首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radium-226 (226Ra) activities were measured in the surface water samples collected from the Arctic Ocean and the Bering Sea during the First Chinese National Arctic Research Expedition. The results showed that 226Ra concentrations in the surface water ranged from 0.28 to 1.56 Bq/m3 with an average of 0.76 Bq/m3 in the Arctic Ocean, and from 0.25 to 1.26 Bq/m3 with an average of 0.71 Bq/m3 in the Bering Sea. The values were obviously lower than those from open oceans in middle and low latitudes, indicating that the study area may be partly influenced by sea ice meltwater. In the Bering Sea, 226Ra in the surface water decreased northward, probably as a result of the exchange between the 226Ra-deficient sea ice meltwater and the 226Ra-rich Pacific water. In the Arctic Ocean, 226Ra in the surface water increased northward and eastward. This spatial distribution of 226Ra reflected the variation of the 226Ra-enriched river component in the water mass of the Arctic Ocean. The vertical profiles of 226Ra in the Canadian Basin showed a concentration maximum at 200 m, which could be attributed to the inputs of the Pacific water or/and the bottom shelf water with high 226Ra concentration. This conclusion was consistent with the results from 2H, 18O tracers.  相似文献   

2.
The Arctic Ocean is almost entirely surrounded by land, with shallow openings to the Pacific through Bering Strait (~ 45 m deep) and to the Atlantic through the Barents Sea (~50—450 m deep) and Fram Strait where the sill depth is around 2500 m. The bathy…  相似文献   

3.
The surface water of the Japan Sea contained226Ra of70 ± 4dpm m−3 which was nearly equal to that of the surface water in the North Pacific. The concentration of226Ra in the Japan Sea deep water below 500 m was151 ± 8dpm m−3, showing a vertically and regionally small variation. This concentration of226Ra in the deep water is unexpectedly high, because the Japan Sea deep water has a higher Δ14 C value by about 50‰ than the Atlantic deep water containing the same226Ra. One of the causes to be considered is larger contribution of226Ra from biogenic particles dissolving in the Japan Sea deep water, but the Japan Sea is not so fertile in comparison to the Bering Sea. The other more plausible cause is the internal ventilation of the Japan Sea water, which means that the residence time of the Japan Sea Proper water is considerably long although the water is vertically mixed fairly well especially in winter. The ventilation may supply some amounts of radiocarbon and oxygen but does not change the inventory of226Ra. The residence times of the Japan Sea deep water and of water within the Japan Sea are calculated by solving simultaneous equations for226Ra and14C with a three-box model to be 300–400 years and 700–1000 years, respectively.  相似文献   

4.
The global warming has obviously been causingthe Arctic sea ice shrinking and thinning during thelast 30 years, which would increase free ice waters andenhance biological productivity. These changes willimpact the source and sink of carbon in the ArcticOcean and subarctic waters as well as a feedback tothe global change[1—3]. The Chukchi Sea is located in the southwest ofthe western Arctic Ocean and the Bering Sea in thenorthwest of the North Pacific Ocean. Both seas are 1997—2001) and…  相似文献   

5.
226Ra profiles have been measured in the western Indian Ocean as part of the 1977–1978 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10°S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. [15]. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.  相似文献   

6.
Water sampling during the 1993 IV Russian–US Joint Expedition to the Bering and Chukchi Seas (BERPAC) indicates that Pacific Ocean burdens of the long-lived radionuclide 129I are relatively low in the Pacific-influenced Arctic, particularly compared to high latitude waters influenced by the North Atlantic. These low concentrations occur despite the presence of potential submerged anthropogenic sources in the East Sea (Sea of Japan), and in the northwest Pacific Ocean, east of the Kamchatka Peninsula. The concentration of 129I entering the Arctic Ocean through Bering Strait, 0.7×108 atoms kg−1, is only slightly higher than observed in deep Pacific waters. Similar concentrations (0.44–0.76×108 atoms kg−1) measured in Long Strait indicate no significant transfer of 129I eastward into the Chukchi Sea in the Siberian Coastal Current from the Siberian marginal seas to the west. However, the concentrations reported here are more than an order of magnitude higher than the Bering Strait input concentration estimated (1.0×106 atoms kg−1) from bomb fallout mass balances, which supports other existing evidence for a significant atmospheric deposition term for this radionuclide in surface ocean waters. Near-bottom water samples collected in productive waters of the Bering and Chukchi Seas also suggest that sediment regeneration may locally elevate 129I concentrations, and impact its utility as a water mass tracer. As part of this study, two deep 129I profiles were also measured in the East Sea in 1993–1994. The near-surface concentration of 129I ranged from 0.12 to 0.31×108 atoms kg−1. The 129I concentration showed a steady decrease with depth, although because of active deep water ventilation, the entire 3000 m water column exceeded natural concentrations of the radionuclide. Atom ratios of 129I/137Cs in the East Sea also suggest an excess of 129I above bomb fallout estimates, also possibly resulting from atmospheric deposition ultimately originating from nuclear facilities.  相似文献   

7.
Characteristics of the pCO2 distribution in surface water of the Bering Abyssal Plain and their relationships with the ambient hydrological conditions were discussed using variations of the partial pressure of CO2 in surface water of the Bering Abyssal Plain and the Chukchi Sea. Data in this study are from a field investigation during the First Chinese National Arctic Research Expedition in 1999. Compared to the high productivity in the Bering Continental Shelf, much lower levels of chlorophyll a were observed in the Bering Abyssal Plain. The effect of hydrological factors on the pCO2 distribution in surface seawater of the Plain in summer has become a major driving force and dominated over biological factors. The Plain also presents a High Nutrient Low Chlorophyll (HNLC). In addition, the pCO2 distribution in the Bering Abyssal Plain has also been found to be influenced from the Bering Slope Current which would transform to the Anadyr Current when it inflows northwestward over the Plain. The Anadyr Current would bring a high nutrient water to the western Arctic Ocean where local nutrients are almost depleted in the surface water during the summer time. Resupplying nutrients would stimulate the growth of phytoplankton and enhance capacity of absorbing atmospheric CO2 in the surface water. Otherwise, in the Bering Sea the dissolved inorganic carbon brought from freshwater are not deposited down to the deep sea water but most of them would be transported into the western Arctic Ocean by the Alaska Coastal Current to form a carbon sink there. Therefore, the two carbon sinks in the western Arctic Ocean, one carried by the Anadyr Current and another by the Alaska Costal Current, will implicate the western Arctic Ocean in global change.  相似文献   

8.
A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea.  相似文献   

9.
Surface and subsurface water samples for 137Cs and 239,240Pu analysis were collected in the East Sea (Sea of Japan) during August 1993. The 137Cs levels of the surface waters are quite homogeneous in the East Sea (average = 3.1±0.2 mBq kg−1). The 239,240Pu levels vary from 6 to 10 μBq kg−1 in the surface. 239,240Pu to 137Cs ratios in the surface water are within 0.002 to 0.003. The East Sea may be regarded as a part of the North Pacific Ocean in terms of 137Cs dispersal in the surface, where the 137Cs contents of the surface seawater seem to be controlled primarily by the atmospheric input. However, since our sampling was made just two months prior to the widely publicized Russian dumping incident on the 17th October 1993, our measurements may provide background data to assess the immediate impact of the Russian dumping on the levels of 137Cs and 239,240Pu in the East Sea.  相似文献   

10.
226Ra data on eleven vertical profiles taken during the GEOSECS program from the Antarctic Ocean and its vicinity in both the Atlantic and the Pacific are presented. Replicate measurements were made on each sample using the Rn-emanation method. The precision (1 σ) based on triplicate analyses averages about ±2.5%. Waters all around the Antarctic continent below 2 km depth appear to exhibit a uniform226Ra concentration of 21.5 ± 1dpm/100kg, except perhaps locally such as the Ross Sea and the Drake Passage where small variations may be present. Higher in the water column, the226Ra contents decrease toward the surface with gradients which vary as a function of the influence exerted by the Antarctic Convergence. Across this oceanic front, a north-to-south increase of226Ra occurs (the increase being the largest near the surface: from 8 to 18 dpm/100 kg), reflecting the combining effect of deep-water upwelling and meridional water mixing. The core layer of the Antarctic Intermediate Water contains about 14 dpm/100 kg of226Ra and that of the Circumpolar Intermediate Water (O2 minimum and local T maximum) about 18 dpm/100 kg. To a first approximation,226Ra covaries with Si in the circumpolar waters.  相似文献   

11.
Sea ice has been reported to contain contaminants from atmospheric and nearshore sediment resuspension processes. In this study successive passive microwave images from the 85.5 GHz channels on the Special Sensor Microwave Imager (SSM/I) were merged with drifting buoy trajectories from the International Arctic Buoy Program to compute Arctic sea ice motion in the Russian Arctic between 1988 and 1994. Smooth daily motion fields were averaged to prepare monthly maps making it possible to compute the 7-year mean and mean seasonal ice motions as well as principal components of directional variability of sea ice motion for the entire Arctic and surrounding basins. These mean motion vectors are used to simulate the advection of contaminants deposited on or contained within the sea ice and subsequently transported into the Arctic Ocean in order to predict both their mean trajectories and dispersal over time. The 3-year displacement of contaminants from a number of Russian sites and one American site display various behaviours from substantial displacement and dispersal to almost no movement. This computational procedure could be applied to realtime SSM/I and ice buoy data to provide detailed, all-weather, vector motion maps of ice circulation to predict the path and dispersal of any new substance introduced to the sea ice and transported into the Arctic or Antarctic ocean surface.  相似文献   

12.
The physical and biological environment of the Barents Sea is characterised by large variability on a wide range of scales. Results from a numerical ocean model, SINMOD, are presented showing that the physical variability is partly forced by changes in annual net ice import. The mean contribution from ice import in the simulation period (1979–2007) is about 40% of the total amount of ice melted each year. The annual ice import into the Barents Sea varies between 143 and 1,236 km3, and this causes a substantial variability in the amount of annual ice melt in the Barents Sea. This in turn impacts the freshwater content. The simulated freshwater contribution from ice is 0.02 Sv on average and 0.04 Sv at maximum. When mixed into a mean net Atlantic Water (AW) inflow of 1.1 Sv with a salinity of 35.1, this freshwater addition decreases the salinity of the modified AW to 34.4 and 33.9 for the mean and maximum freshwater fluxes, respectively. Ice import may thus be important for the Barents Sea production of Arctic Ocean halocline water which has salinity of about 34.5. The changes in the ice melt the following summer due to ice import also affect the formation of dense water in the Barents Sea by changing stratification, altering the vertical mixing rates and affecting heat loss from the warm AW. The model results thus indicate that ice import from the Arctic has a great impact on water mass modification in the Barents Sea which in turn impacts the ventilation of the Arctic Ocean.  相似文献   

13.
Recent radium measurements from the near-surface Caribbean Sea are presented. The surface horizontal and vertical distributions of226Ra are essentially the same as reported by Szabo et al. (1967) for the early 1960's. The226Ra activity at the surface is relatively uniform across the Caribbean, with an average of8.2±0.4dpm/100kg. The subsurface distribution to ~200 m averages7.8±0.4dpm/100kg and increases slowly below 200 m. reaching ~9.5 dpm/100 kg at 560 m. In contrast to226Ra, the surface concentration of228Ra was much more variable in both time and space. An average increase of 33% was found between 1968 and 1976 in the western Caribbean and during both years an anomalously high228Ra activity was found in the eastern Caribbean. These data support previous hypotheses that water entering the eastern Caribbean has been enriched in228Ra prior to entry and that variable mixing of the Atlantic water masses found to the northeast and southeast of the Lesser Antilles may produce temporal variations in the near-surface228Ra activity. Scatter plots of228Ra vs. salinity and sigma-t indicate that the near-surface vertical distribution of228Ra in the Caribbean Sea is predominantly influenced by advection. Thus228Ra cannot be used to study near-surface vertical mixing rates in this region.  相似文献   

14.
Sea ice, as an important component of the Arctic climate system, has drawn significant sci-entific interest. Sea ice thickness and its morphology have dramatic impacts on ocean-atmos- phere-ice interactions[1—4], which directly affect the exchange proces…  相似文献   

15.
The Loop Current mediating the oceanic heat and salt flux from the Caribbean Sea into the Atlantic Ocean and its interference with the Mississippi River discharge are critical for both the regional climate in the Gulf of Mexico area and the water vapor transport towards high northern latitudes. We present a 400-kyr record of sea surface temperature and local surface salinity from the northeastern Gulf of Mexico (IMAGES core MD02-2575) approximated from combined planktonic foraminiferal δ18O and Mg/Ca, which reflects the temporal dynamics of the Loop Current and its relationship to both varying Mississippi discharge and evolution of the Western Hemisphere Warm pool. The reconstructed sea surface temperature and salinity reveal glacial/interglacial amplitudes that are significantly larger than in the Western Hemisphere Warm pool. Sea surface freshening is observed during the extreme cool periods of Marine Isotope Stages 2, 8, and 10, caused by the strengthened Mississippi discharge which spread widely across the Gulf favored by the less established Loop Current. Interglacial and interstadial sea-surface conditions, instead, point to a strengthened, northward flowing Loop Current in line with the northward position of the Intertropical Convergence Zone, allowing northeastern Gulf of Mexico surface hydrographic conditions to approach those of the Caribbean. At these times, the Mississippi discharge was low and deflected westward, promoted by the extended Loop Current. Previously described deglacial megadischarge events further to the west did not affect the northeastern Gulf of Mexico hydrography, implying that meltwater routing from the Laurentide Ice Sheet via the Mississippi River is unlikely to have affected Atlantic Meridional Overturning Circulation.  相似文献   

16.
GCM-based forecast simulations predict continuously increasing seasonality of the sea ice cover and an almost ice-free, summer-time, Arctic Ocean within several decades from the present. In this study we use a primitive equation ocean model: NEMO, coupled with the sea ice model LIM2, to test the hypothesis that under such an increased range in seasonal ice cover the intensity of shelf-basin water exchange will significantly increase. We use the simulated results for the Laptev Sea from a global model run 1958–2007 and compare results for two years with anomalously high and low summer sea ice extents: 1986–1987 and 2006–2007. The shelf–basin fluxes of volume, heat and salt during specific seasons are evaluated and attributed to plausible driving processes, with particular attention to dense water cascading. Analyses of the model temperature distribution at the depth of the intermediate maximum, associated with Atlantic Water, have shown a marked increase of the amount of the local origin cold water in late winter 2007 in the region, where dense water typically appears as a result of its formation on the shelf and subsequent downslope leakage. Calculation of the shelf-basin exchange during March-May in both years confirmed a substantial increase (a factor of two) of fluxes in “ice-free” 2007 compared to the “icy” 1987. According to several past model studies, dense water production on Arctic shelves in winter driven by ice freezing and brine rejection is not likely to cease in a warmer climate, but rather to increase. There is also observational evidence that cascading in the seasonally ice covered seas (e.g. the Barents Sea) is much more efficient than it is in the permanently ice covered Arctic Ocean, which supports these model results.  相似文献   

17.
北极海冰的急剧消融在近年来欧亚大陆频发的低温事件中扮演着关键角色.秋季北极海冰的偏少对应着冬季欧亚大陆的低温天气,然而二者的联系在年代际和年际两种时间尺度上存在显著区别.本文运用1979—2012年哈德莱中心第一套海冰覆盖率(HadISST1)、欧洲中心(ERA_Interim)的2m温度、风场、海平面气压场、高度场等资料,分别研究了年代际和年际时间尺度上前期秋季北极海冰与欧亚冬季气温的联系.结果表明,欧亚和北极地区(0°—160°E,15°N—90°N)的冬季气温具有显著的年代际和年际变化.在年代际尺度上,温度异常分布在21世纪初由北极冷-大陆暖转为北极暖-大陆冷.这一年代际转折与前期秋季整个北极地区的海冰年代际减少联系密切.秋季北极全区海冰年代际偏少对应冬季欧亚大陆中高纬地区的高压异常,有利于北大西洋的暖湿气流北上和北极的冷空气南侵,造成北极暖-大陆冷的温度分布;在年际时间尺度上,温度异常分布主要由第一模态的年际变化部分和第二模态组成,且第一模态包含的年际变率信号也存在显著的年代际变化.年际尺度上全区北极海冰对欧亚冬季气温的影响远不及位于北冰洋西南边缘的巴伦支海、喀拉海和拉普捷夫海西部(30°E—120°E,75°N—85°N)的关键区海冰影响显著.关键区内海冰的偏少会引发冬季的北大西洋涛动负位相,导致北大西洋吹往欧亚大陆的暖湿气流减弱和欧亚大陆中高纬地区的气温偏低.  相似文献   

18.
Measurements have been made of226Ra and both dissolved and particulate forms of210Pb and210Po in a vertical profile at 85°50′N, 108°50′W in the Arctic Ocean.In the upper water column226Ra shows a concentration maximum that is coincident with one in the nutrients, silicate, phosphate, and nitrate, while at the same depth, dissolved and particulate210Pb and210Po all show minimum concentrations. It is suggested that the concentration maxima are partly due to sources of the respective elements in the continental shelf sediments, the shelf waters being subsequently advected into the Arctic Ocean basins. The210Pb and210Po minima have similarly been explained by interaction between the shelf sediments and overlying waters. An estimate is made of the possible contributions of shelf sediments to the layer of silica-rich water which covers the Canada Basin at a depth of 100–150 m.Residence times have been calculated for dissolved210Pb and210Po at various depths in the water column. Surface water residence times of dissolved and particulate forms of these radionuclides are longer than in surface Atlantic waters, probably due to lower biological activity in the surface waters of the Canada Basin. An estimatee has been made of the average sinking velocity of particulate material.  相似文献   

19.
Disequilibrium between210Po and210Pb and between210Pb and226Ra has been mapped in the eastern and central Indian Ocean based on stations from Legs 3 and 4 of the GEOSECS Indian Ocean expedition.210Po/210Pb activity ratios are less than 1.0 in the surface mixed layer and indicate a residence time for Po of 0.6 years.210Po and210Pb are generally in radioactive equilibrium elsewhere in the water column except at depths of 100–500 m, where Po may be returned to solution after removal from the surface water, and in samples taken near the bottom at a few stations.210Pb excesses relative to226Ra are observed in the surface water but these excesses are not as pronounced as in the North Pacific and North Atlantic. The difference is attributable to a lower flux of210Pb from the atmosphere to the Indian Ocean. Below the main thermocline,210Pb activities increase with depth to a broad maximum before decreasing to lower values near the bottom. Departures from this pattern are especially evident at stations taken in the Bay of Bengal (where210Pb/226Ra activity ratios as low as 0.16 are observed) and near the Mid-Indian Ridge. The data suggest that removal of210Pb at oceanic boundaries, coupled with eddy diffusion along isopycnals, can explain gradients in210Pb near the boundary. Application of a simple model including isopycnal diffusion, chemical removal, production and radioactive decay produces fits the observed210Pb/226Ra gradients for eddy diffusion coeffients of ~ 107 cm2/s. High productivity in surface waters of the Bay of Bengal makes this region a sink for reactive nuclides in the northern Indian Ocean.  相似文献   

20.
East China Sea (ECS) is bounded by the continent where the fourth largest river of Changjiang discharges large amounts of freshwater to the west and by the Kuroshio in the East and connected to the South China Sea via Taiwan Strait, therefore water characteristics are very complex and undergo great seasonal changes. The dominant source waters in the ECS are found to be Kuroshio Surface Water (KSW), Kuroshio Sub-surface Water (KSSW), Changjiang Diluted Water (CDW), and Taiwan Strait Warm Water (TSWW). Optimum multiparameter analysis (OMP) using temperature, salinity and 226Ra were applied to quantify the contribution of individual source water to the surface water of the ECS in summer. The successful application of radium isotope in OMP analysis demonstrates the usefulness of 226Ra in the discrimination of mixing among multiple water sources. In 1987, one interesting phenomenon was that the KSSW entered the surface with the upwelling at the margin of continental shelf, and affected the coastal water obviously. In 1999, the TSWW extended northward continuously up to the Changjiang Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号