首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《Basin Research》2018,30(3):395-425
The Centinela Mining District (CMD), Atacama Desert (northern Chile), includes several mid‐late Eocene porphyry Cu deposits that contains supergene mineralization and provides access to a record of gravel deposits that host syn‐sedimentary exotic Cu mineralized bodies. By studying these gravels, we reconstruct the unroofing history and constrain the geomorphological conditions that produced supergene and exotic Cu mineralization. We present an integrated study based on stratigraphic and sedimentological data, lithology clast counts, 40Ar/39Ar and U/Pb ages from interbedded tuff layers and U/Pb detrital zircon geochronology data. To relate the gravel deposition episodes to the timing of the supergene mineralization, we provide in‐situ and exotic supergene mineral ages (40Ar/39Ar and K‐Ar). Six gravel units were deposited between the mid‐Eocene and the mid‐Miocene. The Esperanza gravels were deposited concurrently with the emplacement of porphyry Cu deposits at depth. The subsequent Tesoro I, II and III and Atravesado gravels register the unroofing of these deposits, from the advanced argillic zone to the sericitic and prophylitic hypogene zones. The Arrieros gravels register landscape pediplanation, that is, denudational removal and wear of the landscape to base level on a relatively stable tectonic regime, occurring roughly contemporaneous with supergene activity. The supergene mineral ages of the CMD define a time span (ca. 25–12 Ma) during which most of the supergene ages cluster in northern Chile. This time span corresponds with a period of warm and humid climate conditions in the southern hemisphere. We conclude that landscape pediplanation favours supergene mineralization and helps preserve the former supergene mineralized zones from significant erosion. Low erosion rates during pediplanation may constitute a necessary condition for the efficiency of the supergene processes in such semi‐arid climate.  相似文献   

2.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

3.
Mineral-deposit models are an integral part of quantitative mineral-resource assessment. As the focus of mineral-deposit modeling has moved from metals to industrial minerals, procedure has been modified and may be sufficient to model surficial sand and gravel deposits. Sand and gravel models are needed to assess resource-supply analyses for planning future development and renewal of infrastructure. Successful modeling of sand and gravel deposits must address (1) deposit volumes and geometries, (2) sizes of fragments within the deposits, (3) physical characteristics of the material, and (4) chemical composition and chemical reactivity of the material. Several models of sand and gravel volumes and geometries have been prepared and suggest the following: Sand and gravel deposits in alluvial fans have a median volume of 35 million m3. Deposits in all other geologic settings have a median volume of 5.4 million m3, a median area of 120 ha, and a median thickness of 4 m. The area of a sand and gravel deposit can be predicted from volume using a regression model (log [area (ha)] =1.47+0.79 log [volume (million m3)]). In similar fashion, the volume of a sand and gravel deposit can be predicted from area using the regression (log [volume (million m3)]=–1.45+1.07 log [area (ha)]). Classifying deposits by fragment size can be done using models of the percentage of sand, gravel, and silt within deposits. A classification scheme based on fragment size is sufficiently general to be applied anywhere.  相似文献   

4.
Stable carbon and oxygen isotope studies are among the major proxies in investigations of recent and ancient freshwater environments. Mollusc shells are one the most frequently studied carbonates. In the present paper, stable carbon and oxygen isotope compositions of Dreissena polymorpha (Pallas) shells, regarded as the most aggressive freshwater invader worldwide, is compared with the stable isotope composition of ambient water. Macrophytes with modern D. polymorpha shells attached were sampled twice, in June and August 2011, from four transects established within the littoral of Lake Lednica (western Poland). The macrophytes were sampled between 0.5 and 7 m of depth at each site from the restricted area of the lake bottom. In order to avoid the influence of ontogeny on the results obtained the stable isotope compositions of shells of equal or nearly equal sizes within one population were compared. A significant spread was observed in the stable isotope signatures in the D. polymorpha shells, particularly in the δ13C values derived from one population. The spread in δ13C and δ18O values was observed in both juvenile and adult shells; however, it increased with age. It is suggested that stable isotope investigations of D. polymorpha shells should not be performed on single shells, as the isotope values will not be representative of the coeval individuals within population. While the shells of D. polymorpha were close to oxygen isotope equilibrium with the ambient water, they were characterised by a 1.5–2 ‰ depletion in 13C relative to δ13CDIC. Both the spread in δ13C values in the shells and the 13C depletion observed in the shells are interpreted as resulting from a strong metabolic influence on shell composition. Because the offset observed between dissolved inorganic carbon (DIC) and shells is relatively constant, the stable carbon isotope composition of D. polymorpha shells may reflect environmental conditions and thus may be used as a palaeolimnological proxy.  相似文献   

5.
The presented paper analyses the variability of grain size distribution parameters of bedload transported by the gravel‐bed Scott River (Svalbard) draining a glacier catchment with an area of 10 km2. The grain size distribution analysis is one of the basic elements of identification of the fluvial transport mechanisms in gravel‐bed rivers. It is used for the determination of threshold values for bedload movement. It is also treated as an important indicator of the origin, routes of distribution, and conditions of transport and deposition of fluvial bedload. The field study in a natural proglacial gravel‐bed channel was carried out at two reaches in the mouth section of Scott River. The study revealed relatively high temporal variability and similar mean parameters of grain size distribution in conditions of low discharges. Bedload transport rates reached a mean of 71.9–76.0 kg d?1 in channel cross‐section. Bedload texture was dominated by gravels with a proportional contribution of the fine‐grained fraction along with very fine‐grained gravels (8‐2 mm) of 38.8%. The medium‐grained fraction (16‐8 mm) constituted 33.7%, with a lower contribution from the coarse‐grained fraction (32‐16 mm) of 23.2%, and the very coarse‐grained fraction (64‐32 mm) of 4.4%. Two periods in the course of bedload transport and distribution of grain size distribution parameters were distinguished based on variation of hydro‐meteorological conditions. The first half of the measurement period was distinguished by significantly higher values of daily loads and increased contribution of the coarse‐grained and very coarse‐grained fraction (28–31% and 6.2–6.6%, respectively). During this time, the river discharged up to 94% of bedload. This resulted in a clear tendency for riverbed scouring. The second half was distinguished by generally low daily bedload transport rates (<10 kg d?1), an increase in contribution of fine‐ and very fine‐grained gravels (42–55.6%), and a change in the tendency to aggradation. Grain size indices were more varied, and grains were usually finer and better sorted. Selective transport processes, often related to redeposition, were dominant in the channel. Along with an increase in flow velocity, conditions for material deposition became more variable. This was manifested in weaker sorting and an increase in grain diameter.  相似文献   

6.
Gravel deposits on fluvial terraces contain a wealth of information about the paleofluvial system. In this study, flow direction and provenance were determined by systematic counts of more than 2000 clasts of imbricated gravel deposits in the Xining Region, northeastern Tibetan Plateau, China. These gravel deposits range in age from the modern Huangshui riverbed to Miocene-aged deposits overlain by eolian sediments. Our major objectives were not only to collect first-hand field data on the fluvial gravel sediments of the Xining Region, but also to the reconstruct the evolution of the fluvial system. These data may offer valuable information about uplift of the northeastern Tibetan Plateau during the late Cenozoic era. Reconstructed flow directions of the higher and lower gravel deposits imply that the river underwent a flow reversal of approximately 130–180°. In addition, the lithological compositions in the higher gravel deposits differ significantly from the lower terraces, suggesting that the source areas changed at the same time. Eolian stratigraphy overlying the gravel deposits and paleomagnetic age determination indicate that this change occurred sometime between 1.55 Ma and 1.2 Ma. We suggest that tectonic activity could explain the dramatic changes in flow direction and lithological composition during this time period. Therefore, this study provides a new scenario of fluvial response to tectonic uplift: a reversal of flow direction. In addition, field observation and statistical analyses reveal a strong relationship between rock type, size and roundness of clasts.  相似文献   

7.
Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size (D50) displaying a sharp increase by a factor of ca. 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the D50 ratio between the two types of channels equals ca. 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.  相似文献   

8.
An unusual assemblage of landforms and deposits is described from upper Norangsdalen, Sunnmøre region, southern Norway, and interpreted as the product of snow‐avalanche events that vary in magnitude, frequency and debris content. An avalanche impact plunge pool, proximal scar and distal mound are associated with a coarse gravel deposit covering part of the valley floor. Landforms in this debris spread include gravel ridges, boulder lines, beaded ridges, fine sediment banked against and covering large boulders, and gravel clumps. Many of these landforms are aligned, indicating across‐valley transport radiating from the plunge pool. Features were mapped in the field and samples analysed for grain size and heavy‐mineral content. The debris spread is attributed to deposition by high‐energy, debris‐rich snow‐avalanche events that collect debris from large areas of the valley side, lower slopes and plunge pool. Aligned landforms develop through sediment transport in a basal shear zone, and randomly distributed gravel clumps represent melt pits following debris transport in the avalanche body. Air displacement ahead of larger avalanches is thought to have felled and tilted trees on the lower slopes of the distal valley side. Approximate ages of damaged trees allowed estimation of the frequency of snow‐avalanche events: (1) small, frequent events (several per annum) carry debris to the lower valley slopes and the plunge pool; (2) moderate events with an annual to decadal frequency maintain the pool–scar–mound complex; and (3) large, debris‐rich events with a decadal to centennial frequency add material to the debris spread.  相似文献   

9.
基于数字图像的中国西北地区戈壁表面砾石形貌特征研究   总被引:5,自引:3,他引:2  
中国戈壁面积约66.08万km2,超过了流动沙丘和半固定沙丘的面积之和,但目前对戈壁沉积特征的研究程度相对较低。本文采用ImageJ软件,对中国西北地区戈壁原位无干扰的表面数字图像进行量算,获取了砾石覆盖度、粒径、磨圆度和形状比率等形貌参数。结果表明:中国西北地区戈壁表面的砾石覆盖度介于31.5%~84.6%,以中覆盖度为主,70%的戈壁属于空气动力学稳定表面;90%以上的戈壁表面砾石平均粒径为细砾和中砾。不同区域戈壁表面砾石磨圆度的平均值介于0.50~0.76,形状比率变化范围在1.38~2.46。戈壁表面砾石形貌特征与其成因类型密切相关:以剥蚀(侵蚀)-洪积作用为主形成的戈壁,砾石粒径较粗、形态比率较大、磨圆度低、覆盖度较高;以冲洪积为主形成的戈壁,砾石粒径和形态比率变小,磨圆度变好而覆盖度降低。砾石形貌特征可为追溯戈壁物源区和反演沉积物的搬运堆积过程提供参考。  相似文献   

10.
Landward retreat (marine transgression) is a common response of coastal systems to rising relative sea level. However, given sufficient sediment supply, the coast may advance seaward. The latter response of gravel barriers has been recorded in parts of southeastern and northwestern Canada, where seaward‐rising sets of beach ridges are observed in areas of Holocene RSL rise. Cape Charles Yorke, northern Baffin Island, is a 5 km long gravel foreland characterized by seaward‐rising beach‐ridge crest elevations. The prograded morphology of the Cape Charles Yorke foreland is a prime example of coastal response to a combination of rising RSL and abundant sediment supply, an unusual and little‐documented pattern in the Canadian Arctic. The main gravel supply to Cape Charles Yorke is likely from eroding bedrock and raised marine deposits southwest of the foreland. Although not the dominant sediment source, the Cape Charles Yorke delta contributed to the formation of the foreland by sheltering it from easterly storm waves and providing an anchor point for the prograding ridges. The truncation of relict ridges by the modern shoreline suggests a recent regime shift from continuous deposition to predominant erosion. The cause and timing of this shift are unknown but could result from a recent dwindling in sediment supply, increased accommodation space, increased wave energy, and/or an accelerated rise of relative sea level.  相似文献   

11.
Late early–early middle Miocene (Burdigalian–Langhian) time on the island of Corsica (western Mediterranean) was characterized by a combination of (i) postcollisional structural inversion of the main boundary thrust system between the Alpine orogenic wedge and the foreland, (ii) eustatic sealevel rise and (iii) subsidence related to the development of the Ligurian‐Provençal basin. These processes created the accommodation for a distinctive continental to shallow‐marine sedimentary succession along narrow and elongated basins. Much of these deposits have been eroded and presently only a few scattered outcrop areas remain, most notably at Saint‐Florent and Francardo. The Burdigalian–Langhian sedimentary succession at Saint‐Florent is composed of three distinguishing detrital components: (i) siliciclastic detritus derived from erosion of the nearby Alpine orogenic wedge, (ii) carbonate intrabasinal detritus (bioclasts of shallow‐marine and pelagic organisms), and (iii) siliciclastic detritus derived from Hercynian‐age foreland terraines. The basal deposits (Fium Albino Formation) are fluvial and composed of Alpine‐derived detritus, with subordinate foreland‐derived volcanic detritus. All three detrital components are present in the middle portion of the succession (Torra and Monte Sant'Angelo Formations), which is characterized by thin transitional deposits evolving vertically into fully marine deposits, although the carbonate intrabasinal component is predominant. The Monte Sant'Angelo Formation is characteristically dominated by the deposits of large gravel and sandwaves, possibly the result of current amplification in narrow seaways that developed between the foreland and the tectonically collapsing Alpine orogenic wedge. The laterally equivalent Saint‐Florent conglomerate is composed of clasts derived from the late Permian Cinto volcanic district within the foreland. The uppermost unit (Farinole Formation) is dominated by bioclasts of pelagic organisms. The Saint‐Florent succession was deposited during the last phase of the counterclockwise rotation of the Corsica–Sardinia–Calabria continental block and the resulting development of the Provençal oceanic basin. The succession sits at the paleogeographic boundary between the Alpine orogenic wedge (to the east), its foreland (to the west), and the Ligurian‐Provençal basin (to the northwest). Abrupt compositional changes in the succession resulted from the complex, varying interplay of post‐collisional extensional tectonism, eustacy and competing drainage systems.  相似文献   

12.
The <1.5‐km thick Fiq Member of the Ghadir Manqil Formation, Huqf Supergroup, Oman, contains a succession of Marinoan‐age glacially and non‐glacially influenced deposits overlain by a transgressive, 13C‐depleted, deep‐water dolostone (Hadash Formation) that deepens up into the marine shales and siltstones of the Masirah Bay Formation. The Fiq Member and Hadash–Masirah Bay Formations are well exposed in the core of the Jebel Akhdar of northern Oman and provide a valuable insight into the processes operating during a Neoproterozoic glacial epoch and its aftermath. The Fiq Member comprises seven stratigraphic units (F1–F7) of proximal and distal glacimarine, non‐glacial sediment gravity flow, and non‐glacial shallow marine facies associations. These units can be correlated over almost the entire Neoproterozoic outcrop belt (ca. 80 km) of the Jebel Akhdar. Four units contain glacimarine rainout diamictites, commonly at the top of cycles beneath strong lithofacies dislocations suggesting flooding. The units are thought to have been generated by combined glacio‐isostatic and glacio‐eustatic forcing caused by changing volumes of terrestrial glacier ice. The lateral persistence and thickness of massive diamictite units increase upwards in the stratigraphy, the youngest (F7) diamictite being abruptly overlain by the Hadash Formation. Correlation of lithofacies associations across the rift basin and palaeocurrents indicate that siliciclastic sediment and glacially entrained debris were derived from both basin margins. Open‐water conditions existed during interglacials, attested to by the presence of wave‐rippled sandstones in the western part of the basin. The Hadash carbonate also exhibits variations between east and west, showing that despite an overall deep‐water depositional setting, rift margin and intrabasinal structure continued to exert a control on facies development during the post‐glacial aftermath. Onlap of basin margins continued through the deposition of the Masirah Bay Formation. The sedimentology and stratigraphy of the Fiq Member and Hadash–Masirah Bay Formations have a number of implications for the Snowball Earth hypothesis. The overall stratigraphic evolution of the Fiq Member suggests a dynamic, temperate/polythermal style of glaciation, perhaps nucleated on uplifted continental or rift margin topography, with marine‐terminating glaciers. Some transgressions coupled to deglaciations within the Fiq glacial epoch were accompanied by minor deposition of carbonate. However, final deglaciation triggered the deposition of a <8‐m thick, deep‐water dolomite contaminated with siliciclastics, with a lithofacies assemblage still reflecting the underlying bathymetric template, followed by relatively deep marine shales and siltstones. The preservation of relatively deep marine Masirah Bay sediments above the Fiq basin margin suggests either tectonic collapse of the rift shoulder or, more likely, rapid eustatic rise accompanying deglaciation.  相似文献   

13.
A computer methodology is presented that allows natural aggregate producers, local governmental, and nongovernmental planners to define specific locations that may have sand and gravel deposits meeting user-specified minimum size, thickness, and geographic and geologic criteria, in areas where the surficial geology has been mapped. As an example, the surficial geologic map of the South Merrimack quadrangle was digitized and several digital geographic information system databases were downloaded from the internet and used to estimate the sand and gravel resources in the quadrangle. More than 41 percent of the South Merrimack quadrangle has been mapped as having sand and (or) gravel deposited by glacial meltwaters. These glaciofluvial areas are estimated to contain a total of 10 million m3 of material mapped as gravel, 60 million m3 of material mapped as mixed sand and gravel, and another 50 million m3 of material mapped as sand with minor silt. The mean thickness of these areas is about 1.95 meters. Twenty tracts were selected, each having individual areas of more than about 14 acres (5.67 hectares) of stratified glacial-meltwater sand and gravel deposits, at least 10-feet (3.0 m) of material above the watertable, and not sterilized by the proximity of buildings, roads, streams and other bodies of water, or railroads. The 20 tracts are estimated to contain between about 4 and 10 million short tons (st) of gravel and 20 and 30 million st of sand. The five most gravel-rich tracts contain about 71 to 82 percent of the gravel resources in all 20 tracts and about 54–56 percent of the sand. Using this methodology, and the above criteria, a group of four tracts, divided by narrow areas sterilized by a small stream and secondary roads, may have the highest potential in the quadrangle for sand and gravel resources.
David M. SutphinEmail:
  相似文献   

14.
《Basin Research》2018,30(4):613-635
Transient sediment storage and mixing of deposits of various ages during transport across alluvial piedmonts alter the clastic sedimentary record. We quantify buffering and mixing during cycles of aggradation–incision in the north piedmont of the Eastern Tian Shan. We complement existing chronologic data with 20 new luminescence ages and one cosmogenic radionuclide age of terrace abandonment and alluvial aggradation. Over the last 0.5 Myr, the piedmont deeply incised and aggraded many times per 100 kyr. Aggradation is driven by an increased flux of glacial sediment accumulated in the high range and flushed onto the piedmont by greater water discharge at stadial–interstadial transitions. After this sediment is evacuated from the high range, the reduced input sediment flux results in fluvial incision of the piedmont as fast as 9 cm year−1 and to depths up to 330 m. The timing of incision onset is different in each river and does not directly reflect climate forcing but the necessary time for the evacuation of glacial sediment from the high range. A significant fraction of sediments evacuated from the high range is temporarily stored on the piedmont before a later incision phase delivers it to the basin. Coarse sediments arrive in the basin with a lag of at least 7–14 kyrs between the first evacuation from the mountain and later basinward transport. The modern output flux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the Middle Pleistocene. Variations in temperature and moisture delivered by the Westerlies are the likely cause of repeated aggradation–incision cycles in the north piedmont instead of monsoonal precipitation. The arrival of the gravel front into the proximal basin is delayed relative to the fine‐grained load and both are separated by a hiatus. This work shows, based on field observations and data, how sedimentary systems respond to climatic perturbations, and how sediment recycling and mixing can ensue.  相似文献   

15.
This study presents the first absoluteage constraints from a palaeo‐ice‐sheet margin in western Scotland. Cosmogenic 10Be from four Lewisian gneiss boulders on the Gairloch Moraine in NW Scotland have yielded reliable exposure ages. Three of these dates, taken from a single moraine ridge, cluster around c. 15.5–18 ka BP, with a weighted mean of 16.3 ± 1.6 ka BP. These findings indicate that the last British Ice Sheet had retreated to the present‐day coastline in NW Scotland by this time. It is suggested that the Wester Ross Readvance represents an ice‐sheet oscillation during, or in the immediate aftermath of, Heinrich Event 1 (c. 17–18 ka BP).  相似文献   

16.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

17.
Isotopic determinations (K–Ar, Rb–Sr and Sm–Nd), and trace and rare-earth elemental analyses were made on a few biotite and clay fractions of Palaeozoic bentonite units from the eastern United States. The clay fractions were gently leached with dilute hydrochloric acid to study separately the acid-soluble minerals intimately associated with the extracted clay particles. The data highlight interesting potentials for this integrated approach to decipher complex tectonothermal evolutions of sedimentary basins. Biotite K–Ar ages are consistent with a Middle Ordovician stratigraphic age for the bentonite units with a mean age of 459±10 Ma. The clay residues give a Sm–Nd isochron age of 397±44 Ma, indicative of their crystallization during Acadian tectonothermal activity at about 200 °C. The clay leachates, which are considered to represent mineral phases different from clay material, yield a distinct Sm–Nd isochron age of 285±18 Ma which is indistinguishable from K–Ar ages obtained previously on the clays, suggesting a thermally induced diffusion of radiogenic 40Ar from clay particles during Alleghenian–Ouachita orogenic activity. The Rb–Sr system of the clay material seems to have been variably disturbed, except for the sample taken near the Allegheny Front for which an age of 179±4 Ma suggests a further localized activity of the thrust system at about 130–150 °C. Clearly the limited number of samples does not allow us to perfectly constrain an evolutionary model. However, analysis of the soluble minerals for their contents in metal and rare-earth elements suggests that metal-carrying fluids migrated during the Alleghenian–Ouachita orogenic activity in the eastern North American continent. Consequently, they could have contributed to the concentration of ore deposits in the region, but this possibility needs to be tested with a larger data base.  相似文献   

18.
A geological feature in the Qaidam Basin known as the “Shell Bar” contains millions of freshwater clam shells buried in situ. Since the 1980s, this feature in the now hyper-arid basin has been interpreted to be lake deposits that provide evidence for a warmer and more humid climate than present during late marine isotope stage 3 (MIS 3). Global climate during late MIS 3 and the last glacial maximum, however, was cold and dry, with much lower sea levels. We re-investigated the feature geomorphologically and sedimentologically, and employed optically stimulated luminescence (OSL) dating to verify the chronology of the sediments. We interpret the Shell Bar to be a remnant of a river channel formed by a stream that ran across an exposed lake bed during a regressive lake phase. Deflation of the surrounding older, fine-grained lacustrine deposits has left the fluvial channel sediments topographically inverted, indicating the erosive nature of the landscape. Luminescence ages place the formation of the Shell Bar in MIS 5 (~113–99 ka), much older than previous radiocarbon ages of <40 ka BP, but place the paleoclimatic inferences more in accord with other regional and global climate proxy records. We present a brief review of the age differences derived from 14C and OSL dating of some critical sections that were thought to represent a warmer and more humid climate than present during late MIS 3. We attribute the differences to underestimation of 14C ages. We suggest that 14C ages older than ~25 ka BP may require re-investigation, especially dates on samples from arid regions.  相似文献   

19.
The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbon‐dated cores invariably show a sharp increase, from 0.1–0.9 mm year?1 to 0.9–2.9 mm year?1. Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low‐accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20–60 mm year?1) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial‐coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.  相似文献   

20.
At high‐latitude continental margins, large‐scale submarine sliding has been an important process for deep‐sea sediment transfer during glacial and interglacial periods. Little is, however, known about the importance of this process prior to the arrival of the ice sheet on the continental shelf. Based on new two‐dimensional seismic data from the NW Barents Sea continental margin, this study documents the presence of thick and regionally extensive submarine slides formed between 2.7 and 2.1 Ma, before shelf‐edge glaciation. The largest submarine slide, located in the northern part of the Storfjorden Trough Mouth Fan (TMF), left a scar and is characterized by an at least 870‐m‐thick interval of chaotic to reflection‐free seismic facies interpreted as debrites. The full extent of this slide debrite 1 is yet unknown but it has a mapped areal distribution of at least 10.7 × 103 km2 and it involved >4.1 × 10km3 of sediments. It remobilized a larger sediment volume than one of the largest exposed submarine slides in the world – the Storegga Slide in the Norwegian Sea. In the southern part of the Storfjorden TMF and along the Kveithola TMF, the seismic data reveal at least four large‐scale slide debrites, characterized by seismic facies similar to the slide debrite 1. Each of them is ca. 295‐m thick, covers an area of at least 7.04 × 103 km2 and involved 1.1 × 10km3 of sediments. These five submarine slide debrites represent approximately one quarter of the total volume of sediments deposited during the time 2.7–1.5 Ma along the NW Barents Sea. The preconditioning factors for submarine sliding in this area probably included deposition at high sedimentation rate, some of which may have occurred in periods of low eustatic sea‐level. Intervals of weak contouritic sediments might also have contributed to the instability of part of the slope succession as these deposits are known from other parts of the Norwegian margin and elsewhere to have the potential to act as weak layers. Triggering was probably caused by seismicity associated with the nearby and active Knipovich spreading ridge and/or the old tectonic lineaments within the Spitsbergen Shear Zone. This seismicity is inferred to be the main influence of the large‐scale sliding in this area as this and previous studies have documented that sliding have occurred independently of climatic variations, i.e. both before and during the period of ice sheets repeatedly covering the continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号