首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Atmospheric densities have been deduced from high resolution radar-determined orbital decay data and from data obtained from a uniaxial accelerometer flown onboard the low altitude satellite 1970-48A. Data were obtained during late June and early July, 1970. The orbital decay-deduced densities, having an effective 6 hr temporal resolution, were determined at an altitude of 143 km, essentially one-half scale height above perigee. The accelerometer deduced densities at the same altitude were obtained on both the approaching-perigee and leaving-perigee portions of each of fifty-nine orbits. A detailed comparison of the densities derived from both types of data is presented. In general, agreement is very good. A comparison of both types of data has also been made with the Jacchia 1970 and 1971 atmospheric models as well as the new OGO-6 atmospheric model. The Jacchia models display reasonable agreement with the data, but the OGO-6 model is unsuitable as a representation of atmospheric density at this altitude.  相似文献   

2.
Abstract— We present a novel Markov‐Chain Monte‐Carlo orbital ranging method (MCMC) for poorly observed single‐apparition asteroids with two or more observations. We examine the Bayesian a posteriori probability density of the orbital elements using methods that map a volume of orbits in the orbital‐element phase space. In particular, we use the MCMC method to sample the phase space in an unbiased way. We study the speed of convergence and also the efficiency of the new method for the initial orbit computation problem. We present the results of the MCMC ranging method applied to three objects from different dynamical groups. We conclude that the method is applicable to initial orbit computation for near‐Earth, main‐belt, and transneptunian objects.  相似文献   

3.
光度特性测量是获取空间目标的物理特性的重要技术手段之一,无论是光变曲线的事后分析还是建立光度变化的仿真模型,都离不开一个重要的参数——太阳相位角(太阳-空间目标-测站的空间夹角).目前空间目标的位置通常是通过双行根数(TLE)外推获得,存在一定误差,且随外推时间的延长而变大,因而有必要对其计算所得的太阳相位角的精度进行评估.以典型的不同高度的激光测距卫星LAGEOS1、AJISAI、STELLA为研究对象,以全球激光测距资料解算所得的高精度轨道作为参考轨道,对2012年全年利用双行根数计算所得的太阳相位角数据进行了比对分析,结果表明对于LAGEOS1、AJISAI这样的中高轨卫星,由于轨道较高,表征阻力的B*恒定,计算所得的太阳相位角偏差较小,角分量级,且随外推时间的延长不会导致偏差明显增大;而对于STELLA这样的低轨卫星,因轨道较低、受变化的大气的影响显著,计算所得的太阳相位角偏差较大,尤其是当B*比较大、变化较快时,偏差显著变大,且随外推时间的延长显著增大,在最差情况下:外推1d约为13',外推3d约为50',外推7d约为251',已超出目前的精度要求.因此,在事后分析中应尽可能使用1d之内的TLE计算太阳相位角,对于B*较大且变化较快情况尤其需要注意.另外,针对UTC闰秒的情况,提出了一种处理方法,即在双行根数外推时判断外推时段是否跨越了闰秒时刻,若跨越了则进行修正:增加或减少1s,相应地需要修改结果对应的时间戳计算方法.  相似文献   

4.
We consider the effects of the absorption of solar XUV radiation by the Earth's atmosphere that were observed in the solar images obtained with the TEREK-K telescope onboard the Coronas-I satellite in May–June 1994 at low solar activity and with the SPIRIT instrumentation onboard the Coronas-F satellite in October–November 2001 at maximum solar activity. The solar images were recorded during the satellite occultation: in the 175- and 304-A spectral ranges onboard Coronas-I with the TEREK-K telescope and in the 175-, 304-, and 8.42-A ranges onboard Coronas-F with the SPIRIT instrumentation. Based on the XUV solar images obtained during atmospheric sounding, apart from the total absorption, we can determine the direction of the atmospheric density gradient and study the local absorption variations with altitude on spatial scales of less than 1 km. The described method can significantly supplement the data obtained in studies of the upper atmosphere by the methods of mass spectrometry, incoherent radar scattering, and the drag of orbital spacecraft.  相似文献   

5.
A least-squares multiple linear regression is performed on orbital decay density data obtained from precise orbital analysis of 22 low-perigee (130–160 km) Air Force satellites. Variations related to solar activity, the semi-annual effect, geomagnetic activity, and the zenith angle of the Sun are in agreement with the model of Jacchia (1971). Density variations in longitude and latitude are also deduced and compared with recent results from other investigations within this altitude regime.  相似文献   

6.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

7.
A new non-singular analytical theory for the motion of near-Earth satellite orbits with the air drag effect is developed in terms of uniformly regular KS canonical elements. Diurnally varying oblate atmosphere is considered with variation in density scale height dependent on altitude. The series expansion method is utilized to generate the analytical solutions and terms up to fourth-order terms in eccentricity and c (a small parameter dependent on the flattening of the atmosphere) are retained. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. The important drag perturbed orbital parameters: semi-major axis and eccentricity are obtained up to 500 revolutions, with the present analytical theory and by numerical integration over a wide range of perigee height, eccentricity and inclination. The differences between the two are found to be very less. A comparison between the theories generated with terms up to third- and fourth-order terms in c and e shows an improvement in the computation of the orbital parameters semi-major axis and eccentricity, up to 9%. The theory can be effectively used for the re-entry of the near-Earth objects, which mainly decay due to atmospheric drag.  相似文献   

8.
The orbital and attitude dynamics of uncontrolled Earth orbiting objects are perturbed by a variety of sources. In research, emphasis has been put on operational space vehicles. Operational satellites typically have a relatively compact shape, and hence, a low area-to-mass ratio (AMR), and are in most cases actively or passively attitude stabilized. This enables one to treat the orbit and attitude propagation as decoupled problems, and in many cases the attitude dynamics can be neglected completely. The situation is different for space debris objects, which are in an uncontrolled attitude state. Furthermore, the assumption that a steady-state attitude motion can be averaged over data reduction intervals may no longer be valid. Additionally, a subset of the debris objects have significantly high area-to-mass ratio (HAMR) values, resulting in highly perturbed orbits, e.g. by solar radiation pressure, even if a stable AMR value is assumed. Note, this assumption implies a steady-state attitude such that the average cross-sectional area exposed to the sun is close to constant. Time-varying solar radiation pressure accelerations due to attitude variations will result in un-modeled errors in the state propagation. This work investigates the evolution of the coupled attitude and orbit motion of HAMR objects. Standardized pieces of multilayer insulation (MLI) are simulated in a near geosynchronous orbits. It is assumed that the objects are rigid bodies and are in uncontrolled attitude states. The integrated effects of the Earth gravitational field and solar radiation pressure on the attitude motion are investigated. The light curves that represent the observed brightness variations over time in a specific viewing direction are extracted. A sensor model is utilized to generate light curves with visibility constraints and magnitude uncertainties as observed by a standard ground based telescope. The photometric models will be needed when combining photometric and astrometric observations for estimation of orbit and attitude dynamics of non-resolved space objects.  相似文献   

9.
The exospheric composition data of Mars for the period 2014–15 has been extracted and analysed using the observations carried out by the MENCA (Mars Exospheric Neutral Composition Analyser) payload on-board the Mars Orbiter Mission (MOM) launched by India. The latitude, longitude, altitude and solar zenith angle coverage of the partial pressure values of different exospheric constituents are determined and assigned to create a new data-set with orbit-wise data assimilation particularly between 260 and 600 km altitude range. Apart from getting the results on mean individual orbits’ partial pressure profiles, the variations of the total as well as partial pressures are studied with respect to the distribution of the major atmospheric constituents and their dependence on solar activity. In particular, CO2 and O variations are considered together for any differential effects due to photolysis and photo-ionisation. The results on the gradual reduction in densities due to decreasing daily mean sunspot numbers and strong response of CO2 and O pressures to solar energetic particle events like that of 24 December 2014 are presented.  相似文献   

10.
A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section for most encounter events that occur in a near-circular orbit. Therefore, the probability of collision caused by differences in both altitude of the orbit in the radial direction and the probability of collision caused by differences in arrival time in the cross section are calculated. The net probability of collision is expressed as an explicit expression by multiplying the above two components. Numerical cases are applied to test this method by comparing the results with the general method. The results indicate that this method is valid for most encounter events that occur in near-circular orbits.  相似文献   

11.
Situational awareness of Earth-orbiting particles is important for human extraterrestrial activities. Given an optical observation, an admissible region can be defined over the topocentric range/range-rate space, with each point representing a possible orbit for the object. However, based on our understanding of Earth orbiting objects, we expect that certain orbits in that distribution, such as circular or zero-inclination orbits, would be more likely than others. In this research, we present an analytical approach for describing the existence of such special orbits for a given observation pass, and investigate topological features of the range/range-rate space by means of singularities in orbital elements.  相似文献   

12.
Abstract— We are making an open‐source asteroid orbit computation software package called OpenOrb publicly available. OpenOrb is built on a well‐established Bayesian inversion theory, which means that it is to a large part complementary to orbit‐computation packages currently available. In particular, OpenOrb is the first package that contains tools for rigorously estimating the uncertainties resulting from the inverse problem of computing orbital elements using scarce astrometry. In addition to the well‐known least‐squares method, OpenOrb also contains both Monte‐Carlo (MC) and Markov‐Chain MC (MCMC; Oszkiewicz et al. [2009]) versions of the statistical ranging method. Ranging allows the user to obtain sampled, non‐Gaussian orbital‐element probability‐density functions and is therefore optimized for cases where the amount of astrometry is scarce or spans a relatively short time interval. Ranging‐based methods have successfully been applied to a variety of different problems such as rigorous ephemeris prediction, orbital element distribution studies for transneptunian objects, the computation of invariant collision probabilities between near‐Earth objects and the Earth, detection of linkages between astrometric asteroid observations within an apparition as well as between apparitions, and in the rigorous analysis of the impact of orbital arc length and/or astrometric uncertainty on the uncertainty of the resulting orbits. Tools for making ephemeris predictions and for classifying objects based on their orbits are also available in OpenOrb. As an example, we use OpenOrb in the search for candidate retrograde and/or high‐inclination objects similar to 2008 KV42 in the known population of transneptunian objects that have an observational time span shorter than 30 days.  相似文献   

13.
We present the results of the study of long-term orbital evolution of space debris objects, formed from end-of-life space vehicles (SV) of satellite radio navigation systems in the medium Earth orbit (MEO) region. Dynamical features of the evolution of objects in this region have been studied on the basis of 20-year laser surveillance with the Etalon-1 and Etalon-2 satellites and the results of numerical simulation of the long-term evolution of operating and disposal orbits of uncontrolled GLONASS and GPS SVs. It is shown that perturbations from secular lunisolar resonances produce an eccentricity growth for orbits with inclinations chosen for navigation constellations; this significantly changes the positions of these orbits in space and results in the ingress of end-of-life objects into the area of operating SVs.  相似文献   

14.
The atmospheric mass density of the upper atmosphere from the spherical Starlette satellite’s Precise Orbit Determination is first derived with Satellite Laser Ranging measurements at 815 to 1115 km during strong solar and geomagnetic activities. Starlette’s orbit is determined using the improved orbit determination techniques combining optimum parameters with a precise empirical drag application to a gravity field. MSIS-86 and NRLMSISE-00 atmospheric density models are compared with the Starlette drag-derived atmospheric density of the upper atmosphere. It is found that the variation in the Starlette’s drag coefficient above 800 km corresponds well with the level of geomagnetic activity. This represents that the satellite orbit is mainly perturbed by the Joule heating from geomagnetic activity at the upper atmosphere. This result concludes that MSIS empirical models strongly underestimate the mass density of the upper atmosphere as compared to the Starlette drag-derived atmospheric density during the geomagnetic storms. We suggest that the atmospheric density models should be analyzed with higher altitude acceleration data for a better understanding of long-term solar and geomagnetic effects.  相似文献   

15.
A new method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate longpperiod Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the Earth, Sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are then ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.Pseudo Doppler data have been generated simulating two different lunar orbits. This analysis included the perturbing effects of the L1 lunar gravity field, the Earth, the Sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of this controlled experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.  相似文献   

16.
Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar,co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.  相似文献   

17.
Dissociative recombination (DR) of ionospheric O2+ ions is an important source of suprathermal atomic oxygen in the exosphere as previous studies about the Martian upper atmosphere have shown. Because of the weaker gravitational attraction a hot oxygen corona on Mars should be denser than that observed on Venus. Since the most important mechanism for the production of the hot oxygen atoms in the Martian exosphere is DR, we investigated the variability of this production mechanism depending of solar activity. The Japanese Nozomi spacecraft will have the possibility to detect with the neutral mass spectrometer (NMS) for the first time in-situ the theoretically predicted hot oxygen corona on Mars, if the corona number density above the cold background atmosphere is of the order of 10,000 cm−3. Due to a problem in the propulsion system Nozomi failed its planned arrival rendevouzs with Mars in October 1999 and will, therefore, arrive at the red planet not before January 2004. Solar activity will reach its maximum in 2001, so the related production rate of hot oxygen atoms will be in the medium range during the new arrival date of Nozomi. We used the ionospheric profiles from the Viking mission for low solar activity conditions (F10.7≈70) and the Mariner 9 mission with a solar activity of about 120 for medium solar wind activity. The latter is comparable to the level we expect for the Mars arrival of Nozomi. The resulting influence of the hot oxygen corona number density distribution was calculated with a Monte Carlo technique. This technique is used to compute a hot particle density distribution function. We studied the atomic diffusion process in the Martian atmosphere by simulating the collision probability, particle direction and energy loss after collisions by generating random numbers. Compared to previous studies we have improved the Monte Carlo model by using more and smaller altitude steps and more detailed treatment of particles with a temporary downward motion. This has resulted in an increased amount of collisions and a shift to lower energies in the energy spectrum. Our results show that the hot oxygen component should begin to dominate above the cold background atmosphere at an altitude of about 500 km above the Martian surface. The NMS instrument on board of Nozomi should detect the hot oxygen component after its arrival at Mars in January 2004, at an altitude of about 600 km above the Martian surface. Since the solar activity will decrease during the mission the measurements during the first orbits will be the most significant ones. The first in-situ measurements of the hot oxygen number density would be very important for adjusting atmospheric escape models by separating ballistic, satellite and escape trajectories of the hot oxygen atoms, which are significant for studies of the evolution and solar wind interaction of the Martian atmosphere.  相似文献   

18.
Estimation is made of the possibility of clustering of debris particles in circular and elliptical orbits around the Earth due to the change in drag, caused by quasi-periodic variations of the atmospheric density in the orbit. The estimations show that the collective behavior of particles has time to be manifested in highly elliptical orbits, where the relative change in the atmospheric density along the orbital path is greater and characteristic lifetimes of the particles are longer. However, in this case the limit distributions of the particles are not realized, because the clusters form and break down several times during the lifetime of the particles in the orbit.  相似文献   

19.
We investigated by numerical integrations the long-term orbital evolution of four giant comets or comet-like objects. They are Chiron, P/Schwassmann-Wachmann 1 (SW1), Hidalgo, and 1992AD (5145), and their orbits were traced for 100–200 thousand years (kyr) toward both the past and the future. For each object, 13 orbits were calculated, one for the nominal orbital elements and other 12 with slightly modified elements based on the rms residual of the orbit determination and on the number of observations. As past studies indicate, their orbital evolution is found to be very chaotic, and thus can be described only in terms of probability. Plots of the semi-major axis (a) and perihelion distance (q) of the objects treated here seem to cross each other frequently, suggesting a possibility of their common evolutionary paths. About a half of all the calculated orbits showedq- ora-decreasing evolution. This indicates that, at least on the time scale in question, the giant comet-like objects are possibly on a dynamical track that can lead to capture from the outer solar system. We could hardly find the orbits with perihelia far outside the orbit of Saturn (q>15 AU). This is perhaps because the evolution of the orbits beyond Saturn is so slow that substantial orbital changes do not take place within 100–200 kyr.  相似文献   

20.
Comprehensive analysis of space debris rotational dynamics is vital for active debris removal missions that require physical capture or detumbling of a target. We study the attitude motion of large space debris objects that admittedly pose an immediate danger to space operations in low Earth orbits. Particularly, we focus on Sun-synchronous orbits (SSO) with altitude range 600–800 km, where the density of space debris is maximal. Our mathematical model takes into account the gravity-gradient torque and the torque due to eddy currents induced by the interaction of conductive materials with the geomagnetic field. Using perturbation techniques and numerical methods, we examine the deceleration of the initial fast rotation and the subsequent transition to a relative equilibrium with respect to the local vertical. A better understanding of the latter phase is achieved owing to a more accurate model of the eddy-current torque than in most prior research. We show that SSO precession is also a crucial factor influencing the motion properties. One of its effects is manifested at the deceleration stage as oscillations of the angular momentum vector about the direction to the south celestial pole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号