首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Circulation on the north central Chukchi Sea shelf   总被引:8,自引:0,他引:8  
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior.  相似文献   

2.
A key goal of the Western Arctic Shelf Basin Interactions program is to understand how physical and biological processes together impact shelf–basin exchange of biological, chemical, and physical properties. High-resolution vertical distributions of plankton and particles were obtained using an Auto Video Plankton Recorder from 29 locations on the Chukchi Shelf, in the deep Beaufort Sea, and across the Beaufort–Chukchi Shelf-break during a cruise on the USCGC Healy in July–August, 2002. Coincident velocity estimates were collected using hull-mounted acoustic Doppler current profilers. Images of plankton and particles were extracted automatically and identified manually to taxa and type. Copepods, diatom chains, decaying diatoms, marine snow, and radiolarians were the most abundant categories observed. Distinct regional differences in abundance were observed that were associated with different oceanographic regimes and with the prevailing circulation in the region. Vertical distributions were closely associated with the physical structure of the water column. A sharp horizontal discontinuity in abundance of all categories between shelf and basin was observed, located over the shelf break and potentially established and maintained by transport of plankton and particles along-shelf to the east rather than northwards towards the basin. Barrow Canyon and the shelf and shelf-break east of Barrow Canyon had very high concentrations of plankton and particles, especially marine snow, that may have resulted from elevated production on the eastern Chukchi Shelf that subsequently was advected out of Barrow Canyon and to the east. Comparisons of downward flux, estimated from particle sinking rates based on individual marine snow particle size, and horizontal velocities suggested that much of the marine snow carbon was sinking to the benthos of the Chukchi Sea prior to being advected off-shelf. Velocities and plankton concentrations together indicated that little off-shelf flux of plankton or particles to the basin was occurring except in an eddy located off of the Beaufort Shelf.  相似文献   

3.
Understanding the physical and biogeochemical processes that control the exchange of biogenic carbon within and between the arctic shelves, slopes, and deep basins is a key objective of the Western Arctic Shelf-Basin Interaction program (SBI). Here, egg production (EP) of the dominant copepod Calanus glacialis/marshallae was used as an indicator of food limitation for the mesozooplankton community in the Chukchi and Beaufort Seas in spring and summer, 2002. Both C. glacialis and C. marshallae may occur in this region but the two cannot easily be differentiated visually. Four oceanographic regions were objectively identified that roughly corresponded to the different pathways in circulation of nutrient-rich Pacific water. A ‘transition’ region characterized by ‘older’ Pacific water was located at the shelfbreak and separated the nutrient-rich shelf water and the low-nutrient waters of the deep basin. The observed spatial pattern in EP in C. glacialis/marshallae in spring and summer resulted both from the different water mass environments and from the reproductive cycle of the species. EP was greater on the shelf than in the basin, corresponding to differences in body size and nitrogen condition factor (NCF) in females, while the egg viability was generally high throughout the study area. EP showed no relationship with low-chlorophyll a biomass under heavy ice-cover in spring, while a significant relationship was observed in the more open water in summer. Adult female carbon condition factor (CCF) was much higher in summer, reflecting the accumulation of lipids during the growth season. Small animals with a markedly greater NCF dominated on the shelf. The shelfbreak region contained a mixture of females from the shelf and the basin with intermediate sizes, conditions, and EP rates. The occurrence of water typical of the ‘transition’ shelfbreak region and elevated EP in C. glacialis/marshallae offshore on the Barrow Canyon and East Barrow sections indicated offshore transport of productive shelf water and the associated plankton community. The input of nutrient-rich Pacific water and accompanying elevated production to the northern Chukchi Sea and the Chukchi-Beaufort shelfbreak region may contribute to the reproductive success of C. glacialis/marshallae in this region.  相似文献   

4.
Shelf–basin exchange in the western Arctic was evaluated by use of water-column analyses of 228Ra/226Ra ratios and the first measurements of the short-lived 224Ra (T1/2=3.64 d) in the Arctic. During the 2002 shelf–basin interaction (SBI) program, excess 224Ra was detected over the shelf but was not found seaward of the shelf-break. Similarly, the 228Ra/226Ra ratio dropped rapidly from the shelf across the shelf-break. Consequently, the model age gradient (elapsed time since shelf residence) northward across the Chukchi Shelf increased from 1–5 years nearshore to approximately 14 years in surface waters sampled off shelf at the southern margin of the Beaufort Gyre. This steep gradient is consistent with very slow exchange between the Chukchi Shelf and the Beaufort Gyre, whereby Bering Strait inflow is constrained by the Earth's rotation to follow local isobaths and does not easily move into deeper water. The strong dynamic control inhibiting water that enters the system through Bering Strait from flowing north across isobaths also would lead to a long recirculation time of river water emptied into the Beaufort Gyre. Possible mechanisms that can generate cross-shelf currents that break the topographic constraint to follow isobaths, and thereby transport water (and associated properties) off the shelves include wind-induced upwelling/downwelling, meandering jets, and eddies. Evidence of such a process was found during the ICEX project in the Beaufort Sea in April 2003 when excess 224Ra was measured over 200 km from any shelf source. This required an NE offshore flow of 40 cm s−1 assuming that the source water derives from the mouth of Barrow Canyon. A weak northeastward flow was measured using an LADCP within the upper 300 m of the ocean, but was of lower speed than required by the 224Raxs at the time of the ICEX occupation.  相似文献   

5.
Year-long time-series of temperature, salinity and velocity from 12 locations throughout the Chukchi Sea from September 1990 to October 1991 document physical transformations and significant seasonal changes in the throughflow from the Pacific to the Arctic Ocean for one year. In most of the Chukchi, the flow field responds rapidly to the local wind, with high spatial coherence over the basin scale—effectively the ocean takes on the lengthscales of the wind forcing. Although weekly transport variability is very large (ca. -2 to ), the mean flow is northwards, opposed by the mean wind (which is southward), but presumably forced by a sea-level slope between the Pacific and the Arctic, which these data suggest may have significant variability on long (order a year) timescales. The high flow variability yields a significant range of residence times for waters in the Chukchi (i.e. one to six months for half the transit) with the larger values applicable in winter.Temperature and salinity (TS) records show a strong annual cycle of freezing, salinization, freshening and warming, with sizable interannual variability. The largest seasonal variability is seen in the east, where warm, fresh waters escape from the buoyant, coastally trapped Alaskan Coastal Current into the interior Chukchi. In the west, the seasonally present Siberian Coastal Current provides a source of cold, fresh waters and a flow field less linked to the local wind. Cold, dense polynya waters are observed near Cape Lisburne and occasional upwelling events bring lower Arctic Ocean halocline waters to the head of Barrow Canyon. For about half the year, at least at depth, the entire Chukchi is condensed into a small region of TS-space at the freezing temperature, suggesting ventilation occurs to near-bottom, driven by cooling and brine rejection in autumn/winter and by storm-mixing all year.In 1990–1991, the ca. 0.8 Sv annual mean inflow through Bering Strait exits the Chukchi in four outflows—via Long Strait, Herald Valley, the Central Channel, and Barrow Canyon—each outflow being comparable (order 0.1–0.3 Sv) and showing significant changes in volume and water properties (and hence equilibrium depth in the Arctic Ocean) throughout the year. The clearest seasonal cycle in properties and flow is in Herald Valley, where the outflow is only weakly related to the local wind. In this one year, the outflows ventilate above and below (but not in) the Arctic halocline mode of 33.1 psu. A volumetric comparison with Bering Strait indicates significant cooling during transit through the Chukchi, but remarkably little change in salinity, at least in the denser waters. This suggests that, with the exception of (in this year small) polynya events, the salinity cycle in the Chukchi can be considered as being set by the input through Bering Strait and thus, since density is dominated by salinity at these temperatures, Bering Strait salinities are a reasonable predictor of ventilation of the Arctic Ocean.  相似文献   

6.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   

7.
A synoptic oceanographic study was conducted in August 1978 at the Middle Atlantic shelfbreak along the shelf-slope front and over the Wilmington Canyon. Four masses (surface, cold pool, shelf, and slope waters) were identified from nutrients and hydrographic variables. Also identified were two pycnocline mixing regimes; one between cold pool and slope waters across the inverted thermocline at the bottom of the cold bool protruding off the shelf, and the other directly across the summer thermocline between slope and shelf waters seaward of the cold pool. These two distinct mixing regimes appear to provide some of the common means for water exchange across the shelf-slope front. The associated mixing may be promoted by the circulation and mixing anomalies induced over canyon topographies. Physical data suggested a cyclonic flow pattern over the Wilmington Canyon, with warm slope water moving up its axis and cold pool water moving off its southwest flank. The above water masses were best identified chemically on the basis of oxygen saturation due to the high apparent photosynthesis at the shelf-slope front. This high primary productivity at the front seems linked to the cold pool and its nutrient supplies.  相似文献   

8.
We have developed and run a model with sufficiently high resolution (9 km and 45 levels) and a large enough spatial domain to allow for realistic representation of flow through the narrow and shallow straits in the northern Bering Sea. This is potentially important for quantification of long-term mean and time-dependent ocean circulation, and water mass and property exchanges between the Pacific and Arctic Oceans. Over a 23 year interval (1979–2001), mean transport through Bering Strait is estimated to be 0.65 Sv. Comparison of our model results with published observations indicates that ocean circulation is not only variable at seasonal to interdecadal scales but it is also responsive to short-term atmospheric forcing. One of such events occurred during the winter of 2000–2001 with reversed oceanic flow in some areas and much reduced sea-ice cover. Analyses of eddy kinetic energy fields identify some high biological productivity regions of the Chirikov Basin coincident with persistent high energy (up to 2700 cm2 s−2 in the surface layer and up to 2600 cm2 s−2 at mid-depth) throughout the annual cycle. Model output in the Bering Strait region is validated against several time series of moored observations of water mass properties. Comparison with shipboard observations of near-bottom salinity from late winter through autumn indicates that the model reasonably represents the major water-mass properties in the region. The modeled vertical water-column structure in the northern Bering Sea allows increased understanding of the mechanisms of water transformation and transport northward through Bering Strait into the Chukchi and Beaufort Seas. We conclude that the long-term model results for the northern Bering Sea provide important insights into the ocean circulation and fluxes and they are a useful frame of reference for limited observations that are short-term and/or cover only a small geographic region.  相似文献   

9.
The dramatic decline of summer sea ice extent and thickness has been witnessed in the western Arctic Ocean in recent decades, which hasmotivated scientists to search for possible factors driving the sea ice variability. An eddy-resolving, ice-ocean coupled model covering the entire Arctic Ocean is implemented, with focus on the western Arctic Ocean. Special attention is paid to the summer Alaskan coastal current (ACC), which has a high temperature (up to 5℃ ormore) in the upper layer due to the solar radiation over the open water at the lower latitude. Downstream of the ACC after Barrow Point, a surface-intensified anticyclonic eddy is frequently generated and propagate towards the Canada Basin during the summer season when sea ice has retreated away from the coast. Such an eddy has a warm core, and its source is high-temperature ACC water. A typical warm-core eddy is traced. It is trapped just below summer sea ice melt water and has a thickness about 60 m. Temperature in the eddy core reaches 2-3℃, and most water inside the eddy has a temperature over 1℃. With a definition of the eddy boundary, an eddy heat is calculated, which can melt 1 600 km2 of 1mthick sea ice under extreme conditions.  相似文献   

10.
We examined the interannual variability of Pacific Winter Water (PWW), both upstream in the northeastern Chukchi Sea and Barrow Canyon using mooring observations from 2000 to 2006, and downstream in the Canada Basin using hydrographic data acquired in 2002–2006. The interannual variation of PWW salinity is governed by two factors: (1) variability in the salinity of Pacific Water that flows northward through Bering Strait in winter; and (2) the input of salt associated with sea ice formation during winter in an intermittent coastal polynya located along the Alaskan coast between Cape Lisburne and Point Barrow. During the winters of 2000/2001 and 2001/2002 an increased transport of cold and saline PWW (S?>?33.5) to the basin via Barrow Canyon was observed. In 2000/2001 enhanced ice formation in the polynya contributed to the increased salinity of PWW, whereas in 2001/2002 the salinity of water entering through the Bering Strait was higher, and this resulted in more saline PWW being delivered to the basin. In the following four winters (2002/2003, 2003/2004, 2004/2005 and 2005/2006) the transport of cold and saline PWW in winter to the basin was less than that in the two preceding winters. In three of these four winters (2003/2004 being the exception) the coastal polynya was less active, thus reducing the input of salt due to brine enrichment. In the winter of 2003/2004, however, warmer water within the polynya region constrained ice formation and thus less cold and saline PWW was produced, despite the fact that the coastal polynya was active and frequently open.  相似文献   

11.
In September 2004, an extensive survey of a cold-core eddy in the Canada Basin, western Arctic was carried out with high-horizontal-resolution physical and chemical sampling and lower-horizontal-resolution biological sampling. The eddy was located over the continental slope north of the Chukchi Shelf and had a radius of ∼8 km. Its core was centered at a depth of ∼160 m. Water mass characteristics and the presence of copepods from the North Pacific Ocean (Neocalanus flemingeri and Metridia pacifica) demonstrated that the core contained water of Pacific origin. Vertical distributions of zooplankton were associated with the physical structure of the water column. For most taxa, concentrations in the eddy core were elevated compared with those in similar density water in the surrounding Basin. Based on tracer-age estimates and previous observations of eddy formation, the eddy is believed to have been formed during the previous spring/summer from the Chukchi shelfbreak jet. Surprisingly, the eddy also contained elevated abundances of Arctic-origin copepods (Metridia longa and Calanus glacialis). Analysis of a shelf–basin transect occupied in the region in August 2004 showed that these species were present in high abundances in relatively shallow water (50 m) inshore of the shelfbreak due to upwelling of deeper basin water, and copepods, onto the shelf in response to easterly winds. If the formation of the observed eddy occurred during, or shortly after, a period of such winds, upwelled Arctic-origin copepods on the shelf might have been entrained into the feature. Our observations suggest that formation and subsequent migration of such eddies may provide a mechanism for transporting zooplankton from the Chukchi Shelf into the interior Canada Basin. The periodic input of high abundances of zooplankton from productive shelf areas could affect food webs in the less productive basin.  相似文献   

12.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

13.
From August 2002 to September 2004 a high-resolution mooring array was maintained across the western Arctic boundary current in the Beaufort Sea north of Alaska. The array consisted of profiling instrumentation, providing a timeseries of vertical sections of the current. Here we present the first-year velocity measurements, with emphasis on the Pacific water component of the current. The mean flow is characterized as a bottom-intensified jet of O (15 cm s−1) directed to the east, trapped to the shelfbreak near 100 m depth. Its width scale is only 10–15 km. Seasonally the flow has distinct configurations. During summer it becomes surface-intensified as it advects buoyant Alaskan Coastal water. In fall and winter the current often reverses (flows westward) under upwelling-favorable winds. Between the storms, as the eastward flow re-establishes, the current develops a deep extension to depths exceeding 700 m. In spring the bottom-trapped flow advects winter-transformed Pacific water emanating from the Chukchi Sea. The year-long mean volume transport of Pacific water is 0.13±0.08 Sv to the east, which is less than 20% of the long-term mean Bering Strait inflow. This implies that most of the Pacific water entering the Arctic goes elsewhere, contrary to expected dynamics and previous modeling results. Possible reasons for this are discussed. The mean Atlantic water transport (to 800 m depth) is 0.047±0.026 Sv, also smaller than anticipated.  相似文献   

14.
The spin up and relaxation of an autumn upwelling event on the Beaufort slope is investigated using a combination of oceanic and atmospheric data and numerical models. The event occurred in November 2002 and was driven by an Aleutian low storm. The wind field was strongly influenced by the pack-ice distribution, resulting in enhanced winds over the open water of the Chukchi Sea. Flow distortion due to the Brooks mountain range was also evident. Mooring observations east of Barrow Canyon show that the Beaufort shelfbreak jet reversed to the west under strong easterly winds, followed by upwelling of Atlantic Water onto the shelf. After the winds subsided a deep eastward jet of Atlantic Water developed, centered at 250 m depth. An idealized numerical model reproduces these results and suggests that the oceanic response to the local winds is modulated by a propagating signal from the western edge of the storm. The disparity in wave speeds between the sea surface height signal—traveling at the fast barotropic shelf wave speed—versus the interior density signal—traveling at the slow baroclinic wave speed—leads to the deep eastward jet. The broad-scale response to the storm over the Chukchi Sea is investigated using a regional numerical model. The strong gradient in windspeed at the ice edge results in convergence of the offshore Ekman transport, leading to the establishment of an anti-cyclonic gyre in the northern Chukchi Sea. Accordingly, the Chukchi shelfbreak jet accelerates to the east into the wind during the storm, and no upwelling occurs west of Barrow Canyon. Hence the storm response is fundamentally different on the Beaufort slope (upwelling) versus the Chukchi slope (no upwelling). The regional numerical model results are supported by additional mooring data in the Chukchi Sea.  相似文献   

15.
The response of phytoplankton to the Beaufort shelf-break eddies in the western Arctic Ocean is examined using the eddy-resolving coupled sea ice–ocean model including a lower-trophic marine ecosystem formulation. The regional model driven by the reanalysis 2003 atmospheric forcing from March to November captures the major spatial and temporal features of phytoplankton bloom following summertime sea ice retreat in the shallow Chukchi shelf and Barrow Canyon. The shelf-break warm eddies spawned north of the Barrow Canyon initially transport the Chukchi shelf water with high primary productivity toward the Canada Basin interior. In the eddy-developing period, the anti-cyclonic rotational flow along the outer edge of each eddy moving offshore occasionally traps the shelf water. The primary production inside the warm eddies is maintained by internal dynamics in the eddy-maturity period. In particular, the surface central area of an anti-cyclonic eddy acquires adequate light, nutrient, and warm environment for photosynthetic activity partly attributed to turbulent mixing with underlying nutrient-rich water. The simulated biogeochemical properties with the dominance of small-size phytoplankton inside the warm eddies are consistent with the observational findings in the western Arctic Ocean. It is also suggested that the light limitation before autumn sea ice freezing shuts down the primary production in the shelf-break eddies in spite of nutrient recovery. These results indicate that the time lag between the phytoplankton bloom in the shelf region following the summertime sea ice retreat and the eddy generation along the Beaufort shelf break is an important index to determine biological regimes in the Canada Basin.  相似文献   

16.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

17.
The phytoplankton community was studied in Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort seas in the middle of the vegetative season (July–August 2003). Its structure was analyzed in relation to ice conditions and the seasonal patterns of water warming, stratification, and nutrient concentrations. The overall ranges of variation in phytoplankton abundance and biomass were estimated at 2.0 × 102 to 6.0 × 106 cells/l and 0.1 to 444.1 mg C/m3. The bulk of phytoplankton cells concentrated in the seasonal picnocline, at depths of 10–25 m. The highest values of cell density and biomass were recorded in regions influenced by the inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, the phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages, namely, the early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.  相似文献   

18.
Diel changes in vertical distribution and feeding conditions of the chaetognath Parasagitta elegans (Verill) were observed in three regions of the subarctic North Pacific in the summer of 1997. Samples were collected by repeated vertical hauls with a Vertical Multiple Plankton Sampler (VMPS) for 15–45 hours by demarcating the 0–500 m water column into four sampling layers. Integrated abundance through the entire water column and the proportion of juveniles were higher in the Bering Sea than the western and eastern subarctic Pacific. Juveniles always inhabited the surface layer in the western subarctic Pacific and Bering Sea, but they inhabited the underlying layer in the eastern subarctic Pacific. Stages I–III concentrated into the upper 150 m in the western subarctic Pacific but were distributed widely from 20–300 m in the Bering Sea. Among them, Stages II and III migrated rather synchronously over a wide vertical range in the eastern subarctic Pacific. The feeding rate of P. elegans was calculated to be 0.18 prey/chaetognath/day in the western subarctic Pacific, 0.27 prey/chaetognath/day in the Bering Sea and 0.07 prey/chaetognath/day in the eastern subarctic Pacific.  相似文献   

19.
On the recent warming of the southeastern Bering Sea shelf   总被引:1,自引:0,他引:1  
During the last decade, the southeastern Bering Sea shelf has undergone a warming of 3 °C that is closely associated with a marked decrease of sea ice over the area. This shift in the physical environment of the shelf can be attributed to a combination of mechanisms, including the presence over the eastern Bering Sea shelf of a relatively mild air mass during the winter, especially from 2000 to 2005; a shorter ice season caused by a later fall transition and/or an earlier spring transition; increased flow through Unimak Pass during winter, which introduces warm Gulf of Alaska water onto the southeastern shelf; and the feedback mechanism whereby warmer ocean temperatures during the summer delay the southward advection of sea ice during winter. While the relative importance of these four mechanisms is difficult to quantify, it is evident that for sea ice to form, cold arctic winds must cool the water column. Sea ice is then formed in the polynyas during periods of cold north winds, and this ice is advected southward over the eastern shelf. The other three mechanisms can modify ice formation and melt, and hence its extent. In combination, these four mechanisms have served to temporally and spatially limit ice during the 5-year period (2001–2005). Warming of the eastern Bering Sea shelf could have profound influences on the ecosystem of the Bering Sea—from modification of the timing of the spring phytoplankton bloom to the northward advance of subarctic species and the northward retreat of arctic species.  相似文献   

20.
Molecular organic biomarkers together with trace element composition were investigated in sediments east of Barrow Canyon in the western Arctic Ocean to determine sources and recycling of organic carbon in a continuum from the shelf to the basin. Algal biomarkers (polyunsaturated and short-chain saturated fatty acids, 24-methylcholesta-5,24(28)-dien-3β-ol, dinosterol) highlight the substantial contribution of organic matter from water column and sea-ice primary productivity in shelf environments, while redox markers such as acid volatile sulfide (AVS), Mn, and Re indicate intense metabolism of this material leading to sediment anoxia. Shelf sediments also receive considerable inputs from terrestrial organic carbon, with biomarker composition suggesting the presence of multiple pools of terrestrial organic matter segregated by age/lability or hydrodynamic sorting. Sedimentary metabolism was not as intense in slope sediments as on the shelf; however, sufficient labile organic matter is present to create suboxic and anoxic conditions, at least intermittently, as organic matter is focused towards the slope. Basin sediments also showed evidence for episodic delivery of labile organic carbon inputs despite the strong physical controls of water depth and sea-ice cover. Principal components analysis of the lipid biomarker data was used to estimate fractions of preserved recalcitrant (of terrestrial origin) and labile (of marine origin) organic matter in the sediments, with ranges of 12–79%, 14–45%, and 37–66% found for the shelf, slope, and basin cores, respectively. On average, the relative preserved terrestrial organic matter in basin sediments was 56%, suggesting exchange of organic carbon between nearshore and basin environments in the western Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号