首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Using natural coordinates, we have derived a criterion for the inertial instability of arbitrarily meandering currents. Such currents, governed by the eccentrically cyclogeostrophic equation, are adopted as the basic current field for the parcel method. We assume that any virtual displacement which is given to a water parcel moving in the basic field has no influence on this field. From the conservation of mechanical energy for a virtual displacement we derive an inertial instability frequency ω m = [(f + 2u/r)Z]0.5 for the eccentrically cyclogeostrophic current, where f is the Coriolis parameter, u the velocity (always positive), r the radius of curvature of a streamline (negative for an anticyclonic meander), and Z the vertical component of absolute vorticity. If ω m 2 is negative, the eccentrically cyclogeostrophic current becomes unstable. Although the conventional, centrifugal instability criterion, derived from the conservation of angular momentum in a circularly symmetric current field, has a certain meaning for a monopolar vortex, it contains a radial shear vorticity that is difficult to use in arbitrarily meandering currents. The new criterion ω m 2 contains a lateral shear vorticity that is applicable to arbitrarily meandering currents. Examining instabilities of concentric rings with radii of 50–100 km, we consider reasons why the anticyclonic supersolid rotation has been very much less frequently observed than the cyclonic supersolid rotation, despite a prediction of some common stability and a rapid change in radial velocity gradient for the former. Classifying eccentric streamlines into the large and small curvature-gradient types, we point out that the large-gradient curvature in anticyclonic rings is apt to be unstable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Distributions and characteristics of water mass and chlorofluorocarbons (CFCs) in the North Pacific are investigated by using a General Circulation Model (GCM). The anthropogenic CO2 uptake by the ocean is estimated with velocity fields derived from the GCM experiments. The sensitivity of the uptake to different diffusion parameterizations and different surface forcing used in the GCM is investigated by conducting the three GCM experiments; the diffusive processes are parameterized by horizontal and vertical eddy diffusion which is used in many previous models (RUN1), parameterized by isopycnal diffusion (RUN2), and isopycnal diffusion and perpetual winter forcing for surface temperature and salinity (RUN3). Realistic features for water masses and CFCs can be simulated by the isopycnal diffusion models. The horizontal and vertical diffusion model fails to simulate the salinity minimum and realistic penetration of CFCs into the ocean. The depth of the salinity minimum layer is better simulated under the winter forcing. The results suggest that both isopycnal parameterization and winter forcing are crucial for the model water masses and CFCs simulations. The oceanic uptake of anthropogenic CO2 in RUN3 is about 19.8 GtC in 1990, which is larger by about 10% than that in RUN1 with horizontal and vertical diffusive parameterization. RUN3 well simulates the realistic water mass structure of the intermediate layer considered as a candidate of oceanic sink for anthropogenic CO2. The results suggest that the previous models with horizontal and vertical diffusive parameterization may give the oceanic uptake of anthropogenic CO2 underestimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

4.
5.
本文基于南海东北部观测的抛物线型背景流,设计了8种形式的抛物线型背景流,利用IGW模式研究了其对内孤立波(ISW)的特征和能量学的影响。研究结果表明:背景流对波包中ISW数目没有影响,但减小了ISW的相速度;对于下边界在主温跃层附近或在其上的抛物线型背景流,ISW振幅和最大位移深度均增加;随着抛物背景流曲率减小,ISW振幅、斜压与正压能比值减小,同时ISW相速度、正压能、斜压能、KE/APE都增加;如果抛物背景流底部延伸至海底,且曲率减小,则ISW振幅、相速度减小,同时正压能、斜压能、KE/APE增加;在整个深度上的背景流,随着下层曲率减小和上层曲率增大,ISW振幅、相速度、斜压与正压能比值、斜压能、KE/APE均增加。  相似文献   

6.
-In this paper, an improvement and revision of the theory of Miiller (1974, 1976), has been made under two conditions: (1) the horizontal component of the Coriolis force has been taken into account in the equations of motion for the internal wave field; and (2) the role of internal waves with frequencies close to the inertial frequency has been considered. The values of the viscosity coefficients and the diffusivity coefficients obtained in this paper are: Theappearance of the cross-diffusion (vc) of momentum is a natural result from the effect of the horizontal Coriolis force. Therefore the role of the horizontal shear of the mean flow cannot be absolutely separated from that of the vertical shear. So far in testing Muller's theory, the approximation of effective wave stress obtained by Ruddick and Joyce (1979) was extensively used, but it has to be revised under the conditions of this paper. The revised approximation shows that the internal waves with low frequencies close to the inertial frequency pl  相似文献   

7.
《Ocean Modelling》2007,16(1-2):1-16
In many global ocean climate models, mesoscale eddies are parameterized as along isopycnal diffusion and eddy-induced advection (or equivalently skew-diffusion). The eddy-induced advection flattens isopycnals and acts as a sink of available potential energy, whereas the isopycnal diffusion mixes tracers along neutral directions. While much effort has gone into estimating diffusivities associated with this closure, less attention has been paid to the details of how this closure (which tries to flatten isopycnals) interacts with the mixed layer (in which vertical mixing tries to drive the isopycnals vertical). In order to maintain numerical stability, models often stipulate a maximum slope Smax which in combination with the thickness diffusivity Agm defines a maximum eddy-induced advective transport Agm1Smax. In this paper, we examine the impact of changing Smax within the GFDL global coupled climate model. We show that this parameter produces significant changes in wintertime mixed layer depth, with implications for wintertime temperatures in key regions, the distribution of precipitation, and the vertical structure of heat uptake. Smaller changes are seen in details of ventilation and currents, and even smaller changes as regards the overall hydrography. The results suggest that not only the value of the coefficient, but the details of the tapering scheme, need to be considered when comparing isopycnal mixing schemes in models.  相似文献   

8.
Abstract. Biomass and primary production rates derived from photosynthesis-light curves on picoplankton (< 1 um fraction) and total phytoplankton were compared for the Strait of Messina. Picoplankton biomass ranged between 0.063 and 0.094 mg Chi a m-5 and accounted for 56–63 % of the total. Total primary production rates were between 0.22 and 1.56 mg C-m-2-h-1 of which the picoplankton contribution ranged from 24 to 43%. In this turbulent nearshore environment, the contribution of picoplankton to total phytoplankton production is considerably less than in calmer open-ocean waters. Carbon assimilation numbers (Pmb), the initial slope (a), adaptation parameter (Ik), optimal irradiance (Im) and compensation intensity (Lm,) for the picoplankton were lower than for the > 1 μm fraction. Fitted respiration (RmB) for the picoplankton was, however, on the average higher (10.3 % of PmB) than for the > 1 μrn fraction (6.6 %). Assimilation numbers for the > 1 μm fraction in the southern stations were of higher magnitude (8.5–12.0 mg C mg Chi a-1 h-1) than in the northern station, possibly due to the impact of upwelled water flowing southward along the Sicilian coast.  相似文献   

9.
In order to simulate the response of the primary production dynamics to the decay of the Warm-Core Ring (WCR) 86-B off the east coast of Japan, we made a numerical model which consists of a three dimensional physical model (modified GCM) and we used the same biological model that Frankset al. (1986) did. According to the three dimensional model, the well known sub-surface chlorophyll maximum was reproduced but horizontal distributions of Chl.a and NO3 -N showed different patterns corresponding to different initial conditions of nutrient. This is because the weak vertical velocity in the WCR does not play an important role on the ecosystem but only the light intensity and the balance between uptake and vertical diffusion of dissolved nutrient is important. This result differs from that of Frankset al. (1986). The two WCRs interaction model suggests that a weak upwelling could exist between two WCRs accompanied by baroclinic instability.  相似文献   

10.
Current profiles were measured in the northern North Sea during the autumnal breakdown of stratification (September and October) in 1998. The site was in 110 m of water and the depth-averaged M2 tidal current amplitudes were about 0.15 m s−1. The surface and bed mixed layers were initially well separated. The measurements were made principally with Acoustic Doppler Current Profilers (ADCP) which gave good coverage of the majority of the water column.During a two-month period several episodes of inertial currents were observed, exhibiting a range of responses some of which corresponded very closely to that predicted by theory. The structure of the inertial currents was primarily first mode baroclinic, with no inertial energy in the depth-averaged current. This implies that the currents in the lower layer are strongly linked to those in the surface layer and also that dissipation could be generated by bed friction, but the nature of the link is unclear. The level of least motion coincided with the thermocline. Since the currents in the upper and lower layers are 180° out of phase, large shears can occur across the thermocline; occasionally the bulk Richardson number determined with a four-metre vertical resolution was less than one.Turbulence measurements suggest that when large inertial current shears are present across the thermocline, which exceed the buoyancy frequencies, then mixing within and across the thermocline is significant. Future experiments should concentrate on enhanced dissipation measurements around the thermocline and higher spatial resolution time series measurements of current and density.  相似文献   

11.
Vertical profiles of tritium in seawater were determined for samples collected during the period from 1988 to 1990 at fourteen stations in the northwestern North Pacific (the Oyashio region) including the Okhotsk Sea and the Bering Sea. The profiles usually had a maximum in the surface layer and decreased gradually with depth down to 1,000 m. The water column inventory of tritium averaged 63% of the total atmospheric input in this region.The horizontal distribution of tritium showed a maximum in the region facing the Okhotsk Sea near 45°N for every isopycnal surface of 0 ranging from 26.60 to 27.40. The ages of the intermediate water were calculated for the respective isopycnal surfaces in the maximum region. This calculation assumed that the intermediate water was formed by the isopycnal mixing of two water masses—the Okhotsk Sea and the Bering Sea Component Waters, which had been produced in wintertime by the diapycnal mixing of the surface and the deep waters in the respective marginal seas. The results show that the intermediate water in this region was formed in the late 1980's for the water which has 0 of 26.60 to 26.80 and about 1970 for the water which has 0 of 27.00 to 27.40. Although we have estimated the mean ages of the intermediate water, the horizontal profile of dissolved oxygen suggests that the Okhotsk Sea Component Water is younger than the mean age.  相似文献   

12.
粗糙海面L 和C 双波段的代价函数多参量遥感反演分析   总被引:1,自引:0,他引:1  
齐震  魏恩泊  刘淑波 《海洋科学》2012,36(1):100-107
利用代价函数(cost function)方法,通过分析粗糙海面L和C双波段多极化遥感亮温对海表盐度、温度、风速和有效波高等参数的敏感性以及L和C双波段多极化的代价函数收敛特性,建立了反演海表盐度、温度、风速和有效波高等多参数的L和C双波段多极化代价函数模式。双波段遥感模式分析结果表明:(1)对于双参数的联合反演,L和C双波段垂直极化代价函数联合反演海表盐度和温度可以获得较好的反演结果。(2)L波段垂直极化和C波段水平极化代价函数联合反演海表盐度和风速较好。(3)对于三参数联合反演,L波段垂直极化和C波段的双极化联合反演盐度、温度和风速的精度较高。(4)L波段亮温对有效波高的敏感性较低(C波段经验模式不含有效波高),使得有效波高反演误差较大,L和C波段经验模式不适合反演有效波高参数。另外,为了定量分析L和C双波段代价函数的多参量遥感反演结果,采用加性噪音模拟亮温方法,对上述L和C双波段多极化模式的盐度、温度和风速等多参数联合反演误差进行了分析,均得出较好的结果。结论表明L和C双波段代价函数联合反演多参量可以明显提高参量反演精度,为粗糙海表面多参量的反演提供了新的方法和途径。  相似文献   

13.
Cascading of cold Antarctic shelf water (ASW) initiates compensatory isopycnic upwelling of the warm Circumpolar Deep Water (CDW). The baroclinic/thermoclinic Antarctic slope front (ASF) is formed, and a mesoscale intrusive structure develops on the shelf edge and slope. Mesoscale processes when the ASF peaks are periodically accompanied by local baroclinic instability, which forms a smaller-scale intrusive structure. Therefore, the ASF is naturally subdivided into two layers according to the intrusion scales (vertical δН and horizontal L) and the horizontal parameters of the front (thermoclinity (TL)ρ and baroclinity γρ). Analysis of ASF intrusive layering due to the baroclinic factor supports the following conclusion: the higher the (TL)ρ of the ASF, the greater the intrusion intensity |δθ| (temperature anomaly amplitude), while an increase in γρ of the ASF leads to a decrease in intrusion scales δН and L. Frontal intrusions can be distinguished by a development degree. Regardless of the degree of development, all warm intrusions are characterized by vertical density stratification, while cold intrusions are characterized by density quasihomogeneity. According to field data, the ASF instability process is subdivided into four stages. When theASF is baroclinically unstable, the local baroclinic deformation radius RdL of the front is close in magnitude to the horizontal scale L of the intrusions that form, and their characteristic vertical scale δH is close to the typical vertical scale of front instability.  相似文献   

14.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   

15.
In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.  相似文献   

16.
Information on the vertical chlorophyll structure in the ocean is important for estimating integrated chlorophyll a and primary production from satellite. For this study, vertical chlorophyll profiles from the Benguela upwelling system and the Angola-Benguela front were collected in winter to identify characteristic profiles. A shifted Gaussian model was fitted to each profile to estimate four parameters that defined the shape of the curve: the background chlorophyll concentration (B 0), the height parameter of the peak (h), the width of the peak (σ) and the depth of the chlorophyll peak (zm ). A type of artificial neural network called a self-organizing map (SOM) was then used on these four parameters to identify characteristic profiles. The analysis identified a continuum of chlorophyll patterns, from those with large surface peaks (>10 mg m?3) to those with smaller near-surface peaks (<2 mg m?3). The frequency of occurrence of each chlorophyll pattern identified by the SOM showed that the most frequent pattern (~12%) had a near-surface peak and the least frequent pattern (~2%) had a large surface peak. These characteristic profile shapes were then related to pertinent environmental variables such as sea surface temperature, surface chlorophyll, mixed layer depth and euphotic depth. Partitioning the SOM output map into environmental categories showed large peaks of surface chlorophyll dominating in water with cool temperature, high surface chlorophyll concentration and shallow mixed layer and euphotic depth. By contrast, smaller peaks of subsurface chlorophyll were in water with warmer temperature, lower surface chlorophyll concentration, intermediate mixed layer and deep euphotic depth. These relationships can be used semi-quantitatively to predict profile shape under different environmental conditions. The SOM analysis highlighted the large variability in shape of vertical chlorophyll profiles in the Benguela. This suggests that an ideal typical chlorophyll profile, as used in the framework of biogeochemical provinces, may not be applicable to this dynamic upwelling system.  相似文献   

17.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

18.
Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water(CDW),a new hybrid vertical coordinate is designed,which uses σ coordinate for current and σ-z coordinate for salinity.To combine the current and salinity,the Eulerian-Lagrangian method is used for the salinity calculation,and the baroclinic pressure gradient(BPG) is calculated on the salinity sited layers.The new hybrid vertical coordinate is introduced to the widely used model of POM(Princeton Ocean Model) to make a new model of POM-σ-z.The BPG calculations of an ideal case show that POM-σ-z model brings smaller error than POM model does.The simulations of CDW also show that POM-σ-z model is better than POM model on simulating the salinity and its front.  相似文献   

19.
INTRODUCTIONTherehavebeenmanystudiesandcomputationsonVToftheKuroshiointheEastChinaThisprojectwassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49476278.Asanditsvacation.Forexample,(1)basedonhydrographicobservationsatactionG(PN)f...  相似文献   

20.
A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal (M2) component and separate the flow into two components: the tidal and residual (M2-removed) flows. We applied this method to depth-averaged data. Results show that the M2 component demonstrates over 95% of the variability of observation data. As the flow was dominated by the M2 tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of M2 velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号