首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
A persistent sedimentary unit, interbedded in massive diamictite over a distance of almost 400 km near the top of the Permo-Carboniferous Dwyka Formation in the southwestern Karoo, consists of stratified diamictite, rhythmite, lonestone argillite and black shale. The stratified diamictite facies association is interpreted as ice-marginal debris-flow, the diamictite-lonestone argillite facies association as proximal to intermediate debris-flow, debris rain and suspension settling, and the shale-diamictite facies association as distal debris-flow and suspension settling deposits. An analysis of the mudrock and diamictite facies relationships suggests deposition from a rapidly calving oscillating ice margin in the east and at a consistently retreating grounded ice margin with few icebergs in the west. Sediment sources, volume of ice rafting, resedimentation processes, ice marginal recession and advance, and configuration of the ice margin influenced the distribution of debris-flow deposits and bergstone mud in the east and resulted in a near-random facies arrangement. Due to a lack of icebergs in the west, debris-flow deposits and bergstone mud were poorly developed which reduced the number of facies transitions and variation, resulting in a more systematic upward-fining sequence.  相似文献   

2.
Episodes of glacial advance and retreat can be recognized through analysis of vertical facies sequences in the Permo-Carboniferous Pagoda Formation of the Beardmore Glacier area, Antarctica. The formation includes a remarkably complete record of continental sedimentation near the terminus of a temperate glacier. Facies sequence is pre-eminent for inferring glacial advance and retreat. Other important criteria are abundance and geometry of sandstone interbedded with diamictite, diamictite character and nature of bed contacts. Using these characteristics advance and retreat sequences 5–60 m thick are recognized. A sharp contact, with a striated surface and erosional relief, overlain by structureless diamictite (lodgement till) is typical of grounded ice advance. Grounded ice retreat is characterized by structureless diamictite (lodgement till), overlain by crudely stratified diamictite (melt-out till) and then by diamictite interbedded with sandstone and conglomerate (flow till and glacio-fluvial or glacio-lacustrine deposits). Gradational contacts between shale overlain by diamictite and diamictite overlain by shale characterize advance and retreat, respectively, in subaqueous settings. Pauses in sediment accumulation, minor(?) fluctuations of the ice margin, and/or changes in subglacial dynamics are indicated by specific features within diamictite units such as probable frost-wedge casts, single layer boulder beds, sharp sedimentary contacts and changes in diamictite character. These minor(?) events are superimposed upon the main advance-retreat cycles. Study of both the overall facies sequence and of individual diagnostic structures, albeit in an incomplete stratigraphic record, permits a distinction between major and minor advance-retreat events. As many as six major advance-retreat cycles exist in some Pagoda sections, but the number of cycles present varies in different sections.  相似文献   

3.
It generally is assumed that the Early Permian Gondwana deglaciation in South Africa started with a collapse of the marine ice‐sheet. The northeast part of the Karoo Basin became ice‐free as a result of this collapse. The deglaciation here probably took place under temperate glacial conditions. Three glacial phases have been identified. Phase 1: the marine ice retreat of 400 km over the northeast Karoo Basin, which may have been completed over a few thousand years. The glaciers grounded in the shallower areas around the shore of the basin. Phase 2: the smaller, now mainly continental ice‐sheet here re‐stabilised and remained more or less stationary for several tens of thousand years. During this phase, between 50 and 200 m of massive glaciomarine mud with dropstones accumulated in the open, marine basin that became ice‐free during Phase 1. Isostatic uplift, as a response to the first rapid deglaciation phase, can be traced in the inland part of the region. Phase 3: the final deglaciation may have taken 10 to 20 kyr. After this time no new ice sheet was built up over southern Africa. The entire Early Permian deglaciation of the northeast Karoo Basin was completed within thousands rather than millions of years. Phases 1 and 3 had lengths similar to typical Quaternary deglaciations, whereas Phase 2 was a long, stable phase, more similar to a full Quaternary glaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Large numbers of post-depositional deformation structures in the form of downward penetrating sandstone bodies are identified on well-exposed diamictite surfaces of the glaciogenic Upper Proterozoic Port Askaig Formation, Scotland. On the Garvellach Islands, downfolds, irregular dykes and a polygonal network of wedges are composed predominantly of massive, fine- to medium-grained sandstone. These structures occur towards the top of crude coarsening-upward glaciomarine sequences of massive diamictite, stratified diamictite, variably cross-stratified sandstone and conglomeratic lags. Massive diamictites record the dominance of pelagic sedimentation and ice-rafting; succeeding lithofacies indicate the increasing importance of marine traction currents. These sequences are repeated in the Port Askaig Formation and by comparison with Late Cenozoic glaciomarine sequences may have formed in response to changing water depths during basin subsidence. Downfolds, dykes and a polygonal wedge network appear to be genetically related expressions of subaqueous gravitational loading and intrusion of sand into low-strength diamict acting in response to reverse density gradients created by coarsening-upward glaciomarine sedimentation. Analogues are provided by published laboratory investigations. Analysis of the regional tectonic setting of the formation suggests the importance of seismic shock as a triggering agent. The subaqueous deformation model presented in this paper is of considerable significance for reconstruction of Late Proterozoic palaeoenvironments because the downward penetrating sandstone structures of the Port Askaig Formation are widely reported to be indicative of the former presence of subaerial permafrost. This paper stresses the importance of identifying the lithofacies sequence in which structures occur as a guide to ‘deformational environment’.  相似文献   

5.
The Liard Lobe formed a part of the north‐eastern sector of the Cordilleran Ice Sheet and drained ice from accumulation areas in the Selwyn, Pelly, Cassiar and Skeena mountains. This study reconstructs the ice retreat pattern of the Liard Lobe during the last deglaciation from the glacial landform record that comprises glacial lineations and landforms of the meltwater system such as eskers, meltwater channels, perched deltas and outwash fans. The spatial distribution of these landforms defines the successive configurations of the ice sheet during the deglaciation. The Liard Lobe retreated to the west and south‐west across the Hyland Highland from its local Last Glacial Maximum position in the south‐eastern Mackenzie Mountains where it coalesced with the Laurentide Ice Sheet. Retreat across the Liard Lowland is evidenced by large esker complexes that stretch across the Liard Lowland cutting across the contemporary drainage network. Ice margin positions from the late stage of deglaciation are reconstructed locally at the foot of the Cassiar Mountains and further up‐valley in an eastern‐facing valley of the Cassiar Mountains. The presented landform record indicates that the deglaciation of the Liard Lobe was accomplished mainly by active ice retreat and that ice stagnation played a minor role in the deglaciation of this region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
New outcrops of Middle Carboniferous glacigenic deposits found in the Guandacol Formation (western Paganzo Basin) are described in this paper. The study locality of Los Pozuelos Creek (northwestern Argentina) includes coarse-grained diamictites, rhythmites, laminated pebbly mudstones and shales that represent an expanded column of the Gondwanic glaciation in this region. Thirteen lithofacies recorded at the measured section have been grouped into three facies associations. Facies Association I is composed of coarse-grained massive and stratified diamictites (lithofacies Dmm, Dms, Dmg, Dcs), laminated siltstones with dropstones (Fld) and interstratified sandstones and mudstones (Fl, Sr). These rocks represent both tillites and resedimented diamictites closely associated to small water bodies where laminated siltstones with dropstones and stratified sandstones and mudstones were deposited. Facies Association II comprises couplets of matrix-supported thinly bedded diamictites (Dmld) and laminated mudstones with dropstones (Fld). This facies association results from the combination of three different processes, subaqueous cohesionless debris flows, coeval rainout of ice-rafted debris and settling of fine-grained particles from supension. Finally, Facies Association III is made up of laminated mudstones without dropstones, thin marl levels and scarce fine- to very fine-grained sandstones. This assemblage clearly suggests sedimentation in a deep marine environment below the wave base.The architecture of the glacigenic deposits has been investigated using photomosaic panels. The geometry of the depositional bodies and facies suggest that Los Pozuelos Creek outcrops exhibit a well preserved three-dimensional example of a grounding-line system. In particular, three different subenvironments of a morainal bank were interpreted: a bank-front, a bank-core and a bank-back. The bank-front assemblage is characterized by coarse-grained, mainly resedimented, diamictites grading laterally to prograding clinoforms composed of interbedded matrix-supported thinly bedded diamictite and mudstones. The bank-core assemblage is formed by a stacking of coarse-grained diamictites where at least five major erosional surfaces, bounding four multistory diamictite bodies, can be recognized. Finally, the bank-back assemblage corresponds to discontinuous intervals of striated lodgement till, and coarse-grained resedimented diamictites showing important post-depositional deformation. The retrogradational stacking of the morainal banks indicate an overall glacial retreat and a glacioeustatic sea-level rise. Erosional surfaces at the base of each morainal bank suggest intervening short term episodes of ice advance.The new data presented here confirm the existence of "true" tillites in western Paganzo Basin and suggest several (at least four) pulses of glacial advance and retreat during the Namurian glaciation in the region and permit a more refined interpretation of the glacial deposits in the Huaco area.  相似文献   

7.
A 166 m thick Plio-Pleistocene sequence of glacial sediments has been cored in Ferrar Fiord in the southwestern corner of the Ross Sea, Antarctica. The core has the following lithofacies: massive diamictite (33% of the core; interpreted as lodgement or waterlain till), weakly stratified diamictite (25%; waterlain till or proximal glaciomarine sediment), well-stratified diamictite (8%; proximal glaciomarine or glaciolacustrine sediment), sandstone (25%; sand of aeolian or supraglacial origin), mudstone(7%; derived from subglacial debris and transported offshore in suspension), and minor amounts of rhythmite and tuff. The range of facies in this polar setting differs from those normally found in subpolar and temperate glacier fiord settings in the high proportion of aeolian-derived sand and the low proportion of mudstone facies. The core can be divided into two sequences based on composition and texture. The sequence from 162 to 100 mbsf (metres below the sea floor) comprises alternations of diamictite dominated by basement lithologies and thin marine mudstone beds. It is Pliocene in age (4.9–2.0 Ma) and records several advances and retreats of ice through the Transantarctic Mountains and across the drill site from the west. The sequence from 100 mbsf to the sea floor, of Pleistocene age, consists of alternations of diamictite, interpreted as lodgement and waterlain till, and sandstone of aeolian origin deposited in a glaciolacustrine setting, similar to ice-covered lakes in the Dry Valleys today. These sediments have a high volcanic component, and hence are thought to have been derived by the grounding and advance of the Ross Ice Shelf from the east past volcanic Ross Island. This change in source is attributed to the rising Transantarctic Mountains increasingly containing East Antarctic ice. The Pleistocene sequence above 100 mbsf clearly represents polar glacial sedimentation, with alternations of till and glaciolacustrine sand. Mudstones from the Pliocene sequence beneath include palynomorphs, indicating times when the landscape was at least partially vegetated, but contain no evidence of meltwater influence.  相似文献   

8.
ABSTRACT Four types of sediment gravity flow deposits occur interbedded with rhythmite shale, siltsone, mudstone and minor diamictite in a 230-m thick Carboniferous glacial sequence. Shear and plug zones are present in the cohesive debris flow deposits which have a diamictic texture. The high-density turbidity flow deposits which consist of coarse to medium-grained clastics, are characterized by both normal and reverse grading. The medium to fine-grained low-density turbidity flow deposits show normal grading and consist of Bouma units A, B, D and E. Deposition occurred by gravity flow, suspension settling and minor basal melt-out during ice retreat along the southern margin of the Kalahari Basin. Immediately basinwards of the ice grounding line a proximal diamictite facies consisting predominantly of cohesive and high-density turbidity flow deposits, and minor melt-out tills formed. A distal sedimentary facies of graded sandstone and siltstone units deposited by low-density turbidity flows and suspension settling of muds with ice-rafted debris is located basinwards.  相似文献   

9.
冰碛岩中常存在一些变形构造,国外屡见报道,但国内报导甚少。本文以豫西上震旦统罗圈组冰碛岩为例,采用形态分类法,将冰碛岩的变形构造分为向斜状构造,褶曲构造与楔状和脉状构造。这些变形构造分别赋存于各不相同的冰碛岩中,其成因也各异。向斜状构造最可能的成因是沉积物重力负载的作用,褶曲构造是冰湖滨岸带堆积物沿斜坡滑动的产物,相当于滑塌构造;楔状构造则可能是冰缘环境的冰楔体融化泄水的结果;脉状构造虽赋存形态多样,但却均由相似的成因机制,即饱和液化砂顺裂缝贯入形成的。  相似文献   

10.
Processes occurring at the grounding zone of marine terminating ice streams are crucial to marginal stability, influencing ice discharge over the grounding-line, and thereby regulating ice-sheet mass balance. We present new marine geophysical data sets over a ~30×40 km area from a former ice-stream grounding zone in Storfjordrenna, a large cross-shelf trough in the western Barents Sea, south of Svalbard. Mapped ice-marginal landforms on the outer shelf include a large accumulation of grounding-zone deposits and a diverse population of iceberg ploughmarks. Published minimum ages of deglaciation in this region indicate that the deposits relate to the deglaciation of the Late Weichselian Storfjordrenna Ice Stream, a major outlet of the Barents Sea–Svalbard Ice Sheet. Sea-floor geomorphology records initial ice-stream retreat from the continental shelf break, and subsequent stabilization of the ice margin in outer-Storfjordrenna. Clustering of distinct iceberg ploughmark sets suggests locally diverse controls on iceberg calving, producing multi-keeled, tabular icebergs at the southern sector of the former ice margin, and deep-drafted, single-keeled icebergs in the northern sector. Retreat of the palaeo-ice stream from the continental shelf break was characterized by ice-margin break-up via large calving events, evidenced by intensive iceberg scouring on the outer shelf. The retreating ice margin stabilized in outer-Storfjordrenna, where the southern tip of Spitsbergen and underlying bedrock ridges provide lateral and basal pinning points. Ice-proximal fans on the western flank of the grounding-zone deposits document subglacial meltwater conduit and meltwater plume activity at the ice margin during deglaciation. Along the length of the former ice margin, key environmental parameters probably impacted ice-margin stability and grounding-zone deposition, and should be taken into consideration when reconstructing recent changes or predicting future changes to the margins of modern ice streams.  相似文献   

11.
《Earth》2009,94(3-4):47-76
At least six glaciations are purported to have affected North Africa and the Middle East region over the last one billion years, including two in the Cryogenian (Neoproterozoic), Hirnantian (Late Ordovician), Silurian, Carboniferous and Early Permian events. The sedimentary record associated with these glaciations, together with the intensity to which each has been investigated, is highly variable. As hydrocarbon exploration proceeds aggressively across the North Africa and Middle East regions, we review the relationship between glaciation and hydrocarbon accumulations.With the exception of Oman, and locally Egypt, which were tectonically active both during the Neoproterozoic and Early Palaeozoic all glaciations took place along an essentially stable passive continental margin. During the Neoproterozoic, two glaciations are recognised, referred to as older and younger Cryogenian glaciations respectively. Both of these Cryogenian events are preserved in Oman; only the younger Cryogenian has been reported in North Africa in Mauritania and Mali at the flanks of the Taoudenni Basin. The process of initial deglaciation in younger Cryogenian glaciations resulted in incision, at least locally producing large-bedrock palaeovalleys in Oman, and the deposition of glacial diamictites, gravels, sandstones and mudstones. As deglaciation progressed “cap carbonates” were deposited, passing vertically into shale with evidence for deposition in an anoxic environment. Hence, younger Cryogenian deglaciation may be associated with hydrocarbon source rock deposits.Hirnantian (Late Ordovician) glaciation was short lived (< 0.5 Myr) and affected intracratonic basins of Mauritania, Morocco, Algeria, Libya, Egypt and Saudi Arabia. The organisation of the glacial sedimentary record is considered to be controlled at the basin-scale by the location of fast-flowing ice streams active during glacial maxima, and by the processes of meltwater release during glacial recession. In these latter phases, subglacial tunnel valley networks were cut at or near the ice margin. These tunnel valleys were filled in two main phases. The initial phase was characterised by debris flow release, whereas during later phases of ice retreat a range of glaciofluvial, shallow glaciomarine to shelf deposits were laid down, depending on the water depth at the ice front. Production of linear accumulations of sediment, parallel to the ice front, also occurred between tunnel valleys at the grounding line. In Arabia, the geometry of these features may have been influenced by local tectonic uplift. As glaciogenic reservoirs, Hirnantian deposits are already of great economic significance across central North Africa. Therefore, an appreciation of the processes of ice sheet growth and decay provides significant insights into the controls on large-scale heterogeneities within these sediments, and in analogue deposits produced by glaciations of different ages.Deglacial, Early Silurian black shale represents the most important Palaeozoic source rock across the region. Existing models do not adequately explain the temporal and spatial development of anoxia, and hence of black shale/deglacial source rocks. The origins of a palaeotopography previously invoked as the primary driver for this anoxia is allied to a complex configuration of palaeo-ice stream pathways, “underfilled” tunnel valley incisions, glaciotectonic deformation structures and re-activation of older crustal structures during rebound. A putative link with the development of Silurian glaciation in northern Chad is suggested. Silurian glaciation appears to have been restricted to the southern Al Kufrah Basin in the eastern part of North Africa, and was associated with the deposition of boulder beds. Equivalent deposits are lacking in shallow marine deposits in neighbouring outcrop belts.Evidence for Carboniferous–Permian glaciation is tentative in the eastern Sahara (SW Egypt) but well established on the Arabian Peninsula in Oman and more recently in Saudi Arabia. Pennsylvanian–Sakmarian times saw repeated glaciation–deglaciation cycles affecting the region, over a timeframe of about 20 Myr. Repeated phases of deglaciation produced a complex stratigraphy consisting, in part, of structureless sandstone intervals up to 50 m thick. Some of these sandstone intervals are major hydrocarbon intervals in the Omani salt basins. Whilst studies of the Hirnantian glaciation can provide lessons on the causes of large-scale variability within Carboniferous–Permian glaciogenic reservoirs, additional factors also influenced their geometry. These include the effects of topography produced during Hercynian orogenesis and the mobilisation and dissolution of the Precambrian Ara Salt. Deglacial or interglacial lacustrine shale, with abundant palynomorphs, is also important. Whilst both Cryogenian intervals and the Hirnantian–Rhuddanian deglaciation resulted in the deposition of glaciomarine deposits, Carboniferous–Permian deglaciation likely occurred within a lacustrine setting. Hence, compared to shales of other glacial epochs, the source rock potential of Carboniferous–Permian deglacial deposits is minimal.  相似文献   

12.
The Cordilleran Ice Sheet (CIS) covered much of the mountainous northwestern part of North America at least several times during the Pleistocene. The pattern and timing of its growth and decay are, however, poorly understood. Here, we present a reconstruction of the pattern of ice‐sheet retreat in central British Columbia at the end of the last glaciation based on a palaeoglaciological interpretation of ice‐marginal meltwater channels, eskers and deltas mapped from satellite imagery and digital elevation models. A consistent spatial pattern of high‐elevation (1600–2400 m a.s.l.), ice‐marginal meltwater channels is evident across central British Columbia. These landforms indicate the presence of ice domes over the Skeena Mountains and the central Coast Mountains early during deglaciation. Ice sourced in the Coast Mountains remained dominant over the southern and east‐central parts of the Interior Plateau during deglaciation. Our reconstruction shows a successive westward retreat of the ice margin from the western foot of the Rocky Mountains, accompanied by the formation and rapid evolution of a glacial lake in the upper Fraser River basin. The final stage of deglaciation is characterized by the frontal retreat of ice lobes through the valleys of the Skeena and Omineca Mountains and by the formation of large esker systems in the most prominent topographic lows of the Interior Plateau. We conclude that the CIS underwent a large‐scale reconfiguration early during deglaciation and was subsequently diminished by thinning and complex frontal retreat towards the Coast Mountains.  相似文献   

13.
Subglacial meltwater plays a significant yet poorly understood role in the dynamics of the Antarctic ice sheets. Here we present new swath bathymetry from the western Amundsen Sea Embayment, West Antarctica, showing meltwater channels eroded into acoustic basement. Their morphological characteristics and size are consistent with incision by subglacial meltwater. To understand how and when these channels formed we have investigated the infill of three channels. Diamictons deposited beneath or proximal to an expanded grounded West Antarctic Ice Sheet are present in two of the channels and these are overlain by glaciomarine sediments deposited after deglaciation. The sediment core from the third channel recovered a turbidite sequence also deposited after the last deglaciation. The presence of deformation till at one core site and the absence of typical meltwater deposits (e.g., sorted sands and gravels) in all three cores suggest that channel incision pre-dates overriding by fast flowing grounded ice during the last glacial period. Given the overall scale of the channels and their incision into bedrock, it is likely that the channels formed over multiple glaciations, possibly since the Miocene, and have been reoccupied on several occasions. This also implies that the channels have survived numerous advances and retreats of grounded ice.  相似文献   

14.
通过详细测制西藏申扎县扎扛-木纠错石炭二叠系剖面,查明了拉嘎组的岩石类型、组合及沉积环境。申扎地区的拉嘎组是以暗色粉砂岩、泥岩等细碎屑岩背景下,发育若干板状、长透镜状及透镜状粗碎屑岩为特征。大部分粗碎屑岩及部分细碎屑岩的分选及磨圆很差,成熟度极低,岩性显示为杂砾岩、杂砂岩,局部地区见有花岗岩漂砾。研究认为,拉嘎组形成于冰缘解冻并后退状态下的近岸冰海沉积环境,其沉积相类型可以分为分支水道与间湾、水下冰水扇、冰碛物与冰筏、滨岸与内陆棚。鉴于其时代可能为早二叠世Sakmarian期,因此,拉嘎组可能是晚古生代冰期消融的产物。拉嘎组沉积相的识别分析对拉萨地块晚古生代的古环境和古地理有重要意义。  相似文献   

15.
A marine geophysical study reveals a complex deglaciation pattern in the Kveithola trough, W Barents Sea. The data set includes multibeam swath bathymetry and sub‐bottom sediment profiler (chirp) data acquired for the whole extent of a palaeo, marine‐terminating ice stream, along with high‐resolution single‐channel seismic data from chosen profiles. The multibeam data show a geomorphic landform assemblage characteristic of ice streams. The results of a combination of seismic and chirp unit stratigraphy reveal that the seabed geomorphology is governed by a deeper‐lying reflector. The reflector dominates surface expressions of several subglacial and ice‐marginal units, each connected to a separate episode of ice‐margin stillstand/advance. Analysis of the combined data set has resulted in a conceptual model of the ice‐stream retreat. The model depicts complex deglaciation of a small, confined ice‐stream system through episodic retreat. It describes the formation of several generations of grounding‐zone systems, characterized by high meltwater discharges and the deposition of fine‐grained grounding‐line fans. The inferred style of grounding‐zone deposition in Kveithola deviates from that of other accounts, and is suggested to be intermediate in the previously described continuum between morainal banks and grounding‐line wedges. The results of this paper have implications for grounding‐zone theory and should be of interest to modellers of grounding‐line dynamics and ice‐stream retreat.  相似文献   

16.
Glacial deposits and landforms, interpreted from the continuous seismic reflection data, have been used to reconstruct the Late Weichselian ice-sheet dynamics and the sedimentary environments in the northeastern Baltic Sea. The bedrock geology and topography played an important role in the glacial dynamics and subglacial meltwater drainage in the area. Drumlins suggest a south-southeasterly flow direction of the last ice sheet on the Ordovician Plateau. Eskers demonstrate that subglacial meltwater flow was focused mostly within bedrock valleys. The eskers have locally been overlain by a thin layer of till. Thick proximal outwash deposits occupy elongated depressions in the substratum, which often occur along the sides of esker ridges. Ice-marginal grounding-line deposit in the southern part of the area has a continuation on the adjacent Island of Saaremaa. Therefore, we assume that its formation took place during Palivere Stadial of the last deglaciation, whereas the moraine bank extending southwestward from the Serve Peninsula is tentatively correlated with the Pandivere Stadial. The wedge-shaped ice-marginal grounding-line deposit was locally fed by subglacial meltwater streams during a standstill or slight readvance of the ice margin. The thickness of the glacier at the grounding-line was estimated to reach approximately 180 m. In the western part of the area, terrace-like morphology of the ice-marginal deposit and series of small retreat moraines 10–20 km north of it suggest stepwise retreat of the ice margin. Therefore, a rather thin and mobile ice stream was probably covering the northeastern Baltic Sea during the last deglaciation.  相似文献   

17.
The Late Carboniferous–Early Permian Itararé Group is a thick glacial unit of the Paraná Basin. Five unconformity-bounded sequences have been defined in the eastern outcrop belt and recognized in well logs along 400 km across the central portion of the basin. Deglaciation sequences are present in the whole succession and represent the bulk of the stratigraphic record. The fining-upward vertical facies succession is characteristic of a retrogradational stacking pattern and corresponds to the stratigraphic record of major ice-retreat phases. Laterally discontinuous subglacial tillites and boulder beds occur at the base of the sequences. When these subglacial facies are absent, deglaciation sequences lie directly on the basal disconformities. Commonly present in the lowermost portions of the deglaciation sequences, polymictic conglomerates and cross-bedded sandstones are generated in subaqueous proximal outwash fans in front of retreating glaciers. The overlying assemblage of diamictites, parallel-bedded and rippled sandstones, and Bouma-like facies sequences are interpreted as deposits of distal outwash fan lobes. The tops of the deglaciation sequences are positioned in clay-rich marine horizons that show little (fine-laminated facies with dropstones) or no evidence of glacial influence on the deposition and likely represent periods of maximum ice retreat.  相似文献   

18.
Basal rocks of the Upper Carboniferous to Lower Permian Pagoda Formation at Mount Butters provide an unusual view of periglacial conditions in the central Transantarctic Mountains region prior to the initial advance of the Gondwanide ice sheet. These rocks were deposited on a high relief unconformity that developed on granite. Deposition within relief on the unconformity, possibly in the lee of a granite buttress, protected the rocks from erosion during subsequent overriding by the ice sheet. The succession reflects deposition in a glacial‐fed to ice‐contact lake that contained a freshwater crustacean fauna. Centimetre‐ to decimetre‐scale basal layers include breccia and coarse‐grained sandstone. The occurrence of breccia resting on weathered granite suggests sedimentation as scree and as mass flow deposits. Overlying decimetre‐to metre‐scale stratified diamictites interbedded with metre‐scale, coarsening‐upward successions of siltstone to cross‐laminated sandstone suggest lacustrine deposition by suspension settling, rain out of ice‐rafted debris, and deltaic progradation. Thin zones with abundant conchostracans and/or with prolific trace fossils, in addition to less common remains of other crustaceans, attest to the presence of a low diversity benthic fauna. Conchostracans are concentrated in a series of thin beds that reflect moderately lengthy, perhaps seasonal, periods of free‐flowing water. Patchy vertical and lateral distribution of intense bioturbation and profuse trace fossils probably reflect repeated colonization events during times of favourable environmental conditions. Massive diamictite overlies the basal rocks and indicates that the ice‐marginal lake was subsequently overridden by the late Palaeozoic ice sheet. Occurrences of lodgement till, glacitectonite and deformation till suggest deposition from temperate or warm‐based ice, whereas underlying lacustrine and deltaic deposits, along with a crustacean and trace fossil fauna, suggest temperate periglacial conditions. Previous studies have stressed that upper Palaeozoic glacigenic deposits in Antarctica, and in Gondwanaland, record deglaciation events. In contrast, rocks at Mt. Butters provide an unusual glimpse into an ice‐margin lake and its fauna just prior to ice sheet advance.  相似文献   

19.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

20.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号