首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of the contaminated subsoil and groundwater were successfully delineated in terms of low resistivity leachate plumes of <10 Ωm. Leachate migration towards the reach of Kelang River could be clearly identified from the resistivity results and elevated concentrations of Fe in the river downslope toe of the site. Concentration of Fe, Mn, Ca, Na, K, Mg, Cu, Cr, Co, Ni, Zn, and Pb was measured for the subsoil samples collected at the downslope (BKD), upslope (BKU), and the soil-waste interface (BKI), of the landfill. The concentration levels obtained for most of the analyzed heavy metals significantly exceed the normal range in typical municipal solid waste landfill sites. The measured heavy metal contamination load in the subsoil is in the following order Fe ? Mn > Zn > Pb > Cr > Cu. Taking into consideration poor physical and chemical characteristics of the local soil, these metals first seem to be attenuated naturally at near surface then remobilize unavoidably due to the soil acidic environment (pH 4.2-6.18) which in turn, may allow an easy washing of these metals in contact with the shallow groundwater table during the periodic fluctuation of the Kelang River. These heavy metals are believed to have originated from hazardous industrial waste that might have been illegally dumped at the site.  相似文献   

2.
The alluvial aquifer is the primary source of groundwater along the eastern Dead Sea shoreline, Jordan. Over the last 20 years, salinity has risen in some existing wells and several new wells have encountered brackish water in areas thought to contain fresh water. A good linear correlation exists between the water resistivity and the chloride concentration of groundwater and shows that the salinity is the most important factor controlling resistivity. Two-dimensional electrical tomography (ET) integrated with geoelectrical soundings were employed to delineate different water-bearing formations and the configuration of the interface between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 410 m b.s.l. Resistivity measurements show a dominant trend of decreasing resistivity (thus increasing salinity) with depth and westward towards the Dead Sea. Accordingly, three zones with different resistivity values were detected, corresponding to three different water-bearing formations: (1) strata saturated with fresh to slightly brackish groundwater; (2) a transition zone of brine mixed with fresh to brackish groundwater; (3) a water-bearing formation containing Dead Sea brine. In addition, a low resistivity unit containing brine was detected above the 1955 Dead Sea base level, which was interpreted as having remained unflushed by infiltrating rain.  相似文献   

3.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

4.
Hydrogeophysical investigations of the Pleistocene aquifer at the Kom Hamada area, Egypt, have been conducted to determine the characteristics of groundwater. The main water-bearing formations in the study area are composed of Quaternary deposits. Water samples were taken and chemically analyzed at 29 sites. The constructed iso-salinity contour map of the study area showed an increase in salinity from 451.75 mg/l at eastern parts to 1,091.85 mg/l at western parts. The groundwater of the study area showed a hydrochemical evolution from Ca–HCO3 at the eastern side to Na–Cl at the western side. Some of groundwater constituents have high concentration values exceeding the safe limit for drinking. Eighteen vertical electrical soundings (VES) were conducted in the study area. These soundings were conducted near existing wells to obtain layer parameters of the various penetrated layers and to calculate the petrophysical characteristics of the aquifers. The resistivity of the first water-bearing layer ranges between 34 and 47 Ω m. The thickness of this layer ranges between 26 and 79 m. This layer represents the first aquifer, where it is followed by another water-bearing layer with resistivity ranges between 29 and 62 Ω m and extends downward. The two aquifers are hydraulically connected. Variation of the resistivities of these two water-bearing layers is mainly due to the lithological variation. The resistivity values along with the TDS values of the two water-bearing layers indicate fresh to brackish water types.  相似文献   

5.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

6.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

7.
The combined effects of low rainfall, groundwater withdrawal in excess of 300 GL/year and reduced recharge in areas covered by pine plantations has caused the water table in a sandy unconfined aquifer on the Gnangara Mound in Western Australia to drop by up to 5 m and aquifer storage to decline by about 500 GL over the last 20 years. Groundwater has become acidic in areas of high drawdown, with pH values typically being less than 5.0 at the water table, and elevated concentrations of SO4 2?, Al, Fe, Zn, Cu, Ni and Pb. Trends of increasing acidity and base cation concentrations in deep water supply wells in the Mirrabooka wellfield indicate that about 0.7 keq/ha/year of base cations are being leached from soil within cones of depression of pumping wells. These results indicate that the assessment of the sustainable yields of aquifers under conditions of low rainfall needs to consider geochemical interactions between groundwater, aquifer sediments, soils and vegetation, and not be just based on aquifer hydraulics and water-balance changes.  相似文献   

8.
El Alamein-El-Dabaa area lies in the western Mediterranean coastal zone of Egypt with about 50 km long. The aims of the present study are the shallow groundwater aquifer determination and calculate the electric parameters of the overburden to achieve the easiest way for detecting groundwater contamination and considered it during the planning of new development project(s). To attain this target, 44 vertical resistivity soundings using Schlumberger array of the maximum AB/2?=?1000 m in the form of four profiles were carried out. From the interpretation results, six geoelectrical layers have been established in the area, and iso-resistivity, depth to water, and isopach contour maps are presented. Four geoelectrical cross-sections (two geoelectrical cross-sections are parallel to the Mediterranean shoreline and the other two are normal to the Mediterranean shoreline) have been constructed. According to this work, the upper part of the Oolitic Limestone represents the shallow groundwater aquifer in this area and can be distinguished into two zones. The upper zone is brackish, whereas the lower one is saline. The geoelectrical succession reveals that the aquifer is free type. The depth to water ranges between 20 and 63 m; therefore, it is the choice as the best sites for groundwater exploitation. In the area under study, the depth to water and the thickness of the brackish increase towards the south side as well as the depth to the brackish water. The Dar-Zarrouk parameters clarified that there are some parts that may contaminate pathways and other parts are not.  相似文献   

9.
The semiarid Punata alluvial fan is located in the central part of Bolivia. The main activity of this region is the extensive agriculture, and groundwater is the main water supply. Local villagers who use groundwater reported that in some places groundwater has a salty taste. In order to investigate the origin of this problem, several TEM soundings were performed in the study area, and they were complemented with ERT surveys. The results show top layers with resistivity values ranging from 30 to 200 Ωm and a bottom layer with resistivity values ranging from 1 to 20 Ωm, which might be interpreted as the main aquifer and a layer with high clay content, respectively. Between the top and bottom layer, a transition zone with saline water has been identified, with resistivity values ranging from 0.1 to 1 Ωm. The origin of this closed-basin brine might be a product of the evaporation of paleolakes during the lower Pliocene, where saline clays were deposited. This study demonstrated the effectiveness of TEM sounding for mapping very low resistivity zones such as saline water.  相似文献   

10.
Water resources in the Algerian South are rare and difficult to reach because they are often too deep. This is the case of Guerrara which is characterized by an annual precipitation average of less than 60 mm. The water supply is warranted from groundwater, frequently too deep and badly known. The main purpose of the present study is to determine the geometry of aquifer from geophysical data. Fourteen vertical electrical soundings covering the total surface area were carried out by using an arrangement of electrodes called “Schlumberger array.” The length of the selected transmission line (AB) was 1,000 m, which allowed a vertical investigation reaching up to 160 m of depth. The analysis of the results shows that the prospected zone is characterized by the succession of layers with different electrical resistivities. A sandstone aquifer characterized by resistivities near 100 Ω m overcoming a limestone aquifer stronger with values that exceed 1,000 Ω m, separated by a conductive layer of clay with average resistivity of 15 Ω m. Distribution map of sandstones thickness shows the structural variations of this horizon allowing an estimation of its hydraulic potential.  相似文献   

11.
In Mexico, open dumps that are maintained by the municipality but provide no covering of waste are not uncommon. Further, disposal at these sites is often performed by burning. The aim of this study was to determine the leachate plume from an open dump located in a depositional deltaic environment, with arid climate, low rainfall and where the water table is about 2 m below the surface. The methodology comprised analysis of groundwater monitoring wells and geophysical and geochemical prospecting techniques. The 3D geoelectric interpretation shows a typical area of these depositional environments with low resistive values (10–20 Ω-m) associated with the presence of sands and clays interbedded. However, there is a very low resistivity zone associated with the dump’s impact which reaches values below 5 Ω-m, and it is located where the disposal and burning of wastes occurred. Another zone with values above 16 Ω-m appears as a limit for the advance of the saline. This is interpreted as a sandy lenses area. These sandy lenses with higher porosity transport aquifer’s water. Thus the dump is in direct contact by this conduct with clean groundwater. Piper diagrams constructed with the chemical data analysis reveal that the groundwater in the area corresponds to the chlorinated and/or sulfated sodium type, showing the impact caused by the dump. The monitoring well (NP8, on-site) with the highest dissolved solids content behaves anomalously and belongs to the more conductive zone according to the geoelectric profiles. The subsoil geochemical behavior is influenced by the seasonal water table variations provoking the dissolution of burned and unburned wastes, but the effects of slow flows in the direction of the regional flow are not discarded. Although the most impacted area within the dump is characterized to a depth of 10 m, there is a slow flow in the direction of the regional flow that has been moving pollutants out of the dumpsite during its almost 20 years of operation. The results of this study provide valuable information for the authorities to carry out an appropriate restoration project.  相似文献   

12.
Integrated geoelectrical resistivity, hydrochemical and soil property analysis methods were used to study the groundwater characteristics of sandy soils within a shallow aquifer in the agriculture area, Machang. A pilot test investigation was done prior to the main investigation. The area was divided into two sites. Test-Site 1 is non-fertilized; Test-Site 2 is the former regularly fertilized site. From the surface to depths of 75 cm, a lower average resistivity was obtained in Test-Site 2 (around 0.37 less than in Test-Site 1). The presence of nitrate and chloride contents in pore water reduced the resistivity values despite the low moisture content. The pH values for the whole area range from 4.11 to 6.88, indicating that the groundwater is moderately to slightly acidic. In the southern region, concentration of nitrate is considered to be high (>20 mg/l), while it is nearly zero in the northern region. In the south, the soil properties are similar. However, the geoelectrical model shows lower resistivity values (around 18 Ω m) at the sites with relatively high nitrate concentration in the groundwater (>20 mg/l). Conversely, the sites with low nitrate concentration reveal the resistivity values to be higher (>35 Ω m). Basement and groundwater potential maps are generated from the interpolation of an interpreted resistivity model. The areas that possibly have nitrate-contaminated groundwater have been mapped along with groundwater flow patterns. The northern part of the area has an east to west groundwater flow pattern, making it impossible for contaminated water from the southern region to enter, despite the northern area having a lower elevation.  相似文献   

13.
Geoelectric investigation using vertical electrical sounding (VES) (Schlumberger electrode configuration) was carried out in 14 locations at Ninth Mile area, southeastern Nigeria to determine the variations and interrelationship of some geoelectric and geohydraulic parameters of a sandstone hydrolithofacies. The measured resistivity data were interpreted using manual and computer software packages, which gave the resistivity, depth, and thickness for each layer within the maximum current electrodes separation. The aquifer resistivity values range from 86.56 to 4753.0 Ωm with 1669.40 Ωm average value. The values of water resistivity from borehole locations close to the sounding points range from 79.49 to 454 .55 Ωm and averaging about 264.7 Ωm. Porosity values of the sandy aquifer range from 30.19 to 34.20%. Fractional porosity values range from 0.3019 to 0.3292, while the tortuosity values vary between 2.91 and 22.85. The geohydraulic parameters estimated vary across the study area. Formation factor ranges from 0.28 to 15.29, hydraulic conductivity ranges from 1.21 to 66.54 m/day which, however, influences the natural flow of water in the aquifer while tortuosity values range from 2.91 to 23.27. The contour maps clearly show the variation of these parameters in the subsurface and the plots show their relationship and high correlation coefficients with one another. The results of this study have revealed the geological characteristics of the subsurface aquifer, established the influence on the amount of groundwater, and proposed a strategy for the management and exploitation of groundwater resources in the area and other aquiferous formations.  相似文献   

14.
Groundwater is the main source of irrigation within south Al Madinah Al Munawarah region. It is also an important source of drinking water in many areas including Madinah city. The wells installed in the aquifer of the study area (south Madinah city) are not currently regulated by the local authorities although they are a key component of water supply. The aquifers in the study area range from unconfined to semi-confined and confined. The main aim of this study is to assess the groundwater in the region for drinking and agricultural uses. For this purpose, hydrochemical analyses of major, minor and trace constituents and nutrients were performed on 29 groundwater samples from the aquifer located about 20 km south of Madinah. The recharge rate of the aquifer of the study area was estimated to be 6.58 % of the annual precipitation using the chloride mass-balance method. Chloride was positively correlated with major ions, which suggests that agricultural activities have some effect on groundwater chemistry through leaching of readily soluble salts from the soil zone. Groundwater of the study area is characterized by dominance of Na over Ca. Chloride was found to be the most dominant anion and replaced by HCO3, thus reflecting geochemical evolution in the study area. The groundwater of the study area is not safe for drinking but can be safely used for salt-tolerant crops.  相似文献   

15.
Water table dynamics, dissolved oxygen (DO) content, electrical resistivity (ER) in monitoring wells and air pressure in the vadose zone are monitored in air sparging (AS) accompanied by soil vapor extraction (SVE) at a hydrocarbon-contaminated groundwater site in Oman, where a diesel spillover affected a heterogeneous unconfined aquifer. The formation of a groundwater mound at the early stage of air injection and potential lateral migration of contaminants from the mound apex called for an additional hydrodynamic barrier constructed as a pair of pump-and-treat (P&T) wells whose recirculation zone encompassed the AS and SVE wells. In all monitored piezometers the phreatic surface showed a rapid and distinct peak, which is attributed to the time of air breakthrough from the injection point to the vadose zone and a relatively mild recession limb interpreted as a decay of the mound. Tracer tests showed a layer of a relatively low hydraulic conductivity at an intermediate depth of the screened interval of the wells. Increased levels of DO and borehole air pressure that have been observed (as far as 50 m away) are likely mitigated by SVE and P&T. Radius of influence can be indirectly inferred from ER and DO changes in the AS operation zone. Salt tracer tests have shown that groundwater velocity within the AS zone decreases with the increase of air injection rate.  相似文献   

16.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

17.
An aquifer vulnerability of the Benin Formation aquifer (Calabar, southern Nigeria) has been assessed using a combination of DRASTIC index and GIS technology. The assessment was necessitated by the fact that uncontrolled disposal of domestic, industrial and agricultural wastes have caused groundwater contamination. Therefore, prevention of contamination, monitoring and management of the aquifer was urgently required to increase the efficient use of the current water supplies. The DRASTIC method uses seven parameters (depth to groundwater table, net recharge, aquifer media, soil media, topography, influence of vadose zone and hydraulic conductivity), which were used to produce vulnerability maps. The drastic vulnerability index ranged between 124 and 170. The vulnerability map shows that the aquifer is highly vulnerable in southeastern parts of the area covering about 22 %. The medium vulnerability area covers about 56.8 % of Calabar extending from the southwest to northern parts. 21.2 % of the area covering the central and northern parts the area lies within the low vulnerability zone. The present industrial and activities are located in the eastern and western parts, which falls within the low-medium vulnerability areas. Documented nitrate concentration in hand-dug wells and boreholes are in agreement with vulnerability zones. Sensitivity analysis was performed to evaluate the sensitivity of each parameter between map layers such that subjectivity can be reduced to an extent and new weights computed for each DRASTIC parameter. As management options sensitive areas, especially in the southern parts of Calabar area, should be protected from future development.  相似文献   

18.
The future development of agriculture, industry, and civil activity planned to be in the Western Desert. This strategy need to the groundwater resource. Vertical electrical soundings (VES) and electromagnetic (TEM) measurements conducted in the El Bawiti, northern Bahariya Oasis. The measurements give detailed information about the geometry of the different hydrogeological layers in the aquifer system and depth to them. A total of 22 VES and TEM were carried out within El Bawiti area. Thirty-one sub soil samples were collected from eight sites to determine the chemical characteristics and address the effects of lithogenic source and anthropogenic activity on them. The geoelectrical measurements and borehole information indicate the presence of five geoelectrical units, from top to base; the surface cover, sand and shale, upper aquifer (Nubian sandstone), sand and shale, and lower aquifer (Nubian sandstone). Surface cover was equally distributed in thickness and composed of dry sand, gravel, and clay deposits. The regional resistivity of the upper aquifer increased in the southwestern part and decline in the northern, eastern, southern, and western parts. The decline in the resistivity reflects the high water yields and potentiality, as well as low salinity. The resistivity of the lower aquifer increased due the northwestern part and the southwestern part. The information collected during this research provides valuable data for estimating the fresh- to brackish-water resources and for development of a groundwater management plan. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. The electrical conductivity of the soil ranges from 302 to 8,490 μS/cm, increases in the western and central-northern parts. It is attributed to the location from the salt-affected soils (playa), the relatively lower elevation units (depressions) and the position in landscape in the Oasis. Sodium adsorption ratio ranges from 0.44 to 11 and the exchangeable sodium ratio ranges from 0.11 to 5. The estimated magnesium hazard fluctuated below 50%. The statistical analyses were accomplished in soil chemistry and discussed.  相似文献   

19.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   

20.
Potassium chloride (KCl) and potassium bromide (KBr) tracers were used to explore the role of geologic structure on groundwater recharge and flow at the Fractured Rock Research Site in Floyd County, Virginia, USA. Tracer migration was monitored through soil, saprolite, and fractured crystalline bedrock for a period of 3 months with chemical, physical, and geophysical techniques. The tracers were applied at specific locations on the ground surface to directly test flow pathways in a shallow saprolite and deep fractured-rock aquifer. Tracer monitoring was accomplished with differential electrical resistivity, chemical sampling, and physical monitoring of water levels and spring discharge. KCl, applied at a concentration of 10,000 mg/L, traveled 160 m downgradient through the thrust fault aquifer to a spring outlet in 24 days. KBr, applied at a concentration of 5,000 mg/L, traveled 90 m downgradient through the saprolite aquifer in 19 days. Tracer breakthrough curves indicate diffuse flow through the saprolite aquifer and fracture flow through the crystalline thrust fault aquifer. Monitoring saline tracer migration through soil, saprolite, and fractured rock provided data on groundwater recharge that would not have been available using other traditional hydrologic methods. Travel times and flowpaths observed during this study support preferential groundwater recharge controlled by geologic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号