首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macropores are a relatively small proportion of the soil volume, but they play an important role in the movement of water and chemicals owing to occasional rapid fluxes through them. The occurrence of macropore flow does not depend on the water content (or potential) of the bluk matrix unless the soil is close to saturation, but depends instead principally upon surface boundary conditions. Accordingly, three control situations of infiltration are recognized: macropore control, application control, and matrix control. These three situations indicate that the two-domain system may be a proper approach for the simulation of macropore soil. In this conceptualization, macropores are defined as channeling pores of different radii in which the flux density (with unit hydraulic gradient) occurring in the minimum sizes of such pores is greater than or equal to the saturated matrix hydraulic conductivity. Recognizing the two structural domains of the macropore and matrix, and possible water flow situations, three flow regions are suggested: matrix, macropore, and transaction. The matrix and the macropore are the two domains, and the transaction represents the exchange of water between the matrix and the macropore. The classic approach of the Richards equation is applicable to describe the flow in the matrix domain. The Hagen-Poiseuille and the Chezy-Manning equations for tube flow can be applied to represent the relationship between the hydraulic conductivity of the macroporosity and the total macroporosity, where the total macroporosity is defined as the ratio of the summed macropore cross-sectional area and the total soil cross-sectional area. An equation describing water flow in the macropore domain is then obtained.  相似文献   

2.
Markus Weiler   《Journal of Hydrology》2005,310(1-4):294-315
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow.  相似文献   

3.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

4.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Bypass flow in structured soils is dominated by soil hydrological processes, such as rain intensity, initial pressure head of the soil, surface storage of rain, horizontal contact area and absorption rate, and hydraulic conductivity of the soil matrix. This study was conducted to determine the relative impact of these processes in different soil types. A quasi 3-dimensional simulation model was used to calculate the effects of these soil hydrological input parameters on surface infiltration, macropore flow (with related horizontal absorption) and drainage. For light textured soils, surface infiltration was the most important term in the water balance. Heavy textured soils, in contrast, had drainage as the main term. In the latter soils bypass flow, when occurring, was almost equal to the amount of rain applied, indicating that absorption processes were strongly reduced. Lateral absorption on macropore walls was a minor fraction in the total mass balances, due to limited contact area and relatively weak diffusivity forces. Surface infiltration is a crucial parameter in bypass flow and is mainly dependent on rain intensity, initial pressure head and conductivity of the soil matrix. This requires measurement methods for hydraulic conductivity that specifically consider the effect of macropores.  相似文献   

7.
Macropores are important preferential pathways for the migration of water and contaminants through the vadose zone. The objective of this study was to examine small‐scale preferential flow processes during infiltration in macroporous, low permeability soils. A series of tension infiltration tests were conducted using Brilliant Blue dye tracer at two field sites in southwestern Ontario, Canada. The maximum applied pressure head was varied for each test and the resulting dye stain patterns and macropore networks were characterized by excavation, mapping, photography, and image analysis. Worm burrows were the dominant macropore type, with average macropore densities exceeding 400 m?2 and peak densities of more than 750 m?2 at 30 cm depth at both sites. Flow in macropores became significant at infiltration pressures > ? 3 cm, with corresponding increases in infiltration rate, soil water content variability (spatially and temporally), and depth of dye staining. The results demonstrated clear evidence for partially saturated macropore flow under porewater tension conditions and the associated importance of macropore–matrix interaction in controlling this flow. Field observations of transient infiltration showed that film and rivulet flow along macropores yielded vertical flow velocities exceeding 40 m d?1. Simple calculations showed that film flow along the walls and corners of irregularly shaped macropores could explain the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This study was conducted to estimate macropore space, macropore flow and matrix flow in an experimental forest plot in the Ouachita Mountains of Arkansas. Lateral soil water fluxes and soil capillary potentials were observed in the isolated plot during applied rainfall experiments. Rainfalls were applied 17 times during the period 17 July to 10 October 1991. The subsurface hydrograph separation technique was used to estimate macropore space, macropore flux and matrix flux. The boundary between macropore and matrix flow was statistically determined by covariance analysis. The maximum estimated lateral macropore space was approximately 0.006 (cm3 cm?3). The maximum estimated lateral macropore and matrix flow were 0.042 and 0.00066 cm s?1, respectively. This report also emphasizes the need for further research on the hydrograph separation procedure for estimating macropores and macropore flow.  相似文献   

9.
Most vegetated land surfaces contain macropores that may have a significant effect on the rate of infiltration of water under ponded conditions on the ground surface. Owing to the small-scale variations of the land topography (microtopography), only portions of the land area may get ponded during the process of overland flow. As the macropores transmit water at much higher rates than the primary soil matrix, higher macropore activation in ponded areas produces larger effective infiltration rates into the soil. Therefore, overland flow and infiltration into the macroporous vadose zone are interrelated. Representing the microtopographic variation of the land surface by a simple sine wave function, a method was developed to relate the ponding area to the average ponding depth which was determined by overland flow. A numerical model coupling overland flow and infiltration into the macroporous vadose zone was developed. Overland flow was simulated using the St. Venant equations with the inertia terms neglected. A single macropore model was used to simulate the infiltration into the macroporous vadose zone. The interaction between overland flow and the infiltration into the macroporous vadose zone was analyzed for a hypothetical watershed. The sensitivity analysis revealed that the interaction of macropore flow and overland flow is significant. For the conditions tested, the macropore flow and the overland flow were found to be more sensitive to the macroporosity and less sensitive to the microtopographic surface variation.  相似文献   

10.
Preferential flow is of high relevance for runoff generation, transport of chemicals and nutrients, and the transit time distribution of water in the soil or watershed. However, preferential flow effects are generally ignored in lumped hydrological models. And even most physically‐based models ignore macropores and preferential flow features at the soil and hillslope scale. Keith Beven was never satisfied with this situation and he tried again and again to convince the scientific community to focus their research on the complex topic of macropore and preferential flow. Although he recognized how difficult it is to correctly include preferential flow in hydrological models, he made substantial progress defining and describing macropore flow and showing its relevance, developing models to simulate preferential flow, and in particular, the interaction between macropores and the soil matrix. In this short commentary, I reflect on these achievements and outline a vision for research in preferential flow experiments and modeling.  相似文献   

11.
12.
Widespread observations of ecohydrological separation are interpreted by suggesting that water flowing through highly conductive soil pores resists mixing with matrix storage over periods of days to months (i.e., two ‘water worlds’ exist). These interpretations imply that heterogeneous flow can produce ecohydrological separation in soils, yet little mechanistic evidence exists to explain this phenomenon. We quantified the separation between mobile water moving through preferential flow paths versus less mobile water remaining in the soil matrix after free-drainage to identify the amount of preferential flow necessary to maintain a two water world's scenario. Soil columns of varying macropore structure were subjected to simulated rainfall of increasing rainfall intensity (26 mm h−1, 60 mm h−1, and 110 mm h−1) whose stable isotope signatures oscillated around known baseline values. Prior to rainfall, soil matrix water δ2H nearly matched the known value used to initially wet the pore space whereas soil δ18O deviated from this value by up to 3.4‰, suggesting that soils may strongly fractionate 18O. All treatments had up to 100% mixing between rain and matrix water under the lowest (26 mm h−1) and medium (60 mm h−1) rainfall intensities. The highest rainfall intensity (110 mm h−1), however, reduced mixing of rain and matrix water for all treatments and produced significantly different preferential flow estimates between columns with intact soil structure compared to columns with reduced soil structure. Further, artificially limiting exchange between preferential flow paths and matrix water reduced bypass flow under the most intense rainfall. We show that (1) precipitation offset metrics such as lc-excess and d-excess may yield questionable interpretations when used to identify ecohydrological separation, (2) distinct domain separation may require extreme rainfall intensities and (3) domain exchange is an important component of macropore flow.  相似文献   

13.
Due to the extensive gullying from historically excessive erosion in the loess plateau of China, much of this region is being converted to native grass and shrub vegetation. Tunnel scour and mass wasting are important gully erosion processes resulting from preferential flow through macropores ( pores 〉 1 mm diameter). The objective of this study is to assess the changes with time in macropore flow characteristics of soils on the Loess Plateau following conversion to grass vegetation and the associated degree of mass wasting of gully faces. Ridge areas that had been revegetated for 1 year, 6 years, and 〉 15 years following tilling, and for 6 years following contour-ditching and the adjacent gully faces were characterized for their macropore and soil matrix properties on a 50 cm by 50 cm area. The total number of macropores increased from 11.6/m^2 to 39.6/m2 from 1 to 6 years and to 51.6/m2 after 15 years of revegetation following tillage. The macroporosity increased from 0.0008 m^3/m^3 to 0.0018 m^3/m^3 from 1 to 6 years of revegetation following tillage but the lowest macroporosity (0.0005 m3/m3) was 6 years of revegetation following contour-ditching. The contourditched area had the lowest infiltration rate (95 m/d) through the soil matrix (areas without macropores) with the tilled areas having similar infiltration rates regardless of the number of years of revegetation (averaged 146 m/d). Due to tunnel scour erosion of macropores during infiltration into the area revegetated for 1 year, pore diameters enlarged by more than 200% resulting in this condition having the highest individual macropore infiltration rates (7967 m/d). Macropores in all other areas were stable with no tunnel scour erosion of macropores. The total capacity for infiltration through macropores increased significantly with time following revegetation. The number of macropores on the gully faces was triple (92.8/m2) and the macroporosity quadruple (0.004 m3/m3) that of the ridge surfaces. The upper gully faces exhibited 1.1 slumps m^-1 for a total soil loss of 48622 kg per ha.  相似文献   

14.
The effects of vegetation root distribution on near‐surface water partitioning can be two‐fold. On the one hand, the roots facilitate deep percolation by root‐induced macropore flow; on the other hand, they reduce the potential for deep percolation by root‐water‐uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10?7 m/s), while it is insignificant in soils with a Kmatrix larger than 10?5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root‐macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay‐rich soil layer without root‐induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low‐permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Soil macropore networks are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion and fauna burrows. Axial X‐ray computed tomography (CT) scanning provides a convenient means of recording the spatial structure of soil macropore networks. The objective of this study were to (1) based on CT technique and GIS digitized image method, construction a new technique for tracing, visualizing and measuring the soil macropore networks and (2) investigate the effects of farming activities on soil macropore networks characteristics. Our technique uses left‐turning and nine‐direction judgment methods, a combination of the layer‐by‐layer analysis method and the up‐down tracking algorithm. The characteristics for the overall structure patterns of macropores, the spatial distribution of the macropore networks and each single macropore network can be conveniently identified by our technique. Eight undisturbed soil columns from fields with two distinct land uses (under cultivation and not been cultivated) and four different depths (0–20, 20–40, 40–60 and 60–80 cm) were investigated. The soil columns were scanned using X‐ray CT at a voxel resolution of 0.075 × 0.075 × 3.000 mm. Results indicate that farming activities can destroy the initial structure of macropores, and those remaining are mainly small‐sized and medium‐sized networks with lower extension and hydraulic conductivity. The network properties show a significant difference between upper and lower layer. The results can provide beneficial reference to further research centered on non‐equilibrium flow prediction and chemical transport modeling in field soils. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Topographic controls upon soil macropore flow   总被引:1,自引:0,他引:1  
Macropores are important components of soil hydrology. The spatial distribution of macropore flow as a proportion of saturated hydraulic conductivity was tested on six humid–temperate slopes using transects of tension infiltrometer measurements. Automated water table and overland flow monitoring allowed the timing of, and differentiation between, saturation‐excess overland flow and infiltration‐excess overland flow occurrence on the slopes to be determined and related to tension‐infiltrometer measurements. Two slopes were covered with blanket peat, two with stagnohumic gleys and two with brown earth soils. None of the slopes had been disturbed by agricultural activity within the last 20 years. This controlled the potential for tillage impacts on macropores. The proportion of near‐surface macropore flow to saturated hydraulic conductivity was found to vary according to slope position. The spatial patterns were not the same for all hillslopes. On the four non‐peat slopes there was a relationship between locations of overland flow occurrence and reduced macroporosity. This relationship did not exist for the peat slopes investigated because they experienced overland flow across their whole slope surfaces. Nevertheless, they still had a distinctive spatial pattern of macropore flow according to slope position. For the other soils tested, parts of slopes that were susceptible to saturation‐excess overland flow (e.g. hilltoes or flat hilltops) tended to have least macropore flow. To a lesser extent, for the parts of slopes susceptible to infiltration‐excess overland flow, the proportion of macropore flow as a component of infiltration was also smaller compared with the rest of the slope. The roles of macropore creation and macropore infilling by sheet wash are discussed, and it is noted that the combination of these may result in distinctive topographically controlled spatial patterns of macropore flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Lateral subsurface flow is generally assumed to occur as a result of the development of a saturated zone above a low‐permeability interface such as at the soil–bedrock contact, and it is often augmented by macropore flow. Our objective was to evaluate the development of lateral subsurface flow and soil saturation at a semiarid ponderosa pine forest in New Mexico with respect to the conceptual model of saturation building above the soil–bedrock contact. At this site, we have long‐term observations of the water budget components, including lateral flow. A 1·5 m deep by 7 m long trench was constructed to observe lateral subsurface flow and development of saturation directly. Our observations are based on flow resulting from a melting snowdrift. The edge of the drift was about 7 m upslope from the trench. Lateral subsurface flow only occurred from root macropores in the Bt soil horizon. Saturation developed and grew outward from flowing root macropores, rather than growing upward from the soil–bedrock interface. This macropore‐centred saturation resulted in a highly heterogeneous distribution of water content until enough macropores began flowing and individual macropore saturated zones grew large enough to coalesce and saturate large volumes of the soil. Our observations are based on one snowmelt event and a relatively short hillslope flow path, and thus do not represent a full range of hydrologic conditions. Nevertheless, the observed behaviour did not conform to the traditional model of soil–bedrock control of saturation and lateral flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号