首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

2.
To better understand the implications of anthropogenic climate change for three major Mid-Atlantic estuaries (the Chesapeake Bay, the Delaware Bay, and the Hudson River Estuary), we analyzed the regional output of seven global climate models. The simulation given by the average of the models was generally superior to individual models, which differed dramatically in their ability to simulate twentieth-century climate. The model average had little bias in its mean temperature and precipitation and, except in the Lower Chesapeake Watershed, was able to capture the twentieth-century temperature trend. Weaknesses in the model average were too much seasonality in temperature and precipitation, a shift in precipitation’s summer maximum to spring and winter minimum to fall, interannual variability that was too high in temperature and too low in precipitation, and inability to capture the twentieth-century precipitation increase. There is some evidence that model deficiencies are related to land surface parameterizations. All models warmed over the twenty-first century under the six greenhouse gas scenarios considered, with an increase of 4.7 ± 2.0°C (model mean ± 1 standard deviation) for the A2 scenario (a medium-high emission scenario) over the Chesapeake Bay Watershed by 2070–2099. Precipitation projections had much weaker consensus, with a corresponding increase of 3 ± 12% for the A2 scenario, but in winter there was a more consistent increase of 8 ± 7%. The projected climate averaged over the four best-performing models was significantly cooler and wetter than the projected seven-model-average climate. Precipitation projections were within the range of interannual variability but temperature projections were not. The implied research needs are for improvements in precipitation projections and a better understanding of the impacts of warming on streamflow and estuarine ecology and biogeochemistry.  相似文献   

3.
The seasonal cycle of water masses and sea ice in the Hudson Bay marine system is examined using a three-dimensional coastal ice-ocean model, with 10 km horizontal resolution and realistic tidal, atmospheric, hydrologic and oceanic forcing. The model includes a level 2.5 turbulent kinetic energy equation, multi-category elastic-viscous-plastic sea-ice rheology, and two layer sea ice with a single snow layer. Results from a two-year long model simulation between August 1996 and July 1998 are analyzed and compared with various observations. The results demonstrate a consistent seasonal cycle in atmosphere-ocean exchanges and the formation and circulation of water masses and sea ice. The model reproduces the summer and winter surface mixed layers, the general cyclonic circulation including the strong coastal current in eastern Hudson Bay, and the inflow of oceanic waters into Hudson Bay. The maximum sea-ice growth rates are found in western Foxe Basin, and in a relatively large and persistent polynya in northwestern Hudson Bay. Sea-ice advection and ridging are more important than local thermodynamic growth in the regions of maximum sea-ice cover concentration and thickness that are found in eastern Foxe Basin and southern Hudson Bay. The estimate of freshwater transport to the Labrador Sea confirms a broad maximum during wintertime that is associated with the previous summers freshwater moving through Hudson Strait from southern Hudson Bay. Tidally driven mixing is shown to have a strong effect on the modeled ice-ocean circulation.  相似文献   

4.
Sea-ice cover over the Hudson Bay (HB) exhibits large variability in the freeze-up season normally starting in November. Its influence on the climate over eastern Canada has been studied with the Canadian Regional Climate Model (CRCM) in three steps. First, a 30-year continuous simulation from 1970 to 1999 was performed as a control run to evaluate the simulated climate variability over eastern Canada, in particularly variability associated with the North Atlantic oscillation (NAO). Then, 50 additional 1 month experiments were performed with modified sea-surface conditions prescribed over the HB. These integrations allowed us to quantify the contribution of HB sea-ice anomalies versus large scale NAO atmospheric variability (as defined by prescribed lateral boundary conditions) in inducing climate variability over eastern Canada. Results show that the NAO is the dominant factor controlling climate variability over eastern Canada. The contribution of HB sea-ice anomalies is significant only in the immediate coastal region. Under the influence of different phases of NAO, HB sea-ice anomalies do co-vary with temperature and precipitation anomalies downstream of the HB over eastern Canada. The ultimate cause of this co-variability is NAO variability which forces variability in both HB sea-ice cover as well as temperature/precipitation over eastern Canada.  相似文献   

5.
A role for icebergs in the 8.2 ka climate event   总被引:1,自引:1,他引:0  
We investigate the potential role of icebergs in the 8.2 ka climate event, using a coupled climate model equipped with an iceberg component. First, we evaluate the effect of a large iceberg discharge originating from the decaying Laurentide ice sheet on ocean circulation, compared to a release of an identical volume of freshwater alone. Our results show that, on top of the freshwater effect, a large iceberg discharge facilitates sea-ice growth as a result of lower sea-surface temperatures induced by latent heat of melting. This causes an 8% increased sea-ice cover, 5% stronger reduction in North Atlantic Deep Water production and 1°C lower temperature in Greenland. Second, we use the model to investigate the effect of a hypothetical two-stage lake drainage, which is suggested by several investigators to have triggered the 8.2 ka climate event. To account for the final collapse of the ice-dam holding the Laurentide Lakes we accompany the secondary freshwater pulse in one scenario with a fast 5-year iceberg discharge and in a second scenario with a slow 100-year iceberg discharge. Our experiments show that a two-stage lake drainage accompanied by the collapsing ice-dam could explain the anomalies observed around the 8.2 ka climate event in various climate records. In addition, they advocate a potential role for icebergs in the 8.2 ka climate event and illustrate the importance of latent heat of melting in the simulation of climate events that involve icebergs. Our two-stage lake drainage experiments provide a framework in the discussion of two-stage lake drainage and ice sheet collapse.  相似文献   

6.
This paper investigates monthly and seasonal precipitation–temperature relationships (PTRs) over Northeast China using a method proposed in this study. The PTRs are influenced by clouds, latent and sensible heat conversion, precipitation type, etc. In summer, the influences of these factors on temperature decrease are different for various altitudes, latitudes, longitudes, and climate types. Stronger negative PTRs ranging from ?0.049 to ?0.075 °C/mm mostly occur in the semi-arid region, where the cold frontal-type precipitation dominates. In contrast, weaker negative PTRs ranging from ?0.004 to ?0.014 °C/mm mainly distribute in Liaoning Province, where rain is mainly orographic rain controlled by the warm and humid air of East Asian summer monsoon. In winter, surface temperature increases owing to the release of latent heat and sensible heat when precipitation occurs. The stronger positive PTRs ranging from 0.963 to 3.786 °C/mm mostly occur at high altitudes and latitudes due to more release of sensible heat. The enhanced atmospheric counter radiation by clouds is the major factor affecting increases of surface temperature in winter and decreases of surface temperature in summer when precipitation occurs.  相似文献   

7.
Abstract

The mid‐to‐bottom waters of the Labrador Shelf are shown to exhibit an anomalous along‐shelf temperature gradient, with warmer waters found in the north. This feature is present in summer and autumn but appears to reverse in December. Inadequate data are available during winter and spring to draw firm conclusions regarding this feature. A time averaged heat loss of the shelf waters to the atmosphere would result on average, in colder waters in the south (because of north‐south advection); however, it is shown that there is a net annual‐mean input of heat to the shelf waters. An examination of the seasonal temperature cycle at standard depths reveals that its phase is almost uniform below 30‐m depth on the northern banks of the Labrador Shelf. The limited phase variation suggests the influence of a plume of well mixed water originating near Hudson Strait. It thus appears that mixing at the entrance to Hudson Strait imparts a phase anomaly to the seasonal cycle in the north that contributes to the observed inversion of the expected latitudinal temperature gradient.  相似文献   

8.
In this paper we present an analysis of the direct impacts of climate change on the hydrology of the upper watersheds (range in elevation from 1,000 to 5,500 m above sea level) of the snowmelt-driven Limarí river basin, located in north-central Chile (30° S, 70° W). A climate-driven hydrology and water resources model was calibrated using meteorological and streamflow observations and later forced by a baseline and two climate change projections (A2, B2) that show an increase in temperature of about 3?C4°C and a reduction in precipitation of 10?C30% with respect to baseline. The results show that annual mean streamflow decreases more than the projected rainfall decrease because a warmer climate also enhances water losses to evapotranspiration. Also in future climate, the seasonal maximum streamflow tends to occur earlier than in current conditions, because of the increase in temperature during spring/summer and the lower snow accumulation in winter.  相似文献   

9.
Abstract

The impacts of climate change on surface air temperature (SAT) and winds in the Gulf of St. Lawrence (GSL) are investigated by performing simulations from 1970 to 2099 with the Canadian Regional Climate Model (CRCM), driven by a five-member ensemble. Three members are from Canadian Global Climate Model (CGCM3) simulations following scenario A1B from the Intergovernmental Panel on Climate Change (IPCC); one member is from the Community Climate System Model, version 3 (CCSM3) simulation, also following the A1B scenario; and one member is from the CCSM4 (version 4) simulation following the Representative Concentration Pathway (RCP8.5) scenario. Compared with North America Regional Reanalysis (NARR) data, it is shown that CRCM can reproduce the observed SAT spatial patterns; for example, both CRCM simulations and NARR data show a warm SAT tongue along the eastern Gulf; CRCM simulations also capture the dominant northwesterly winds in January and the southwesterly winds in July. In terms of future climate scenarios, the spatial patterns of SAT show plausible seasonal variations. In January, the warming is 3°–3.5°C in the northern Gulf and 2.5°–3°C near Cabot Strait during 2040–2069, whereas the warming is more uniform during 2070–2099, with SAT increases of 4°–5°C. In summer, the warming gradually decreases from the western side of the GSL to the eastern side because of the different heat capacities between land and water. Moreover, the January winds increase by 0.2–0.4?m?s?1 during 2040–2069, related to weakening stability in the atmospheric planetary boundary layer. However, during 2070–2099, the winds decrease by 0.2–0.4?m?s?1 over the western Gulf, reflecting the northeastward shift in northwest Atlantic storm tracks. In July, enhanced baroclinicity along the east coast of North America dominates the wind changes, with increases of 0.2–0.4?m?s?1. On average, the variance for the SAT changes is about 10% of the SAT increase, and the variance for projected wind changes is the same magnitude as the projected changes, suggesting uncertainty in the latter.  相似文献   

10.
Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961–1990) and projections for the IPCC A2 high emission scenario for 2071–2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N–15°S band, both in summer and especially in winter, reaching up to 6–8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.  相似文献   

11.
冬春季节北极海冰的年际和年代际变化   总被引:6,自引:0,他引:6  
利用1953~1990年海冰密集度资料,研究了冬、春季节北极海冰的时空变化特征.结果表明:冬,春季节海冰变率大的海区主要有巴伦支海、格陵兰海、巴芬湾、戴维斯海峡以及白令海;在巴芬湾、戴维斯海峡和白令海海区,冬季海冰变率比春季的大;冬、春季节喀拉海、巴伦支海海冰面积均与春季白令海海冰面积呈反向变化关系,与巴芬湾、戴维斯海峡海冰面积也存在相反的变化趋势.分析还表明:北极海冰面积还表现出年代际时间尺度变化,尤其在冬季.春季格陵兰海海冰明显存在12年变化周期,而在冬、春季节,喀拉海、巴伦支海海冰存在l0年变化周期.  相似文献   

12.
The link between the sea-ice cover of the Amundsen Gulf and the overlying atmospheric boundary layer was explored on a weekly timestep from winter to summer 2008. The total sea-ice cover was around 97% (3% leads) from 7 January to 21 April. From 28 April to 12 May, the total sea-ice cover approached 100%. From May 19, the total sea-ice declined rapidly to its July minimum of 3%. During the winter, a turbulent internal boundary layer (IBL), attributed to the upward flux of sensible heat (mean = 46 W m−2), was present in most of the mean daily potential temperature profiles. The mean latent heat flux was 1.7 Wm−2. A turbulent IBL was also present in most of the mean daily profiles for early spring. Surface fluxes were not estimated. During late spring and early summer, a stable IBL, attributed to the downward flux of sensible heat (mean = −19 W m−2), was present in most of the potential temperature profiles. Both downward and upward fluxes of latent heat occurred in this period (means = −3.3 and 1.1 W m−2). The sensible heat flux estimates are consistent with the results of others; however, the latent heat flux estimates may be too small due to condensation/deposition within the IBL. The unconsolidated nature of the pack ice in the Amundsen Gulf, and the low sea-surface temperatures following break-up, were critical factors controlling the presence and type of IBL.  相似文献   

13.
The Yangtze River Delta Economic Belt is one of the most active and developed areas in China and has experienced quick urbanization with fast economic development. The weather research and forecasting model (WRF), with a single-layer urban canopy parameterization scheme, is used to simulate the influence of urbanization on climate at local and regional scales in this area. The months January and July, over a 5-year period (2003–2007), were selected to represent the winter and summer climate. Two simulation scenarios were designed to investigate the impacts of urbanization: (1) no urban areas and (2) urban land cover determined by MODIS satellite observations in 2005. Simulated near-surface temperature, wind speed and specific humidity agree well with the corresponding measurements. By comparing the simulations of the two scenarios, differences in near-surface temperature, wind speed and precipitation were quantified. The conversion of rural land (mostly irrigation cropland) to urban land cover results in significant changes to near-surface temperature, humidity, wind speed and precipitation. The mean near-surface temperature in urbanized areas increases on average by 0.45?±?0.43°C in winter and 1.9?±?0.55°C in summer; the diurnal temperature range in urbanized areas decreases on average by 0.13?±?0.73°C in winter and 0.55?±?0.84°C in summer. Precipitation increases about 15% over urban or leeward areas in summer and changes slightly in winter. The urbanization impact in summer is stronger and covers a larger area than that in winter due to the regional east-Asian monsoon climate characterized by warm, wet summers and cool, dry winters.  相似文献   

14.
Arctic climate change in the Twenty-first century is simulated by the Community Climate System Model version 3.0 (CCSM3). The simulations from three emission scenarios (A2, A1B and B1) are analyzed using eight (A1B and B1) or five (A2) ensemble members. The model simulates a reasonable present-day climate and historical climate trend. The model projects a decline of sea-ice extent in the range of 1.4–3.9% per decade and 4.8–22.2% per decade in winter and summer, respectively, corresponding to the range of forcings that span the scenarios. At the end of the Twenty-first century, the winter and summer Arctic mean surface air temperature increases in a range of 4–14°C (B1 and A2) and 0.7–5°C (B1 and A2) relative to the end of the Twentieth century. The Arctic becomes ice-free during summer at the end of the Twenty-first century in the A2 scenario. Similar to the observations, the Arctic Oscillation (AO) is the dominant factor in explaining the variability of the atmosphere and sea ice in the 1870–1999 historical runs. The AO shifts to the positive phase in response to greenhouse gas forcings in the Twenty-first century. But the simulated trends in both Arctic mean sea-level pressure and the AO index are smaller than what has been observed. The Twenty-first century Arctic warming mainly results from the radiative forcing of greenhouse gases. The 1st empirical orthogonal function (explains 72.2–51.7% of the total variance) of the wintertime surface air temperature during 1870–2099 is characterized by a strong warming trend and a “polar amplification”-type of spatial pattern. The AO, which plays a secondary role, contributes to less than 10% of the total variance in both surface temperature and sea-ice concentration.  相似文献   

15.
Europe has been warming over the past 30?years. In particular all seasonal temperature records have been broken since 2003, which altered socio-economic and environmental systems. Since we expect this trend in both mean and extreme temperatures to continue along the twenty first century under enhanced radiative forcing, it is crucial to understand the underlying mechanisms of such climate variations to help in considering adaptation or mitigation strategies to reduce the impacts of a warmer climate. From a statistical analysis we show that the inter-annual variability of European seasonal temperatures can be reconstructed from North-Atlantic atmospheric circulation only, but not their recent trends and extreme seasons. Adding North-Atlantic sea-surface temperature (SST) as a predictor helps improving the reconstruction, especially in autumn and winter. Sensitivity experiments with the MM5 regional model over 2003?C2007 suggest that the anomalous SST enhance European land temperatures through the upper-air advection of heat and water vapor, interacting with radiative fluxes over the continent. This mechanism is pronounced in autumn and winter, where estimates of SST influence as obtained from MM5 are in agreement with those obtained from statistical regressions. We find a lesser SST influence in spring and summer, where local surface and radiative feedbacks are the main amplifiers of recent extremes.  相似文献   

16.
华北夏季降水与哈得孙湾海冰的相关分析   总被引:3,自引:2,他引:3  
利用195l一2000年全国160站逐月降水资料划分了华北夏季的旱涝年,并分析了该地区夏季降水的气候特征。在分析华北夏季降水与北极各海区海冰同期和滞后相关的基础上,发现哈得孙湾5—8月的海冰与同年华北夏季降水存在很好的负相关。同时发现哈得孙湾关键时段内的海冰与亚洲夏季风指数呈负相关,与8月西太平洋副热带高压的西伸脊点呈明显的正相关,而与8月西太平洋副高的强度呈明显的负相关。此外还发现哈得孙湾海冰多、少年,东亚西风急流有显著差异。结果表明,哈得孙湾关键时段内海冰面积偏大(小),同年亚洲夏季风偏弱(强),8月西太平洋副高的位置偏东(西),强度偏弱(强),东亚西风急流减弱(加强)。  相似文献   

17.
Abstract

Using satellite pictures of Baffin Bay and Davis Strait, ice‐floes were tracked in order to give weekly surface velocities for 1978–1979. The approximate location of the edge of the ice sheet was also determined.

In winter the direction of travel was mainly southward in Davis Strait then, as the summer approached, the edge of the ice sheet retreated northward and floe motion became less clearly defined — even going north on occasion in Baffin Bay.

Near shore speeds along Baffin Island exceeded 50 cm s‐1 in Davis Strait during November and February. Typical values in the winter/spring period were 10–15 cm s‐1 between Davis Strait and Hudson Strait. Wind records at nearby shore stations showed directions to be mainly from the northwest, roughly parallel to the Baffin Island coastline.

The study confirms the usefulness of satellite pictures as a data source for modelling surface ice movement and for selecting navigation routes in these northern waters.  相似文献   

18.
The response of the internal variability of the Atlantic Meridional Overturning Circulation (MOC) to enhanced atmospheric greenhouse gas concentrations has been estimated from an ensemble of climate change scenario runs. In the model, enhanced greenhouse forcing results in a weaker and shallower MOC with reduced internal variability. At the same time at 55°N between 0 and 1,000 m the overturning increases as a result of a change in the area of convection. In a warmer world, new regions of deepwater formation form further north due to the poleward retreat of the sea-ice boundary. The dominant pattern of internal MOC-variability consists of a monopole centered around 35°N. Due to anthropogenic warming this monopole shifts poleward. The shift is associated with a stronger relation between MOC-variations and heat flux variations over the subpolar gyre. In old convective sites (Labrador Sea) convection becomes more irregular which leads to enhanced heat flux variability. In new convective sites heat flux variations initially are related to sea-ice variations. When the sea-ice coverage further decreases they become associated with (irregular) deepwater formation. Both processes act to tighten the relation between subpolar surface heat flux variability and MOC-variability, resulting in a poleward shift of the latter.  相似文献   

19.
This research investigates the effect of climate change on the thermal structure of lakes in response to watershed hydrology. We applied a hydrodynamic water quality model coupled to a hydrological model with a future climate scenario projected by a GCM A2 emission scenario to the Yongdam Reservoir, South Korea. In the climate change scenario, the temperature will increase by 2.1°C and 4.2°C and the precipitation will increase by 178.4?mm and 464.4?mm by the 2050 and 2090, respectively, based on 2010. The pattern changes of precipitation and temperature increase due to climate change modify the hydrology of the watershed. The hydrological model results indicate that they increase both surface runoff itself and temperature. The reservoir model simulation with the hydrological model results showed that increasing air temperature is related to higher surface water temperature. Surface water temperature is expected to increase by about 1.2°C and 2.2°C from the 2050 and 2090, respectively, based on the 2010 results. The simulation results of the effects of climate warming on the thermal structure of the Asian Monsoon Area Lake showed consistent results with those of previous studies in terms of greater temperature increases in the epilimnion than in the hypolimnion, increased thermal stratification, and decreasing thermocline depths during the summer and fall. From this study, it was concluded that the hydrodynamic water quality model coupled to the hydrological model could successfully simulate the variability of the epilimnetic temperature, changed depth and magnitude of the thermocline and the changed duration of summer stratification.  相似文献   

20.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号