks linked to nearby injection wells.  相似文献   

13.
Summary. Turkey has been the location of a series of major earthquakes during this century. This study is an attempt to predict these in hindsight using swarms of weak earthquakes as a long-range precursor as proposed by Keilis-Borok. Some modifications of the swarm identification algorithm are made and statistical measures of success to judge the success of the prediction scheme were introduced. The main measures of success are the percentage of large earthquakes predicted and the percentage of swarms that predicted large earthquakes. The method was applied separately to earthquakes in the North Anatolian Fault Zone and in Western Turkey. The North Anatolian Fault was first considered in its entirety and then in segments. Prediction was attempted in each of these regions with a variety of parameters and the measures of success with confidence levels are computed.
The results obtained for prediction in Turkey are promising. The success of predicting large earthquakes ( M ≥ 7) was generally greater than 60 per cent. The difficulties of this method arise from incomplete catalogues of seismicity and the use of many arbitrary parameters.  相似文献   

14.
Seismic hazard estimations are compared using two approaches based on two different seismicity models: one which models earthquake recurrence by applying the truncated Gutenberg-Richter law and a second one which smoothes the epicentre location of past events according to the fractal distribution of earthquakes in space ( Woo 1996 ). The first method requires the definition of homogeneous source zones and the determination of maximum possible magnitudes whereas the second method requires the definition of a smoothing function. Our results show that the two approaches lead to similar hazard estimates in low seismicity regions. In regions of increased seismic activity, on the other hand, the smoothing approach yields systematically lower estimates than the zoning method. This epicentre-smoothing approach can thus be considered as a lower bound estimator for seismic hazard and can help in decision making in moderate seismicity regions where source zone definition and estimation of maximum possible magnitudes can lead to a wide variety of estimates due to lack of knowledge. The two approaches lead, however, to very different earthquake scenarios. Disaggregation studies at a representative number of sites show that if the distributions of contributions according to source–site distance are comparable between the two approaches, the distributions of contributions according to magnitude differ, reflecting the very different seismicity models used. The epicentre-smoothing method leads to scenarios with predominantly intermediate magnitudes events (5 ≤ M ≤ 5.5) while the zoning method leads to scenarios with magnitudes that increase with the return period from the minimum to the maximum magnitudes considered. These trends demonstrate that the seismicity model used plays a fundamental role in the determination of the controlling scenarios and ways to discriminate between the most appropriate models remains an important issue.  相似文献   

15.
Summary. Five major convergent plate boundaries (South America, Izu–Bonin–Marianas, New Hebrides, Tonga–Kermadec and Indonesia) show strong variations in levels of background seismicity on scales ranging from tens to thousands of kilometres. These variations were tested using two statistical approaches and we conclude that small earthquakes are not distributed randomly along these zones.
Two types of large-scale seismicity variations (termed first order) were recognized. First, regions with dimensions on the order of 100 km with extremely high seismicity levels (first-order actives). One such region was recognized in each of the zones studied. Second, large-scale (500 to several thousand kilometres) differences in the level of background seismicity along a given plate boundary. Regions with consistent levels of background seismicity are termed first-order segments.
We examined each first-order segment for smaller scale variations. Ten regions ranging in length from 40 to 170 km with anomalously high seismicity levels were recognized. Fifty-three regions ranging in length from 25 to 355 km were found to have anomalously low seismicity levels. Thus, areas with anomalously high levels of activity are rare in subduction zones.
These observations indicate that background seismicity in subduction zones is not randomly distributed along the strike of the zones. It seems likely that the observed variations reflect tectonic differences. In fact, many of the seismicity variations which we observed appear to be spatially related to features on the seafloor or on the overriding plate. If this is so, then they may provide a powerful tool for characterizing subduction zones and understanding the mechanisms of earthquake generation.  相似文献   

16.
The Western Pyrenees presents a diffuse and moderate ( M ≤ 5.7) instrumental seismicity. It nevertheless historically suffered from strong earthquakes (I = IX MSK). The seismic sources of these events are not yet clearly identified. We focus on the Arudy (1980) epicentral area ( M = 5.1) and propose here the reactivation of early Cretaceous normal faults of the Iberian margin as a potential source. The late Cretaceous inversion of this basin, first in a left-lateral strike-slip mode and then in a more frontal convergence, resulted in a pop-up geometry. This flower structure attests of the presence of a deep crustal discontinuity.
The present-day geodynamic arrangement suggests that this accident is reactivated in a right lateral mode. This reactivation leads to a strain partitioning between the deep discontinuity that accommodates the lateral component of the motion and shallow thrusts, rooted on this discontinuity. These thrusts accommodate the shortening component of the strain. The distribution of the instrumental seismicity fits well the structural model of the Arudy basin. Whatever the compressive regional context, the structural behaviour of the system explains too the extensive stress tensor determined for the Arudy crisis if we interpret it in terms of strain ellipsoid. Indeed numerical modelling has shown that this concomitant activity of strike-slip and thrust faulting results in an extensive component that can rise 50 per cent of the finite strain.
We identify too a 25–30 km long potential seismic source for the Arudy area. The size of the structure and its potential reactivation in a strike-slip mode suggest that a maximum earthquake magnitude of ∼6.5 could be expected. The extrapolation of this model at the scale of the Western Pyrenees allows to propose other potential sources for major regional historical earthquakes.  相似文献   

17.
The seismicity rate in the Mudurnu Valley of Turkey was studied using an earthquake catalogue that reports events homogeneously down to magnitude 2.3 for the years 1985–1989, and covers the area between latitudes 40.2° and 41.0°N, and longitudes 30.0° and 31.5°E. During this period the only two main shocks, M = 4.0 and M = 4.3, occurred on 1988 September 6 and 1988 December 9 within about 30km of each other. A highly significant seismic quiescence is evident in the area surrounding these main shocks, while the seismicity rate in the rest of the area covered by the catalogue remains constant. the quiescence becomes more pronounced the smaller the area around the main shocks that is studied. the smallest areas that can be studied contain about 60 earthquakes and have dimensions of approximately 25km on each side. the decreases in seismicity rates are 50–80 per cent depending on the volume and period used for defining the quiescence. the quiescence started in 1988 January and lasted about seven months, with approximately 4.5 months of normal activity separating it from the main shock of December. the precursor time of 12 months for an M = 4.3 main shock is similar to those observed in California. It is concluded that it is possible to resolve precursory quiescence before moderate and large earthquakes in the Mudurnu area with the existing seismograph network.  相似文献   

18.
The frequency–energy distribution of global seismicity is studied using broad-band radiated energy of shallow earthquakes from January 1987 to December 1994 estimated by NEIC. Rank-ordering statistics are applied to enhance the resolution in retrieving the power-law distribution with undersampled data, namely a few tens of events. Seen in the perspective of broad-band radiated energy with higher resolution, a single (Gutenberg–Richter-type) power-law distribution can fit the data. For earthquakes with energy larger than 1014 J, the number N of events with energy E depends on E via N∝E −B , with the scaling constant B = 0.64 ± 0.04, corresponding to b = 0.95 ± 0.06. This relation is different from that of scalar seismic moment, which shows a transition of power-law distributions between small and large earthquakes. To demonstrate such a difference we use the same set of earthquakes with both broad-band energy estimation and CMT estimation. It is found that for the same data set, the energy distribution and the moment distribution show different patterns. The moment distribution has a clear kink between small and large earthquakes, while the energy distribution shows a single power law with no convincing kink between small and large earthquakes. To investigate the effect of different focal mechanisms and different seismic regions, events with strike-slip mechanisms and events within the Japan–Kuril region are considered. For these subsets of events, a similar pattern exists, in which the moment distribution shows a kink between small and large earthquakes, while the energy distribution shows a single power law.  相似文献   

19.
Summary. A method is presented for processing three-component digital recordings of micro-earthquakes to obtain near-vertical reflection profiles in regions of shallow seismicity. The processing includes magnitude and focal-depth normalization and event stacking, where stacking is by small localized groups, with ray theoretical time and distance corrections applied to compensate for varying focal depths. In areas with high seismicity, this procedure allows earthquakes to be treated as "controlled" sources to probe layered structures of the deep crust and upper mantle. The validity of our approach is demonstrated using S-waves from aftershocks of the Borah Peak, Idaho, earthquake (Ms = 7.3) of 1983.  相似文献   

20.
Note on rain-triggered earthquakes and their dependence on karst geology   总被引:2,自引:0,他引:2  
Recently reported rain-triggered seismicity from three separate storms occurred exclusively in karst geology. In this paper, I discuss how the hydrogeology of karst controls rain-triggered seismicity by channeling of the watershed after intense rainfall directly into the karst network. Such channeling results in very large increases in hydraulic head, and more importantly, substantially increases the vertical stress acting on the underlying pore-elastic media. Rapid loading upon a pore-elastic media induces seismicity by increasing pore pressure at depth in a manner similar to that observed from reservoir impounding. Using a simple 1-D model of a pore-elastic medium, it is shown that the instantaneous fluid pressure increase at depth is a substantial fraction of the pressure step applied at the boundary, followed by time-dependent pore pressure increases associated with the typical linear diffusion problem. These results have implications for the change in fluid pressure necessary to trigger earthquakes, and leads to the following hypothesis to be tested: Unambiguous rain-triggered seismicity will only occur in karst regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号