首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

2.
The Taratash Complex (TC) in the northernmost Bashkirian Anticlinorium (Middle Urals) is unique among the pre-Uralian polymetamorphic complexes along the eastern margin of the East European Craton because it experienced granulite facies peak metamorphic conditions (850–900°C/10 kbar). Herein, we constrain the post-granulite facies polystage evolution of the complex, which records various increments of the geodynamic history of the East European continental margin. Formation of granite and migmatite associated with amphibolite facies events are dated at 2,344±29 and 2,044±8 Ma (U–Pb, zircon) in different structural units. At 1,810±41 Ma, the TC was affected by a greenschist facies retrogressive metamorphism which was probably related to a stage of granite formation in the eastern part of the East European Craton. This is confirmed by a U–Pb–zircon age of 1,848±8 Ma obtained from a sheared granite in the adjacent Alexandrovskiy Complex (AC). Greenschist facies shear zones which separate different structural units of the TC formed before 1,350 Ma. Partial re-equilibration of Rb–Sr- and K–Ar-isotope systems between 1,350 Ma and 1,200 Ma is attributed to fluid flow probably induced by anorogenic magmatism in the Bashkirian Anticlinorium. Meso- to Neoproterozoic basaltic dykes indicate that the TC had been exhumed to upper crustal levels at that time. Evidence for a Grenvillian event or for the Timanian orogeny which affected other pre-Uralian complexes in the Urals is lacking. Uralian orogenic shortening and thrusting on Devonian limestones is recorded by shear zones in the AC to the east of the TC and has been dated at 300 Ma (Rb–Sr, 40Ar/39Ar).  相似文献   

3.
The western terranes exposed east of the Pan-African suture in western Hoggar (southwest Algeria), are reexamined in the light of new structural, petrologic and by the 40Ar/39Ar laser probe data on metamorphic micas and amphiboles. To the north, the Tassendjanet nappe includes the Paleoproterozoic basement, its Mesoproterozoic cover and mafic rocks representing the roots of a ca. 680 Ma arc overlain by Late Neoproterozoic andesites and volcanic greywackes. The nappe preserved at rather shallow crustal level in the east was emplaced southward (D1a) to southeastward (D2). In the south, two metamorphic suites are distinguished. The Tideridjaouine–Tileouine high-pressure metamorphic belt (T=550–600 °C, P=1.4–1.8 GPa) represents a slab of subducted continental material exposed along the western edge of the In Ouzzal granulite unit interpreted as a microcontinent. Differential exhumation of tectonic slices from the high-pressure belt occurred around 615–600 Ma through a system of west-directed recumbent folds (D1b). The Egatalis high grade belt in the west was intruded by syn-metamorphic gabbro–norite bodies. It includes unretrogressed low-pressure granulite facies rocks (T around 750–800 °C, P0.45 GPa) cooled at a rate of 15°/m.y. between 600 and 580 Ma, and followed by the emplacement of several late-kinematic granitic plutons. Final exhumation of the low-pressure, high-temperature metamorphic rocks, that are not found as pebbles in the molasse, took place in the Late Cambrian. The early and relatively fast cooling of the high-pressure and high-temperature metamorphic rocks of the southern part of the Tassendjanet terrane is at variance with the slow cooling of central Hoggar where repeated magmatic activity as young as Late Cambrian occurred [Lithos 45 (1998) 245].  相似文献   

4.
South Percy Island is located approximately 50 km off the central Queensland coast and comprises a disrupted ophiolite mass alongside a diverse array of metamorphosed felsic and mafic rocks that record several episodes of magmatism, volcanism and deformation from the Permian to Early Cretaceous. This paper aims to constrain the age, affinity and deformation history of these units, as well as to establish the tectonic significance of the terrane. The trace-element compositions of mafic and felsic meta-igneous rocks record a change from MORB-like prior to ca 277 Ma to subduction-related by ca 258 Ma. Overprinting relationships between intrusive phases and deformation features reveal a relative chronology for the tectonothermal evolution of the area, while U–Pb and 40Ar/39Ar geochronology provides absolute age constraints. Deformation is localised around a NNE-striking tectonic contact that separates serpentinised ultramafic rocks from metamorphosed pillow lavas. Early formed ductile fabrics associated with the main episode of deformation (D1) preserve bulk flattening strains at greenschist-facies conditions. Emplacement and post-kinematic cooling ages of a pre-D1 quartz-monzonite dyke constrain the age of D1/M1 deformation and metamorphism to the period between ca 258 and ca 248 Ma. Minor brittle deformation (D2) occurred at ca 230 Ma, based on U–Pb dating of a syn-D2 diorite dyke (ca 231 ± 10 Ma) and several ca 230 Ma 40Ar/39Ar cooling ages. The deformation, metamorphism, and supra-subduction zone magmatism preserved on South Percy Island is correlated with the nearby Marlborough Terrane and more broadly with the second pulse of the Hunter–Bowen Orogeny, which affected much of the central and northern parts of eastern Australia in the late Permian and Early Triassic. Our results support previous suggestions that the second pulse of the Hunter–Bowen Orogeny involved coeval thrust systems in both the inboard and outboard parts of the orogen.  相似文献   

5.
The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.  相似文献   

6.
通过对采集到的肯德可克上泥盆统契盖苏群火山岩样品进行锆石LA-ICP-MS U-Pb测年和~(40)Ar/~(39)Ar定年,结合区域地质特征,本文对祁漫塔格构造带的多旋回构造演化进行了总结分析。研究表明,契盖苏群流纹岩形成于晚泥盆世(384.9±6.0 Ma),而契盖苏群的形成时间不晚于晚泥盆世。767±15 Ma、915±18 Ma两个继承性锆石年龄证明研究区响应了Rodinia超大陆聚合—裂解。地层、沉积、变质及变形等证据不支持祁漫塔格地区存在晚古生代洋盆或裂陷槽,晚古生代祁漫塔格地区是发育在柴达木西南缘的陆表海。样品~(40)Ar/~(39)Ar有效坪年龄为220.3±1.7 Ma,代表研究区最后一次埋深达约8000 m。晚三叠世火山活动之后,研究区发生大规模抬升,随后叠加了印支晚期、燕山、喜山等多期构造事件导致中新生代缺少大规模沉降。陆内造山持续到32 Ma左右,随后由于库木库里盆地的伸展,祁漫塔格造山带与东昆仑造山带分离。  相似文献   

7.

The 40Ar/39Ar dating of alteration muscovite from the Peak Au mine in the Early Devonian Cobar Basin, New South Wales, has distinguished two major episodes of mineralization. Veined (Pb‐Zn‐Cu‐Au) mineralization was broadly synchronous with cleavage formation during the post‐inversion, shortening deformation of the basin sedimentary rocks, and replacive Ag‐Pb‐Zn mineralization significantly postdates the latter event. Veined base metals (Pb‐Zn‐Cu) and Au associated with silicification were coeval with three stages of cleavage formation (D1, D2 and D3) after basin inversion. The Cu‐Au phase of mineralization at the Peak Au mine which was broadly contemporaneous with the culmination of the cleavage‐forming events (D3) and with the local development of high‐strain zones occurred at 401.5 ± 1.0 Ma (40Ar/39Ar on muscovite). This date is essentially coeval with known fossil constraints on the age of basin formation, and indicates that basin inversion and deformation rapidly followed sedimentation. In contrast, replacive Ag‐Pb‐Zn mineralization occurred at 384.0 ± 1.4 Ma (40Ar/39Ar on muscovite) during an extended period of relaxation characterized by normal faulting (D4) which followed the shortening deformation. This mineralization was associated with desilicification and chlorite‐muscovite replacement assemblages which cross‐cut the cleavages, and which may have been broadly contemporaneous with the deposition of part of the Mulga Downs Group which unconformably overlies the Cobar Supergroup. Rhyolite exposed in the core of the Peak Au mine largely contains inherited zircons that range in age from ~430–1500 Ma. A few euhedral zircons have an age of ~430 Ma and this is interpreted as a maximum date for the rock. Zircons from a syn‐D3 chlorite‐muscovite replacement zone within the deposit have 206Pb/238U ages of ~410–650 Ma and are apparently inherited.  相似文献   

8.
Fifteen new K–Ar ages in the range of 79–31 Ma are partially confirmed by three 40Ar/39Ar plateaus and isochron data of 64.9±0.4, 55.5±0.1 and 52.8±0.6 Ma. The new geochronological data reveal a much more detailed picture of the subduction imprint in the Hurd Peninsula. Using cutting relationships, the dyke emplacement history is divided into four episodes. The Late Cretaceous–Paleocene dykes in the range of 80–60 Ma are related to the main magmatism in Livingston Island and most likely reflect the final stages of subduction of the proto-Pacific oceanic crust. The Early Eocene dykes (56–52 Ma) fill the gap in volcanic activity 70–50 Ma ago. They are the only magmatic event manifested at this time in the region. The 45–42 Ma dykes may be related to the intrusion of the Barnard Point tonalite. Three samples of Oligocene age appear to represent the last igneous activities on the Hurd Peninsula prior to the opening of the Bransfield Strait.  相似文献   

9.
董永胜  李才  陈辉  陈文  张彦 《岩石学报》2011,27(4):1198-1208
青藏高原冈底斯地块东南部的德玛拉岩群为一套角闪岩相变质岩系,一直被认为是前寒武纪变质基底,但并没有可靠的年代学证据。论文对采自其中的黑云角闪片岩和黑云母石英片岩进行了锆石LA-ICP-MS U-Pb定年和黑云母39Ar-40Ar定年,测试表明,黑云角闪片岩原岩锆石U-Pb年龄为217.1Ma,由黑云母39Ar-40Ar获得的变质年龄为22.3Ma,黑云母石英片岩中碎屑锆石主要为岩浆成因,年龄范围主要集中在520~600Ma和900~1100Ma,黑云母39Ar-40Ar变质年龄为16.3Ma和22.3Ma。上述结果虽不能完全否定西藏东南部察隅地区前寒武纪基底变质岩系的存在,但至少说明现今的德玛拉岩群中还包含有遭受中生代岩浆侵入的古生代沉积岩,它们在新生代经历了变质和岩浆作用的再造,是一套变质杂岩。  相似文献   

10.
The Dulong-Song Chay tectonic dome lies on the border of China (SE Yunnan Province) and northern Vietnam, and consists of two tectonic and lithologic units: a core complex and a cover sequence, separated by an extensional detachment fault. These two units are overlain unconformably by Late Triassic strata. The core complex is composed of gneiss, schist and amphibolite. SHRIMP zircon U–Pb dating results for the orthogneiss yield an age of 799±10 Ma, which is considered to be the crystallization age of its igneous protolith formed in an arc-related environment. A granitic intrusion within the core complex occurred with an age of 436–402 Ma, which probably formed during partial closure of Paleotethys. Within the core complex, metamorphic grades change sharply from upper greenschist-low amphibolite facies in the core to low greenschist facies in the cover sequence. There are two arrays of foliation within the core complex, detachment fault and the cover sequence: S1 and S2. The pervasive S1 is the axial plane of intrafolial S0 folds. D1 deformation related to this foliation is characterized by extensional structures. The strata were structurally thinned or selectively removed along the detachment faults, indicating exhumation of the Dulong-Song Chay tectonic dome. The major extension occurred at 237 Ma, determined by SHRIMP zircon U–Pb and 39Ar/40Ar isotopic dating techniques. Regionally, simultaneous tectonic extension was associated with pre-Indosinian collision between the South China and Indochina Blocks. The S2 foliation appears as the axial plane of NW-striking S1 buckling folds formed during a compressional regime of D2. D2 is associated with collision between the South China and Indochina Blocks along the Jinshajiang-Ailao Shan suture zone, and represents the Indosinian deformation. The Dulong granites intruded the Dulong-Song Chay dome at 144±2, 140±2 and 116±10 Ma based on 39Ar/40Ar measurement on muscovite and biotite. The dome was later overprinted by a conjugate strike-slip fault and related thrust fault, which formed a vortex structure, contemporaneously with late Cenozoic sinistral movement on the Ailao Shan-Red River fault.  相似文献   

11.
During the development of the Variscan orogeny, large amounts of granitic melt were produced, giving rise to the intrusion of granitoids at different structural levels. Despite numerous studies, ages available from previous work on the Cévennes granites remain largely imprecise. In order to better constrain the age and emplacement mode of these granites, we have combined U–Pb dating on monazites and zircons and 40Ar/39Ar dating on biotites with petrological observations, major element chemical analysis and SEM zircon imaging on five samples from the Aigoual–St Guiral–Liron and Mont Lozère granitic massifs. The results revealed that granitic intrusions and cooling in Southern Cévennes occurred in a short time span at ∼306 Ma after the main episode of regional metamorphism. Petrological and chemical data suggest that they result from a mixing between mantle-derived basic magmas (lamprophyres) and lower crust acid magmas. At a regional scale the production of these melts occurred at the end of crustal thickening induced by nappe stacking, at the same time as the late anatectic events recorded further north in the Velay dome and the granulite facies metamorphism recorded in metasedimentary granulite enclaves brought up by Tertiary volcanoes of the Velay area (Bournac).  相似文献   

12.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

13.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

14.
Sung Won Kim   《Gondwana Research》2005,8(3):385-402
An understanding of the Okcheon Metamorphic Belt (OMB) in South Korea is central to unraveling the tectono-metamorphic evolution of East Asia. Amphibole-bearing rocks in the OMB occur as calcsilicate layers and lenses in psammitic rocks, in the psammitic rocks themselves, and in the mafic volcanic layers and intrusives. Most amphiboles fail to show 40Ar/39Ar plateau ages; those that do have ages ranging from 132 to 975 Ma. The disturbed age pattern and wide variation in 40Ar/39Ar ages can be related to metamorphic grade, retrograde chemical reactions, excess Ar and amphibole composition. The oldest age (975 Ma) can be interpreted either as an old igneous or metamorphic age predating sedimentation or a false age caused by excess Ar. The youngest age of 132 Ma and the disturbed age pattern found in amphiboles from rocks located close to Jurassic granitoids are the result of retrograde thermal metamorphic effects accompanying intrusion of the granitoids. Some medium- or coarse-grained amphiboles in the calcsilicates are aggregates of fine-grained crystals. As a result, they are heterogeneous and prove to be readily affected by excess Ar. A disturbed age pattern in amphiboles from the calcsilicates occurring in the high-grade metamorphic zone may also be the product of excess Ar. On the other hand, the disturbed pattern of amphiboles present in the calcsilicates from the low-grade metamorphic zone could arise from both excess Ar and mixed ages. However, amphiboles from psammitic rocks and some calcsilicates in the high-grade metamorphic zone and in intrusive metabasites display real plateau ages of 237 to 261 Ma. The temperature conditions in the high-grade metamorphic zone were higher than the argon closing temperature for amphibole, and the amphiboles in this zone give plateau ages only when they are homogeneous in composition, lack excess Ar, and have not been thermally affected by intrusion of the granitoids. The unmodified 40Ar/39Ar ages prove rather younger than the age of the Late Paleozoic metamorphic event of 280 to 300 Ma, but they are close to muscovite K-Ar ages of 263 to 277 Ma. These 40Ar/39Ar amphibole ages are interpreted as the time of cooling that followed the main regional, intermediate-P/T metamorphic climax. The results demonstrate that interpretation of 40Ar/39Ar amphibole ages in an area subjected to several metamorphic events can be accomplished only by undertaking a thorough tectono-metamorphic study, accompanied by detailed chemical analysis of the amphiboles.  相似文献   

15.
北秦岭宽坪岩群变质沉积岩年代学及地质意义   总被引:2,自引:1,他引:1       下载免费PDF全文
宽坪岩群位于北秦岭造山带,主要由广东坪岩组斜长角闪岩、四岔口岩组云母石英片岩及谢湾岩组的大理岩组成。通过LA-MC-ICPMS锆石U-Pb测年研究,宽坪岩群谢湾岩组碎屑锆石年龄为400~3502 Ma,其中最年轻一组的206Pb/238U年龄在380~418 Ma,结合黑云母40Ar/39Ar(370.9±2.0)Ma的变质年龄,表明谢湾岩组形成在晚泥盆世。四岔口岩组碎屑锆石年龄介于512~3598 Ma,最年轻的一组锆石206Pb/238U年龄在512~549 Ma,其黑云母40Ar/39Ar变质年龄为(370.4±1.8)Ma,表明该组形成于512 Ma(早寒武世)之后,晚泥盆世之前,主体很可能形成于早古生代。宽坪岩群是由不同时代的地层和岩片构成,应该进一步解体。宽坪岩群物源来自华北陆块、秦岭造山带和扬子陆块。其变形变质时代为晚泥盆世,代表了北秦岭造山带碰撞造山的结束时代。  相似文献   

16.
Hornblende incremental heating 40Ar/39Ar data were obtained from augen gneiss and amphibolite of the Sveconorwegian Province of S. Norway. In the Rogaland-Vest Agder and Telemark terranes, four pyroxene-rich samples, located close (≤ 10 km) to the anorthosite-charnockite Rogaland Igneous Complex, define an age group at 916 + 12/ − 14 Ma and six samples distributed in the two terranes yield another group at 871 + 8/ − 10 Ma. The first age group is close to the reported zircon U---Pb intrusion age of the igneous complex (931 ± 2 Ma) and the regional titanite U---Pb age (918 ± 2 Ma), whereas the second group overlaps reported regional mineral Rb---Sr ages (895-853 Ma) as well as biotite K---Ar ages (878-853 Ma). In the first group, the comparatively dry parageneses of low-P thermal metamorphism (M2) associated with the intrusion of the igneous complex are well developed, and hornblende 40Ar/39Ar ages probably record a drop in temperature shortly after this phase. In other hornblende + biotite-rich samples, with presumably a higher fluid content, the hornblende ages are probably a response to hornblende-fluid interaction during a late Sveconorwegian metamorphic or hydrothermal event. A ca 220 m.y. diachronism in hornblende 40Ar/39Ar ages is documented between S. Telemark (ca 870 Ma) and Bamble (ca 1090 Ma). Differential uplift between these terranes was mostly accommodated by shearing along the Kristiansand-Porsgrunn shear zone. The final stage of extension along this zone occurred after intrusion of the Herefoss post-kinematic granite at 926 ± 8 Ma. On the contrary, the southern part of the Rogaland-Vest Agder and Telemark terranes share a common cooling evolution as mineral ages are similar on both sides of the Mandal-Ustaoset Line the tectonic zone between them. The succession within 20 m.y. of a voluminous pulse of post-tectonic magmatism at 0.93 Ga, a phase of high-T-low-P metamorphism at 0.93-0.92 Ga, and fast cooling at a regional scale ca 0.92 Ga, suggests that the southern parts of Rogaland-Vest Agder and Telemark were affected by an event of post-thickening extension collapse at that time. This event is not recorded in Bamble.  相似文献   

17.
Abstract 40Ar/39Ar age spectrum analysis of phengite separates from Naxos, part of the Attic Cycladic Metamorphic Belt in Greece, indicates that cooling following high-pressure, low- to medium-temperature metamorphism, M1, occurred about 50 Ma ago. Phengite has 40Ar* gradients that suggest that part of the scatter observed in conventional K–Ar ages was caused by diffusion of radiogenic argon from the minerals during a younger metamorphism, M2. In central Naxos, this metamorphism (M2) has overprinted the original mineral assemblages completely, and is associated with development of a thermal dome. Excellent 40Ar/39Ar plateaus at 15.0 ± 0.1 Ma, 11.8 ± 0.1 Ma, and 11.4 ± 0.1 Ma, obtained on hornblende, muscovite and biotite, respectively, from the migmatite zone, indicate that relatively rapid cooling followed the M2 event, and that no significant thermal overprinting occurred subsequent to M2. Toward lower M2 metamorphic grade, 40Ar/39Ar plateau ages of hornblendes increase to 19.8 ± 0.1 Ma; concomitantly the proportion of excess 40Ar in the spectra increases as well. We propose that the peak of M2 metamorphism occurred beween 15.0 and 19.8 Ma ago. K–Ar ages of biotites from a granodiorite on the west coast are indistinguishable from those found in the metamorphic complex, and hornblende K–Ar ages from the same samples are in the range 12.1–13.6 Ma. As the latter ages are somewhat younger than most ages obtained from the metamorphic complex, intrusion of the granodiorite most likely followed the peak of the M2 metamorphism. The metamorphic evolution of Naxos is consistent with rapid crustal thickening during the Cretaceous or early Tertiary, causing conditions at which supracrustal rocks experienced pressures in the range 900–1500 MPa. Transition to normal crustal thicknesses ended the M1 metamorphism about 50 Ma ago. The M2 metamorphism and granodiorite intrusion occurred during a period of heat input into the crust, possibly related to the migration of the Hellenic volcanic ar°C in a southerly direction through the area.  相似文献   

18.
阿克塔斯金矿床位于新疆阿尔泰造山带南缘,矿体赋存于黑云母花岗岩与中泥盆统北塔山组中性火山岩接触带,矿石类型主要为石英脉型和蚀变岩型。矿区中酸性侵入岩体的岩石类型为二长花岗岩、黑云母花岗岩。近矿的黑云母花岗岩LA-ICP-MS锆石U-Pb年龄为(329.5±1.8)Ma,成岩时代为早石炭世;主成矿期的金-黄铁矿-石英细脉中的绢云母~(40)Ar/~(39)Ar坪年龄为(247.7±1.3) Ma、等时线年龄为(245.1±1.4)Ma,成矿时代为早三叠世。研究表明,阿克塔斯金矿成岩与成矿时代相距80 Ma,为碰撞造山和后碰撞造山不同地质作用的产物。该矿床具有造山型金矿的特点,额尔齐斯断裂带的右形剪切走滑作用控制金矿成矿过程。  相似文献   

19.
Regional cooling in the course of Neoproterozoic core complex exhumation in the Central Eastern Desert of Egypt is constraint by 40Ar/39Ar ages of hornblende and muscovite from Meatiq, Sibai and Hafafit domes. The data reveal highly diachronous cooling with hornblende ages clustering around 580 Ma in the Meatiq and the Hafafit, and 623 and 606 Ma in the Sibai. These 40Ar/39Ar ages are interpreted together with previously published structural and petrological data, radiometric ages obtained from Neoproterozoic plutons, and data on sediment dynamics from the intramontane Kareim molasse basin. Early-stage low velocity exhumation was triggered by magmatism initiated at 650 Ma in the Sibai and caused early deposition of molasses sediments within rim synforms. Rapid late stage exhumation was released by combined effect of strike-slip and normal faulting, exhumed Meatiq and Hafafit domes and continued until 580 Ma. We propose a new model that adopts core complex exhumation in oblique island arc collision-zones and includes transpression combined with lateral extrusion dynamics. In this model, continuous magma generation weakened the crust leading to facilitation of lateral extrusion tectonics. Since horizontal shortening is balanced by extension, no major crustal thickening and no increase of potential energy (gravitational collapse) is necessarily involved in the process of core complex formation. Core complexes were continuously but slowly exhumed without creating a significant mountain topography.  相似文献   

20.
太华变质杂岩出露于华北克拉通中部造山带最南缘,整体呈近东西向展布。华山地区的太华变质杂岩区岩性复杂多样,保存了至少三个阶段的变质矿物组合。本文对其中的黑云斜长片麻岩和黑云二长片麻岩中的锆石,进行了详细的LA-ICP-MS U-Pb定年;对斜长角闪片麻岩中的变质角闪石,进行了常规40Ar/39Ar定年。定年结果表明:(1)黑云斜长片麻岩中的碎屑锆石记录了两期(~2.3Ga和~2.5Ga)明显的岩浆事件,变质锆石记录了一期(1.87~1.85Ga)变质事件;(2)黑云二长片麻岩中的岩浆锆石U-Pb年龄为2.33Ga和2.31Ga,变质锆石记录的变质年龄为1.96Ga;(3)两个斜长角闪片麻岩样品中,变质角闪石的40Ar/39Ar坪年龄和等时线年龄说明,该地区经历了一期~1.8Ga的变质热事件。这些数据说明,太华变质杂岩也记录了华北克拉通东部陆块与西部陆块之间的碰撞造山过程,不过比中部造山带其它变质杂岩区记录的时间更早,变质作用持续的时间也更长。这暗示了该地区在1.96~1.80Ga期间,经历了一次比较漫长而复杂的构造-变质演化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号