首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most mining operations the ore undergoes several processes such as drilling, blasting, loading, hauling, crushing, grinding and liberation to become the final salable product. Drilling and blasting is an important step in this process chain and it's results such as fragmentation, muckpile shape and looseness, dilution, damage and rock softening effect the efficiency of downstream processes. The value created per ton of broken ore is the difference between the price it commands when sold as the final product and the cost to produce it. Traditionally, the total process in the mining industry is classified into two groups as mining and milling. These are managed as separate cost centres inspite of the interdependency. Each process has a budget and production target and emphasis is usually on maximising production (tons) and minimising cost rather than the overall profitability of the whole business unit. The efficiency of each process is considered to be satisfactory as long as they are within budget and meet the production targets. The mine and mill managers usually try to optimise each process independently rather than the entire process. This paper discusses the potential pitfalls of decreasing the drilling and blasting cost per ton of broken rock without considering its impact on downstream processes. It introduces a holistic approach to blast optimisation by identifying and measuring the leverage that blast results have on different downstream processes and then optimising the blast design to achieve the results that maximise the overall profitability rather than just minimising the drilling and blasting costs. This paper demonstrates the benefits of such a holistic approach to blasting based on computer model simulations and field studies from metal and open cut coal mining.  相似文献   

2.
The increasing use of the Daveytronic digital programmable detonators is continuing to yield data reinforcing earlier studies concluding that accurate timing will provide substantial performance and economic benefits. This study quantifies performance increases as they relate to fragmentation, excavation, vibration control and productivity in a limestone aggregate mining operation. High levels of field controls were adhered to during the drilling and blasting process as they related to blast design, bench preparation, pattern layout, drilling and blasthole loading. Following each blast, the fragmentation composite of the post-blast muckpile was quantified. The excavation and crushing procedures were then studied to quantify any down stream advantages due to improvements in fragmentation. This study will help provide the industry with more information as to the advantages of high accuracy electronic blasting systems over conventional pyrotechnic systems.  相似文献   

3.
Blasting is the primary comminution process in most mining operations. This process involves the highly complex and dynamic interaction between two main components. The first is the detonating explosive and the second is the rock mass into which the explosive is loaded. The mechanical properties of the rock material (such as dynamic strength, tensile strength, dynamic modulus and fracture toughness) are important considerations in understanding the blasting process. However, it is the characteristics of the geological defects (joints, foliation planes, bedding planes) within the rock mass that ultimately determine how effectively a blast performs in terms of fragmentation, all else being equal. The defect characteristics include, but are not limited to, their orientation, spacing, and mechanical properties. During the blasting process, some of the geotechnical characteristics of the rock mass are substantially changed. From the blasting outcome point of view, the most notable and important is the change in fragment size distribution that the rock mass undergoes. The pre-blast in situ defect-bounded block size distribution is transformed into the post-blast muckpile fragment size distribution. Consequently, it is fundamental to our understanding of and ability to predict the blasting process that both the blastability of a rock mass and its transformation into the fragment size distribution can be appropriately quantified.  相似文献   

4.
Bench blasting has a long tradition and yet the mechanics of throw and muck-pile formation is not clearly understood. This educational paper addresses bench blasting and muck-pile formation in a very simplified manner: a two-block system with ensuing formation of a two-block muckpile is investigated. It will become apparent that the study of a two-block system is perfectly sufficient for a deeper understanding of the problem of the entire bench blast and muck-pile formation. Two approaches will be presented: the momentum or impact approach and the wave propagation approach. The movement of the individual blocks and the formation of a 'two-block muck-pile' will be studied for both approaches and the differences in the results will be discussed. The purpose is to clarify, during blasting and ensuing block movement, the influence of the wave propagation action as compared to a purely gas-pressure based momentum treatment of muckpile formation. The results show that a wave propagation approach may lead to considerably different results for jointed rock mass and for certain combinations of parameters.  相似文献   

5.
In the last decade, fragmentation prediction has been attempted by many researchers in the field of blasting. Kuznetsov developed an equation for the estimation of average fragment size, x 50 , based on explosive energy and powder factors. Cunningham introduced a uniformity index n as a function of drilling accuracy, blast geometry and a rock factor A associated with a “blastability index”, which can be calculated from the jointing, density and hardness of the blasted rock mass. Knowing the mean size and the uniformity index, a Rosin-Rammler distribution equation can then be derived for calculating the fragment size distribution in a blasted muckpile. Analysis of existing data has revealed serious discrepancies between actual and calculated uniformity indices. The current integrated approach combines the Kuznetsov or similar equation and a comminution concept like the Bond Index equation to enable the estimation of both the 50% and 80% passing sizes ( k 50 and k 80 ). By substituting these two passing sizes into the Rosin-Rammler equation, the characteristic size x c and the uniformity index n can be obtained to allow the calculation of various fragment sizes in a given blast. The effectiveness of this new fragmentation prediction approach has been tested using sieved data from small-scale bench blasts, available in the literature. This paper will cover all tested results and a discussion on the discrepancy between measurement and prediction due to possible energy loss during blasting.  相似文献   

6.
Vibrations due to production blasting can induce damage to the rock mass at large distances by altering larger geological structures, fault areas or other structures, where the orientation with respect to the mine geometry is unfavorable and can cause displacement of large rock volumes. Past occurrences of this nature in Escondida Mine placed geomechanical safety restrictions as to maximum allowable blast size in the northeast area of the mine. These restrictions limited the efficiency of drilling and blasting operations seriously limiting daily production. This is what prompted this study to attempt to increase shot size while reducing stability problems. This would permit keeping stable the slope over which the ore extraction belts are located, as well as the main access ramp to the mine. Using a rigorous and systematic instrumentation and monitoring effort of blasting vibrations at multiple locations with respect to an unstable location allowed the development of a database to establish acceptable vibrations limits. A parallel effort was the development and gauging of a mechanistic model for the prediction and simulation of blasting vibrations. Excellent results were obtained from a comparison between the measured and predicted results. This allowed the use of the gauged model to verify the practicality of increasing the shot size in the restricted blasting zones, without exceeding safe vibration limits. The practical success achieved using this research approach resulted in increased blasting size, with a consequent increase of blasted material per shot, and contributed to more flexible mining operations.  相似文献   

7.
Summary Formulation and case studies of a three dimensional kinematic model are presented. Thein situ overburden geometry can be simulated accurately and various initiation patterns of blasts can be modelled. The overburden geometry, hole patterns and explosive distribution are all explicit model inputs. Because the effect of explosive properties, rock mass condition and inter-row delay are very difficult to measure in terms of blast performance, these are represented in the model by control parameters which are left for calibration using field data. The output of the model is a three dimensional muckpile shape of any cross section and a contour map of grade distribution within the muckpile. Two case studies are presented which have shown that the model is a valuable tool for optimizing production blasting as well as for controlling grade dilution during blasting.  相似文献   

8.
Over the past 18 months the De Beers Consolidated Mines Ltd operations have made a concerted effort to move away from using the traditional shock tube initiating systems. These systems are being systematically replaced by the use of electronic delay detonators (EDD). Various trials were conducted in both host rock and kimberlite rock masses to improve tunnel advance as well as to optimise delay timing during trough openings [1-3]. The high cost of EDD's, when compared with traditional initiation systems, led to a number of detailed studies being conducted on the mines where EDD's were being used. These studies aimed to quantify the additional benefits when blasting with electronic detonators. The studies showed that the change was justified on the basis of increased quality control and reliability gained through the use of EDD's. However, these benefits attract other related benefits, like fragmentation control, and backbreak reductions. When compared to the shock tube initiating systems the increased development face advance and the reduction of oversize during production blasting using EDDs, compared favourably to the less costly systems. As blasting engineers gained experience and confidence in the use of the system bigger blasts were initiated in mass under-cut blasts and slot raise development, by using multiple hole firing and second delay periods between holes. In the open pit and sublevel open stope mining methods the control of the fragmentation distribution and the effect of the mass of explosive detonated during a blast is detrimental to the loading and hauling production rates and the stability of the rock mass behind the blast. With a stable rock mass the bench cutting can be executed to establish steeper overall slope angles leading to large cost savings due to a reduction in waste stripping. It is the purpose of this paper to indicate through quantification that the use of the EDDs as an initiating system improves all-round blasting performances and assists in meeting customer requirements. The customer being the ore treatment plant.  相似文献   

9.
随着智能钻机的研发和使用,能够准确地获得爆破钻孔的岩性数据.通过建立炮孔数据库对智能识别的炮孔数据进行存储和管理;以炮孔岩性数据为样本,使用距离平方反比法对爆破区域范围内的实体单元进行插值,生成爆破岩体三维实体模型;使用爆破区域范围多边形和采场三角网先后对岩体三维实体模型进行裁切,得到裁切后的爆破岩体三维实体模型.使用...  相似文献   

10.
Air gap in an explosive column has long been applied in open-pit blasting as a way of reducing explosive charge, vibration, fly rock and improve fragment size. In conventional blasting a greater amount of explosive energy is lost in the generation of oversize fragments. Oversize fragments reduces loading and hauling efficiencies of equipment which requires secondary blasting. Recurring oscillation of shock waves in the air gap increases the time over which it acts on the adjacent rock mass by factor of 2–5. Top air deck blasting technique trial conducted with an application of gas bags at Chimiwungo pit resulted in an improved fragmentation of about 94 % less than 950 mm. Results obtained from the analysis of muckpile images using split-desktop exhibited that the mean fragment size was 264.81 mm and F20, F80 and top-size were 41.99, 683.18 and 1454.69 mm respectively. Optimum crusher feed size was as large as 1200 mm and crushed down to the 40 mm and only a small percent of the material was above 1200 mm. Gas bag application resulted in a significant reduction in explosives load in production holes without loss in fragmentation or movement of the collar zone. This reduced total cost of charging as compared to conventional blasts with a variance of $20, powder factor was dropped to an average of 0.86 kg/bcm. The technique reduced the cost of bulk blend explosive by 15 %, reduced overall cost of charging per hole by 12 %, enhanced premature ejections. The overall blast results were satisfactory, 443,624 tonnes of blasted material from the block which represented 90 % of the total muckpile material was within 900 mm size. The overall muckpile blasted was well fragmented.  相似文献   

11.
Summary Most existing models of blasting are stress-based and involve many fundamental parameters difficult or impossible to measure in practice. Even a single prediction with such models takes large quantities of computer time, so that calibration becomes a major impediment to their practical use.The model in this paper is based on a simple kinematic approach to modelling muckpile formation. This has the advantage of relative simplicity, while still reflecting the essence of the blasting displacement process. Because of the simple implementation, the model can be calibrated against field data in a straightforward manner and then used for predictions at the same site. The inputs to the model are simply the blast design parameters. The output of the model is a muckpile cross-section, within which contours of diggability or distribution of materials can also be calculated. Case studies have shown that, provided the model is calibrated to the site condition, it will give accurate predictions for altered blast designs.  相似文献   

12.
The theoretical explosive energy used in blasting is a common issue in many recent research works (Spathis 1999; Sanchidrian 2003). It is currently admitted that the theoretical available energy of the explosives is split into several parts during a blast: seismic, kinetic, backbreaks, heave, heat and fragmentation energies. Concerning this last one, the energy devoted to the breakage and to the creation of blocks within the muckpile can be separated from the microcracking energy which is devoted to developing new and/or extending existing micro cracks within the blocks (Hamdi et al. 2001; López et al. 2002). In order to investigate these two types of energy, a first and important task is to precisely study the main parameters characterising the two constitutive elements of the rock mass (rock matrix and discontinuity system). This should provide useful guidelines for the choice of the blasting parameters (type of explosive, blasting pattern, etc.), in order to finally control the comminution process. Within the frame of the EU LESS FINES research project, devoted to the control of fines production, the methodology was developed in order to: (1) characterize the in situ rock mass, by evaluating the density, anisotropy, interconnectivity and fractal dimension of the discontinuity system and (2) evaluate fragmentation (both micro and macro) energy spent during the blasting operation. The methodology was applied to three production blasts performed in the Klinthagen quarry (Sweden) allowing to estimate the part of the fragmentation energy devoted to the formation of muck pile blocks on one side and to the muckpile blocks microcracking on the other side.  相似文献   

13.
Empirical approaches for predicting fragmentation from blasting continue to play a significant role in the mining industry in spite of a number of inherent limitations associated with such methods. These methods can be successfully applied provided the users understand or recognize their limitations. Arguably, the most successful empirical based fragmentation models have been those applicable to surface blasting (e.g., Kuz-Ram/Kuznetsov based models). With widespread adoption of fragmentation assessment technologies in underground operations, an opportunity has arisen to extend and further develop these type approaches to underground production blasting.

This paper discusses the development of a new fragmentation modelling framework for underground ring blasting applications. The approach is based on the back-analysis of geotechnical, blasting and fragmentation data gathered at the Ridgeway sub level caving (SLC) operation in conjunction with experiences from a number of surface blasting operations.

The basis of the model are, relating a peak particle velocity (PPV) breakage threshold to a breakage uniformity index; modelling of the coarse end of the size distribution with the Rosin-Rammler distribution; and modelling the generation of fines with a newly developed approach that allows the prediction of the volume of crushing around blastholes.

Preliminary validations of the proposed model have shown encouraging results. Further testing and validation of the proposed model framework continues and the approach is currently being incorporated into an underground blast design and analysis software to facilitate its application.  相似文献   

14.
Explosion gas plays an important role in rock mass fragmentation and cast in rock blasting. In this technical note, the discontinuous deformation analysis method is extended for bench rock blasting by coupling the rock mass failure process and the penetration effect of the explosion gas based on a generalized artificial joint concept to model rock mass fracturing. By tracking the blast chamber evolution dynamically, instant explosion gas pressure is derived from the blast chamber volume using a simple polytropic gas pressure equation of state and loaded on the blast chamber wall. A bench blasting example is carried out. The blast chamber volume and pressure time histories are obtained. The rock failure and movement process in bench rock blasting is reproduced and analysed.  相似文献   

15.
Rock mass failure is a particularly complex process that involves the opening and sliding of existing discontinuities and the fracturing of the intact rock. This paper adopts an advanced discretisation approach to simulate rock failure problems within the discontinuous deformation analysis (DDA) framework. The accuracy of this approach in continuum analysis is verified first. Then, the advanced discretisation approach for fracturing modelling is presented, and the discretisation strategy is discussed. Sample rock static failures are simulated and the results are compared with experimental results. Thereafter, with a generalised definition of the artificial joints, this approach is further extended and applied in the simulation of blast-induced rock mass failures in which the instant explosion gas pressure obtained by the detonation pressure equation of state is loaded on the main blast chamber walls and the induced surrounding connected fracture surfaces. In the simulation instance of rock mass cast blasting, the whole process, including the blast chamber expansion, explosion gas penetration, rock mass failure and cast, and the formation of the final blasting pile, is wholly reproduced.  相似文献   

16.
桦甸市全兴矿业有限公司银龙大理岩矿是露天开采大理岩(方解石)的矿山,但由于传统的爆破方法造成优质矿石在爆破过程中因抛掷碰撞、炮孔内爆轰压力过大而形成粉碎区而使矿石粉碎,落地后被污染而使部分优质的矿石不能被利用,造成资源浪费。为此进行多次中深孔松动控制爆破试验并获得成功,使优质的矿石得到了回收,提高了产品质量,提高资源利用率,降低了生产成本。  相似文献   

17.
One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for 'tuning' at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies [2, 3].  相似文献   

18.
This paper presents the results of a comprehensive monitoring program designed to investigate the extent of blast induced damage experienced by rock masses extracted by bench stoping methods. An array of triaxial geophones and extensometers were used to monitor blast vibration attenuation and measure hangingwall deformations during stope extraction. In addition, pre and post surveys of the hangingwall rock mass were conducted using a TV borehole camera and cavity survey instrumentation. These surveys were later used to calibrate damage profiles into the stope hangingwalls.

Peak particle velocity, hangingwall deformation measurements and stope surveys were used to develop a site specific damage model that allowed engineers to asses drilling and blasting configurations to minimise the extent of pre-conditioning and damage. In addition the study included the analysis of the frequency response, displacements and accelerations experienced by the excavation as extraction and mine filling progressed. This work aimed at improving our understanding of the influence of blasting on the dynamic behaviour of stope hangingwalls.

The study demonstrated that estimates of the maximum extent of rock mass pre-conditioning and/or damage made through the application of the Holmberg-Persson approach compared well with measured results. In addition, the study found that dynamic loading imparted on an exposed hangingwall from subsequent stope blasting was also expected to contribute to rock mass weakening and that mine filling was crucial to arrest further deterioration. Hangingwall accelerations were used to demonstrate that larger openings may be more susceptible to dynamic loading.  相似文献   

19.
State-of-the-art software and computer technology provides a vehicle for a new approach to designing and verification of blasting patterns and training of professionals in this area of mining. The objective of this paper is to discuss the use of 3-D computer graphics to improve the understanding of the challenges facing drill and blast operations and describe technologies available for drill and blast planning in surface mining. It is postulated that this approach will have a positive impact on future students, researchers, and mine operators by improving their ability to use techniques, skills, and visually rich tools in solving and documenting mining engineering problems.  相似文献   

20.
Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号