首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Arctic sea ice plays an important role in Earth's climate and environmental system. Sea ice thickness is one of the most important sea ice parameters. Accurately obtaining the sea ice thickness and its changes has great significance to Arctic and global change research. Satellite altimeters can be used to derive long-term and large-scale changes in sea ice thickness. The leads detection is vital in sea ice thickness estimation by using satellite altimetry. Different leads detection methods are compared with remote sensing images, and results show that the detection method that uses waveform parameters can obtain improved results. The model for the conversion of freeboard to thickness is optimized by considering the incomplete penetration of snow for radar altimeters. We derive the estimates of the Arctic sea ice thickness for November 2010 to December 2019 by using the CryoSat-2 altimetry data. The sea ice thickness from the IceBridge and draft data from the upward-looking sonar are used to validate our thickness results. Validations show that the accuracy of our thickness estimates is within 0.2 m. Variations in the Arctic sea ice thickness are analyzed using the PIOMAS model and air and sea surface temperatures. A sharp increase in sea ice thickness is found in 2014.  相似文献   

2.
水库冰气泡含量和密度对探地雷达测厚的影响分析(英文)   总被引:2,自引:0,他引:2  
在水库现场试验了RIS K2型探地雷达探测水库冰厚度的能力,试验时所用天线频率为600MHz;同步钻孔测量雷达探测处的冰厚度;以及在一个点上取样测试分析冰晶体、冰内气泡和冰密度。试验时冰面积雪厚度0.03-0.05m,冰层上部有0.24m粒状冰,其下均为柱状冰;冰内气泡含量呈表层高底层低分布;冰密度随气泡含量变化;冰厚度在平面内不均一。通过探测厚度和实测厚度的对比分析以及气泡含量对介电系数影响的理论分析,建立了积雪、粒状冰和柱状冰三层介质模型,获取雷达波在冰内的理论传递时间。结果发现:能够利用等效介电常数或等效传播速度评价雷达波传递时间,结冰期冰层1/3深度处的对应介电常数或传递速度可以作为等效值;另外因冰内大气泡造成的理论传递时间大于雷达探测时间,其差值随理论传递时间或冰厚的增加呈非线性增加。  相似文献   

3.
A new seasonal and annual dataset describing Arctic sea ice extents for 1901–2015 was constructed by individually re-calibrating sea ice data sources from the three Arctic regions (North American, Nordic and Siberian) using the corresponding surface air temperature trends for the pre-satellite era (1901–1978), so that the strong relationship between seasonal sea ice extent and surface air temperature observed for the satellite era (1979-present) also applies to the pre-satellite era. According to this new dataset, the recent period of Arctic sea ice retreat since the 1970s followed a period of sea ice growth after the mid-1940s, which in turn followed a period of sea ice retreat after the 1910s. Arctic sea ice is a key component of the Arctic hydrological cycle, through both its freshwater storage role and its influence on oceanic and atmospheric circulation. Therefore, these new insights have significance for our understanding of Arctic hydrology.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

4.
北极海冰的急剧消融在近年来欧亚大陆频发的低温事件中扮演着关键角色.秋季北极海冰的偏少对应着冬季欧亚大陆的低温天气,然而二者的联系在年代际和年际两种时间尺度上存在显著区别.本文运用1979—2012年哈德莱中心第一套海冰覆盖率(HadISST1)、欧洲中心(ERA_Interim)的2m温度、风场、海平面气压场、高度场等资料,分别研究了年代际和年际时间尺度上前期秋季北极海冰与欧亚冬季气温的联系.结果表明,欧亚和北极地区(0°—160°E,15°N—90°N)的冬季气温具有显著的年代际和年际变化.在年代际尺度上,温度异常分布在21世纪初由北极冷-大陆暖转为北极暖-大陆冷.这一年代际转折与前期秋季整个北极地区的海冰年代际减少联系密切.秋季北极全区海冰年代际偏少对应冬季欧亚大陆中高纬地区的高压异常,有利于北大西洋的暖湿气流北上和北极的冷空气南侵,造成北极暖-大陆冷的温度分布;在年际时间尺度上,温度异常分布主要由第一模态的年际变化部分和第二模态组成,且第一模态包含的年际变率信号也存在显著的年代际变化.年际尺度上全区北极海冰对欧亚冬季气温的影响远不及位于北冰洋西南边缘的巴伦支海、喀拉海和拉普捷夫海西部(30°E—120°E,75°N—85°N)的关键区海冰影响显著.关键区内海冰的偏少会引发冬季的北大西洋涛动负位相,导致北大西洋吹往欧亚大陆的暖湿气流减弱和欧亚大陆中高纬地区的气温偏低.  相似文献   

5.
为研究近期21年(1989—2009年)北极地区海冰变化原因,本文利用欧洲中期天气预报中心ERA-Interim数据集资料和美国麻省理工学院MITgcm全球海冰-海洋耦合模式开展了不同大气强迫条件下海冰变化的数值模拟研究.研究工作中共设计了6个数值试验,除1个试验全部采用1989—2009年每日4个时次的大气强迫场外,其余5个试验各有一种大气强迫(地表气温、地表大气比湿、向下短波辐射通量、向下长波辐射通量和地表风)采用1989年月平均结果.分析了各模拟试验结果中3月和9月北极地区海冰面积的年际变化特征及最小二乘拟合意义下的线性变化趋势,并以ERA-Interim结果为参照标准对各模拟试验结果进行了对比和检验,以说明不同大气强迫量变率对海冰变化的作用.结果表明:地表气温变率和向下长波辐射通量变率是造成海冰面积减少的主要原因;向下短波辐射通量变率对海冰面积变化影响几乎可以忽略;地表大气比湿变率对海冰面积线性变化趋势影响较小,但对海冰面积年际变化特征有调制作用;地表风变率对海冰季节变化、海冰面积线性变化趋势及年际变化特征均有明显影响,说明提高大气风应力精度是改善海冰数值模拟结果的重要手段.  相似文献   

6.
This paper synthesizes 10‐years' worth of interannual time‐series space‐borne ERS‐1 and RADARSAT‐1 synthetic aperture radar (SAR) data collected coincident with daily measurement of snow‐covered, land‐fast first‐year sea ice (FYI) geophysical and surface radiation data collected from the Seasonal Sea Ice Monitoring and Modeling Site, Collaborative‐Interdisciplinary Cryospheric Experiment and 1998 North Water Polynya study over the period 1992 to 2002. The objectives are to investigate the seasonal co‐relationship of the SAR time‐series dataset with selected surface mass (bulk snow thickness) and climate state variables (surface temperature and albedo) measured in situ for the purpose of measuring the interannual variability of sea ice spring melt transitions and validating a time‐series SAR methodology for sea ice surface mass and climate state parameter estimation. We begin with a review of the salient processes required for our interpretation of time‐series microwave backscatter from land‐fast FYI. Our results suggest that time‐series SAR data can reliably measure the timing and duration of surface albedo transitions at daily to weekly time‐scales and at a spatial scales that are on the order of hundreds of metres. Snow thickness on FYI immediately prior to melt onset explains a statistically significant portion of the variability in timing of SAR‐detected melt onset to pond onset for SAR time‐series that are made up of more than 25 images. Our results also show that the funicular regime of snowmelt, resolved in time‐series SAR data at a temporal resolution of approximately 2·5 images per week, is not detectable for snow covers less than 25 cm in thickness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Observed reduction in recent sea ice areal extent and thickness has focused attention on the fact that the Arctic marine system appears to be responding to global‐scale climate variability and change. Passive microwave remote‐sensing data are the primary source underpinning these reports, yet problems remain in geophysical inversion of information on ice type and concentration. Uncertainty in sea‐ice concentration (SIC) retrievals is highest in the summer and fall, when water occurs in liquid phase within the snow–sea‐ice system. Of particular scientific interest is the timing and rate of new ice formation due to the control that this form of sea ice has on mass, energy and gas fluxes across the ocean–sea‐ice–atmosphere interface. In this paper we examine the critical fall freeze‐up period using in situ data from a ship‐based and aerial survey programme known as the Canadian Arctic Shelf Exchange study combined with microwave and optical Earth observations data. Results show that: (1) the overall physical conditions observed from aerial survey photography were well matched with coincident moderate‐resolution imaging spectroradiometer data and Radarsat ScanSAR imagery; (2) the shortwave albedo was linearly related to old ice concentration derived from survey photography; (3) the three SSM/I SIC algorithms (NASA Team (NT), NASA Team 2 (NT2), and Bootstrap (BT)) showed considerable discrepancies in pixel‐scale comparison with the Radarsat ScanSAR SICs well calibrated by the aerial survey data. The major causes of the discrepancies are attributed to (1) the inherent inability to detect the new thin ice in the NT and BT algorithms, (2) mismatches of the thin‐ice tie point of the NT2 algorithm, and (3) sub‐pixel ambiguity between the thin ice and the mixture of open water and sea ice. These results suggest the need for finer resolution of passive microwave sensors, such as AMSR‐E, to improve the precision of the SSM/I SIC algorithms in the marginal ice zone during early fall freeze‐up. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
As an important component of the cryosphere, sea ice is very sensitive to climate change. The study of sea ice physics needs accurate sea ice thickness. This paper presents an electromagnetic induction (EM) technique which can be used to measure the sea ice thickness distribution efficiently and its successful application in the Antarctic Neila Fjord. Based on the electrical properties of sea ice and seawater and the application of electromagnetic field theory, this technique can accurately detect the distance between the EM instrument and the ice/water interface to measure the sea ice thickness. Analyzing the apparent conductivity data obtained by the electromagnetic induction technique and drill-hole measurements at same location allows the construction of a transform equation for the apparent conductivity and sea ice thickness. The verification of the calculated sea ice thickness using this equation indicates that the electromagnetic induction technique is able to determine reliable sea ice thickness with an average relative error of only 5.5%. The ice thickness profiles show the sea ice distribution in Neila Fjord is basically level with a thickness of 0.8 - 1.4 m.  相似文献   

10.
The entrainment of bottom deposits (silt and clay) into newly formed ice was investigated in the Amderma/Vaygach flaw lead in the southwestern Kara Sea, Siberian Arctic. Fine-grained bottom deposits and sea ice sediments (SIS) were analyzed by granulometry, scanning electron microscopy and X-ray diffractometry. On average, SIS contain by a factor of four times more silt than the shelf deposits (66.7% vs. 16.3%), and the SIS clay percentage is more than three-fold of the bottom value (31.2% vs. 9.1%). Sand-sized particles are significantly less abundant in SIS compared to bottom sediment (2.1% vs. 74.6%). The preferred entrainment of silt into ice is underpinned by the enhanced silt-to-clay-ratio in SIS compared to bottom deposits. Though silt is preferably entrained into SIS, no evidence was found for preferential ice-entrainment of any silt sub-fraction (coarse, medium or fine). However, sub-angular- and angular-discoidal silt particles are favorably entrained into local sea ice. Clay mineral assemblages in SIS and shelf surface sediments match very well revealing that no individual clay mineral is preferably enriched in SIS or reduced at the bottom. The general textural, compositional and statistical match of fine-grained shelf surface deposits and SIS proves that bottom sediment is the principle source for ice-entrained material in the study area. We propose e.g. wave action and thermohaline convection to take sediment particles upward from the bottom nepheloid layer into the well-mixed 10–40 m deep water column of the Amderma/Vaygach flaw lead, and the turbulent process of suspension freezing to bring sediment particles and frazil crystals into contact, finally leading to the formation of sediment-laden ice. The role of SIS entrainment and export for local/regional shelf erosion and coastal retreat is of minor importance in the SW Kara Sea compared to other circum-Arctic shelf seas. However, the characteristic clay mineral assemblage of local SIS and bottom deposits can help identify the origin of SIS both on regional and Arctic-wide scales.  相似文献   

11.
Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion   总被引:1,自引:0,他引:1  
Arctic sea ice, an important component of the cli- mate system, has received significant attention re- cently. Arctic sea ice variation is an important indica- tor of changes in the climate system, such as global change and polar amplification, and observation and climate modeling suggests that sea ice can itself be an agent of climate change[1―4]. Previous studies[3,5] have shown that sea ice influences the surface and atmos- pheric boundary layer temperature. Potentially more important is t…  相似文献   

12.
Sea ice has been reported to contain contaminants from atmospheric and nearshore sediment resuspension processes. In this study successive passive microwave images from the 85.5 GHz channels on the Special Sensor Microwave Imager (SSM/I) were merged with drifting buoy trajectories from the International Arctic Buoy Program to compute Arctic sea ice motion in the Russian Arctic between 1988 and 1994. Smooth daily motion fields were averaged to prepare monthly maps making it possible to compute the 7-year mean and mean seasonal ice motions as well as principal components of directional variability of sea ice motion for the entire Arctic and surrounding basins. These mean motion vectors are used to simulate the advection of contaminants deposited on or contained within the sea ice and subsequently transported into the Arctic Ocean in order to predict both their mean trajectories and dispersal over time. The 3-year displacement of contaminants from a number of Russian sites and one American site display various behaviours from substantial displacement and dispersal to almost no movement. This computational procedure could be applied to realtime SSM/I and ice buoy data to provide detailed, all-weather, vector motion maps of ice circulation to predict the path and dispersal of any new substance introduced to the sea ice and transported into the Arctic or Antarctic ocean surface.  相似文献   

13.
The Arctic Ocean, the northernmost parts of the earth, covers the total surface area of 14.79 million square kilometers and amounts to only about 4% of global ocean surface area. Although its surface area is the smallest in the four major oceans, the Arct…  相似文献   

14.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

15.
We present the results of two ground-based radio-echo-sounding (RES) and GPS surveys performed in the vicinity of new Chinese Taishan station, Princess Elizabeth Land, East Antarctica, obtained in two austral summers during CHINARE 21 (2004/2005) and CHINARE 29 (2012/2013). The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems, and GPS measurements showed smooth surface slopes around the station with altitudes of 2607–2636 m above sea level (a.s.l.). Radar profiles indicate an average ice thickness of 1900 m, with a maximum of 1949 m and a minimum of 1856 m, within a square area measuring approximately 2 km × 2 km in the vicinity of the station. The ice thickness beneath the station site is 1870 m. The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l., revealing part of a mountainous topography. The ice volume in the grid is estimated to be 7.6 km3. Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site, some disturbed internal layers are identified and traced; the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.  相似文献   

16.
The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.  相似文献   

17.
A predictability study on wave forecast of the Arctic Ocean is necessary to help identify hazardous areas and ensure sustainable shipping along the trans-Arctic routes. To assist with validation of the Arctic Ocean wave model, two drifting wave buoys were deployed off Point Barrow, Alaska for two months in September 2016. Both buoys measured significant wave heights exceeding 4 m during two different storm events on 19 September and 22 October. The NOAA-WAVEWATCH III? model with 16-km resolution was forced using wind and sea ice reanalysis data and obtained general agreement with the observation. The September storm was reproduced well; however, model accuracy deteriorated in October with a negative wave height bias of around 1 m during the October storm. Utilising reanalysis data, including the most up-to-date ERA5, this study investigated the cause: grid resolution, wind and ice forcing, and in situ sea level pressure observations assimilated for reanalysis. The analysis has found that there is a 20% reduction of in situ SLP observations in the area of interest, presumably due to fewer ships and deployment options during the sea ice advance period. The 63-member atmospheric ensemble reanalysis, ALERA2, has shown that this led to a larger ensemble spread in the October monthly mean wind field compared to September. Since atmospheric physics is complex during sea ice advance, it is speculated that the elevated uncertainty of synoptic-scale wind caused the negative wave model bias. This has implications for wave hindcasts and forecasts in the Arctic Ocean.  相似文献   

18.
The geophysical, thermodynamic and dielectric properties of snow are important state variables that are known to be sensitive to Arctic climate variability and change. Given recent observations of changes in the Arctic physical system (Arctic Climate Impact Assessment, 2004), it is important to focus on the processes that give rise to variability in the horizontal, vertical and temporal dimensions of the life‐history of snow on sea ice. The objectives in this study are to present these ‘state’ variables and to investigate the processes that govern variability in the vertical, horizontal and temporal dimension by using a case study over land‐fast first‐year sea ice for the period December 2003 to June 2004. Results from two sampling areas (thin and thick snowpacks) show that differences in snowpack thickness can substantially change the vertical and temporal evolution of snow properties. During the late fall and early winter (cooling period) we measured no significant changes in the physical properties, except for thin snow‐cover salinity, which decreased throughout the period. Fall‐snow desalination was only observed under thin snowpacks with a rate of ?0·12 ppt day?1. Significant changes occurred in the late winter and early spring (warming period), especially for snow grain size. Snow grain kinetic growth of 0·25–0·48 mm·day?1 was measured coincidently with increasing salinity and wetness for both thin and thick snowpacks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The temporal and spatial distributions of Antarctic sea ice play important roles in both the generation mechanisms and the signal characteristics of microseisms. This link paves the way for seismological investigations of Antarctic sea ice. Here we present an overview of the current state of seismological research about microseisms on Antarctic sea ice. We first briefly review satellite remote-sensing observations of Antarctic sea ice over the past 50 years. We then systematically expound upon the generation mechanisms and source distribution of microseisms in relation to seismic noise investigations of sea ice, and the characteristics of Antarctic microseisms and relationship with sea ice variations are further analyzed. We also analyze the continuous data recorded at seismic station BEAR in West Antarctica from 2011 to 2018 and compare the microseism observations with the corresponding satellite remote-sensing observations of Antarctic sea ice. Our results show that:(1) the microseisms from the coastal regions of West Antarctica exhibit clear seasonal variations, SFM with maximum intensities every April-May and minimum intensities around every October-November; while DFM intensities peak every February-March, and reach the minimum around every October. Comparatively, the strong seasonal periodicity of Antarctic sea ice in better agreement with the observed DFM; and (2) microseism decay is not synchronous with sea ice expansion since the microseism intensity is also linked to the source location, source intensity (e.g., ocean storms, ocean wave field), and other factors. Finally, we discuss the effect of Southern Annular Mode on Antarctic sea ice and microseisms, as well as the current limitations and potential of employing seismological investigations to elucidate Antarctic sea ice variations and climate change.  相似文献   

20.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号