首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
《Marine pollution bulletin》2014,87(1-2):129-137
We used modelling and field approaches to assess the influence of beach nourishment on a relatively distant Posidonia oceanica seagrass meadow in the NW Mediterranean. Both sediment transport models and in situ observations showed that, two years after the nourishment and under wave climates prevalent during the study period, sediment movement was restricted to shallow waters (<7 m), above meadow shallow limit. The only significant impact on seagrass meadows during this period was an increase in fine sediments, associated with vertical rhizome growth rates 1.5–1.7 times higher than normal. However, running the model with data of wave climate over several decades indicates that strong storms able to transfer these sediments much deeper, potentially burying meadows, occur with a return period of about 25 years. Taken together, our results suggest that beach nourishment could result in significant sub-lethal and lethal consequences for seagrasses that may go unnoticed with short-term evaluations.  相似文献   

2.
3.
Posidonia oceanica meadows can be severely damaged by dredge-fill operations. We report on the construction of gas pipelines that occurred between 1981 and 1993 in SW Sicily, Italy. A large portion of the meadow was mechanically removed, and the excavated trench was filled with a mosaic of substrates, ranging from sand to consolidated rock debris. Meadow loss and recovery were quantified over 7 years after the end of operations. We recorded an overall loss of 81.20 ha of meadow. Substrate strongly affected recovery as the percent cover by P. oceanica consistently increased on calcareous rubble, reaching values of 44.37 ± 3.05% in shallow sites after 7 years, whereas no significant increase occurred on other substrates. As in the Mediterranean Sea exploitation of coastal areas continues to grow with consequent impacts on P. oceanica meadows, this case study illustrates how artificial rubble-like materials could be employed to support the restoration of damaged meadows.  相似文献   

4.
The present contribution considers the dynamics of beaches occupied by outcropping/buried beachrocks, i.e. hard coastal formations consisting of beach material lithified by in situ precipitated carbonate cements. The dynamics of a Greek microtidal beach with beachrocks (Vatera, Lesbos) are examined through the collection and analysis of morphological and sedimentary field data, a 2-D nearshore hydrodynamic model and a specially constructed 1-D morphodynamic model. The results showed that the beachrock-occupied part of the beach is characterised by distinctive morphodynamics as: (i) its beachface is associated with large slopes; (ii) there is a good spatial correlation between the sub-aerial and shallow submerged mean beach profile and the buried/outcropping upper beachrock surface; and (iii) the seaward margins of the submerged beachrock outcrops are always associated with a ‘scour step’ i.e. a submerged cliff. The results also showed that beachrock outcrops can bias cross-shore sediment exchanges by impeding onshore transport due to the presence of the scour step. In this sense, beachrock outcrops may be considered as offshore transport ‘conduits’ for the beach sediments. A conceptual model of beach sediment transport, based on the field data and the hydrodynamic modelling is proposed. According to this model, fresh beach material from adjacent terrestrial sources is transported alongshore, towards the central part of the embayment, where a littoral transport convergence zone occurs under most wave conditions. There, the laterally supplied sediments are lost offshore.  相似文献   

5.
Survival of transplanted Zostera marina L. (eelgrass) and environmental conditions (water quality, bottom sediments, sedimentation on leaves and flow regime) were studied concurrently in the center, edge, and at the outside of a eelgrass meadow located in a eutrophic coastal zone in northern Hiroshima Bay, Seto Inland Sea, Japan. Eelgrass transplants at the outside of the meadow declined significantly, whereas those at the center were consistently well established. Silt content in the bottom sediments at the outside was higher than that at the center. The sediment was oxic from the surface to 2 cm deep at the center, whereas those at the edge and the outside were reductive almost from the surface. The sediment characteristics typical in eutrophic water seemed to be a factor responsible for the deterioration of eelgrass meadows. Although suspended solid concentrations in the water columns were almost the same, the amount of sediments deposited on leaves of eelgrass at the outside was higher than that at the center of the meadow. The amount of the deposition at the outside seems to be enough to inhibit photosynthesis; i.e. photosynthetic photon flux density (PPFD) available for eelgrass was only 36% of that without any deposition. The deposition in the center, however, was small enough to allow 84% of the original PPFD. Flow rates, determined at 30 cm above the bottom, a half height of average eelgrass, suggested that the rate at the outside was not enough to remove deposited sediments from the surface of eelgrass leaves. Thus, the large amount of sediment deposition caused by water pollution and/or eutrophication seemed to be another factor to inhibit the survival of eelgrass at the outside edge of the meadow.  相似文献   

6.
A large-scale, manipulative experiment was conducted to examine the extent and rate of recovery of meadows of the temperate Australian seagrass, Amphibolis griffithii to different light-reduction scenarios typical of dredging operations, and to identify potential indicators of recovery from light reduction stress. Shade cloth was used to mimic different intensities, durations and start times of light reduction, and then was removed to assess the recovery. The meadow could recover from 3 months of light stress (5-18% ambient) following 10 months re-exposure to ambient light, even when up to 72% of leaf biomass was lost, much faster recovery rates than has previously been observed for large seagrasses. However, when the meadow had been shaded for 6-9 months and more than 82% of leaf biomass was lost, no recovery was detected up to 23 months after the light stress had ceased, consistent with other studies. Five potential indicators of recovery were recommended.  相似文献   

7.
Here we review the multiple interactions between the endemic Mediterranean seagrass, Posidonia oceanica, and coastal geomorphologic processes as an outstanding example of biogeomorphology, taking into account recent advances in the field. Seagrass meadows are among the most important elements for the functioning of marine coastal ecosystems, and represent a major focus for research and conservation. Being considered a priority habitat, P. oceanica meadows are protected by several European Union directives and national laws. In this paper we examine: the role of sedimentary features in controlling the development of the meadows; the interplay between P. oceanica leaf litter (i.e. beached necromass) cast ashore and erosional‐depositional processes on the beaches; the interactions between meadows and nearshore hydrodynamics, and; possible linkages between geomorphological features of the seafloor and the architecture of meadows. Finally, we provide perspectives for future research on P. oceanica and other Mediterranean seagrass meadows in a biogeomorphological context with specific reference to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Recent research has indicated that Sierra Nevada meadows are hydrologically more complex than previously considered. Improved understanding of the effects of aquifer parameters and climate change on water resources in and downstream of meadows is critically needed to effectively manage mountain meadows for ecosystem services and watershed contributions. This research investigates the roles of bedrock geometry, saturated hydraulic conductivity, and meadow gradient in affecting groundwater storage dynamics and surface‐water outflows in site‐scale high‐elevation meadows. Under current and projected lower snowpack conditions, we modeled groundwater flow in representative high‐elevation meadows considering 2 conceptual aquifer thickness models: uniform and variable thickness. Spatially, variable aquifer thicknesses interpreted from bedrock depths (0–28 m) were identified from a high‐resolution ground‐penetrating radar survey conducted at Tuolumne Meadows, CA. Our interpreted bedrock surface indicated several buried U‐shaped valleys including a buried ridge that separates 2 U‐shaped valleys. Groundwater flow simulations show that an increase in meadow gradient and hydraulic conductivity led to a decrease in seasonal storage and an increase in surface‐water outflow. However, models with varying bedrock geometries change the magnitude and timing of these processes. Uniform thickness models overestimated storage at the model edges and resulted in higher projected volumes of water being released to streams earlier than previously observed.  相似文献   

9.
Markov models offer an objective and quantitative method of assessing beach changes. For a stretch of the Holderness coast a beach classification scheme was devised and a probabilistic first order matrix model based on surveyed profile data was produced. This could describe and predict transitions between beach types and between different time periods. Different profile types dominated different coastal locations and seasonal variations were seen. In order to improve the accuracy of prediction throughout the year a second, ‘winter’, model was added to the original ‘summer’ one. Although the models had been prepared independently of wave conditions, a comparison of the wave record and beach transitions revealed that waves under 0·3–0·5 m high produced fairly static beaches; when waves were between 0·5 and 1·0 m the beach was more dynamic and variable, while waves over 1·0 m led to the depletion of the upper beach. This was broadly in accordance with published theory. Markov models have the advantage that they can be adjusted periodically if conditions change, and are thus useful for prediction on coasts for which no wave records exist.  相似文献   

10.
A system of five adjacent Posidonia oceanica meadows facing the waterfront of Genoa city (Ligurian Sea, NW Mediterranean) was investigated over different spatial scales (meters-kilometers) using three environmental indices: conservation index (CI), substitution index (SI) and phase-shift index (PSI). CI revealed differences mostly at large spatial scale, distinguishing the poor condition of the meadows closest to Genoa centre and harbour from the comparatively healthy condition of the farthest meadows. SI showed differences mostly at small spatial scale (i.e., within meadows), suggesting the influence of local factors in the re-colonisation of regressed meadows by the seagrass Cymodocea nodosa and/or the invasive alga Caulerpa racemosa. Mapping of PSI showed that the meadows closest to Genoa centre and harbour have undergone a nearly total phase shift and have no real potential for recovery: attempts to re-establish P. oceanica there might be a waste of time and money. On the contrary, the meadows farthest from Genoa centre and harbour showed a comparatively low level of phase shift and could still fully recover given specific management actions.  相似文献   

11.
Beavers are widely recognized as ecosystem engineers for their ability to shape river corridors by building dams, digging small canals, and altering riparian vegetation. Through these activities, beavers create beaver meadows, which are segments of river corridor characterized by high geomorphic heterogeneity, attenuation of downstream fluxes, and biodiversity. We examine seven beaver meadows on the eastern side of the Rocky Mountain National Park, Colorado, USA with differing levels of beaver activity. We divide these sites into the four categories of active, partially active, recently abandoned (< 20 years), and long abandoned (> 30 years). We characterize geomorphic units within the river corridor and calculate metrics of surface geomorphic heterogeneity relative to category of beaver activity. We also use measures of subsurface geomorphic heterogeneity (soil moisture, soil depth, percent clay content, organic carbon concentration) to compare heterogeneity across beaver meadow categories. Finally, we calculate organic carbon stock within the upper 1.5 m of each meadow and compare these values to category of beaver activity. We find that surface geomorphic heterogeneity and mean soil moisture differ significantly only between active and long abandoned meadows, suggesting a non-linear decrease with time following beaver abandonment of a meadow. Soil depth and organic carbon stock do not differ consistently in relation to category of beaver meadow, suggesting that larger-scale geologic controls that foster deep floodplain soils can continue to maintain substantial organic carbon stocks after beavers abandon a meadow. These results also indicate that the effects of beaver ecosystem engineering can persist for nearly three decades after the animals largely abandon a river corridor. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Soil water is an important limiting factor for restoring alpine meadows on the northern Tibetan Plateau. Field studies of soil‐water content (SWC), however, are rare due to the harsh environment, especially in a mesoscale alpine‐meadow ecosystem. The objective of this study was to assess the spatial variability of SWC and the temporal variation of the spatial variability in a typical alpine meadow using a geostatistical approach. SWC was measured using a neutron probe to a depth of 50 cm at 113 locations on 22 sampling occasions in a 33.5‐hm2 alpine meadow during the 2015 and 2016 growing seasons. Mean SWC in the study plot for the two growing seasons was 18.7, 14.0, 13.9, 14.3, and 14.8% for depths of 10, 20, 30, 40, and 50 cm, respectively, and SWC was significantly larger at 10 cm than at other depths. SWC was negatively correlated with its spatial variability, and the spatial variability was higher when SWC was lower. Thirty‐three sampling locations in this study plot met the requirement of accuracy of the central limit theorem. A Gaussian model was the best fit for SWC semivariance at depths of 10, 20, and 30 cm, and the spatial structural ratio was between 0.997 and 1, indicating a strong spatial dependence of SWC. The sill and range fluctuated temporally, and the nugget and spatial structural ratio did not generally vary with time. The sill was significantly positively correlated with SWC and was initially stable and then tend to increase with SWC. The nugget, range, and spatial structure ratio, however, were not correlated with SWC. These results contribute to our understanding of SWC spatial distribution and variation in alpine meadows and provide basic empirical SWC data for mesoscale model simulations, optimizing sampling strategies and managing meadows on the Tibetan Plateau.  相似文献   

13.
Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2–3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change.  相似文献   

14.
Using the Conservation Index, which measures the proportional amount of dead matte relative to live Posidonia oceanica, we assessed the health of 15 P. oceanica meadows at a regional scale along the coast of Liguria (NW Mediterranean). These areas were characterized by different degrees of anthropization, from highly urbanized sites to marine protected areas. Two different scenarios were identified according to depth: in shallow zones, the health of P. oceanica meadows was related to the degree of anthropization along the coastline. In contrast, in deep zones, most meadows exhibited poor health, independent of both the degree of disturbance and the legal measures protecting the area. Working synergistically with the regional impact of increased water turbidity, local impacts from the coast were recognized as the main causes of the severe regression of most Ligurian P. oceanica meadows. We conclude that marine protected areas alone are not sufficient to guarantee the protection of P. oceanica meadows. We emphasize the need for a management network involving the Sites of Community Interest (SCIs) containing P. oceanica meadows.  相似文献   

15.
线性波浪加载下海底斜坡失稳机制的数值分析   总被引:2,自引:0,他引:2       下载免费PDF全文
基于大型有限元软件ABAQUS中的荷载模块,添加一阶波浪力载荷模式,并结合强度折减技术,实现波浪力作用下海底斜坡稳定性与失稳机制的弹塑性有限元数值分析。引入典型算例,利用先前提出的波浪荷载下海底斜坡稳定性的极限分析上限方法开展数值解的对比验证;在此基础上,通过深入地变动参数比较分析,探讨不同波长、波高和水深等波浪参数对计算结果的影响以及波浪力影响下海底斜坡潜在滑动面的变化规律,获得波浪荷载下海底斜坡失稳滑动机制的初步认识。  相似文献   

16.
Sediments deposited by the AD 869 Jogan tsunami offer an opportunity to test the reliability of optically stimulated luminescence (OSL) dating of relatively old historical tsunami deposits. We collected a geoslicer sample from sand deposited on the Sendai Plain, northeastern Japan, by the Jogan tsunami and applied quartz OSL dating to it. We then compared the OSL ages with the known age of the tsunami event. In ascending order, the sedimentary sequence in the geoslicer sample consists of the beach–dune sand, lower peat, Jogan tsunami deposit, upper peat, pre-2011 paddy soil, and the 2011 tsunami deposit. To obtain equivalent dose (De,bulk), a standard single-aliquot renegerative-dose (SAR) protocol was applied to large aliquots of the 180–250 μm fraction of two samples from the beach–dune sand, and four samples from differing levels of the Jogan tsunami deposit. The OSL decay curves were dominated by the medium component; thus, for two samples from the Jogan deposit the fast-component OSL signal was isolated and used to determine the equivalent dose (De,fast). Using De,bulk, OSL ages of the tsunami deposit were underestimated by ∼40%, and even the beach–dune sand was dated younger than AD 869. In contrast, De,fast provided a robust age estimate with only slight underestimation. A pulse annealing test showed that the bulk and medium-component OSL signals were thermally unstable. The medium component in the natural OSL was clearly truncated in comparison to the regenerated OSL; the medium component is thus considered to be the main cause of the underestimated ages. Similar effects of a dominant medium-component OSL have been reported in tectonically active regions, which are also prone to tsunamis. The effect of this dominance should be carefully considered in quartz OSL dating of tsunami deposits.  相似文献   

17.
Analyses of shoreline and bathymetry change near Calais, northern coast of France, showed that shoreline evolution during the 20th century was strongly related with shoreface and nearshore bathymetry variations. Coastal erosion generally corresponds to areas of nearshore seabed lowering while shoreline progradation is essentially associated with areas of seafloor aggradation, notably east of Calais where an extensive sand flat experienced seaward shoreline displacement up to more than 300 m between 1949 and 2000. Mapping of bathymetry changes since 1911 revealed that significant variation in nearshore morphology was caused by the onshore and alongshore migration of a prominent tidal sand bank that eventually welded to the shore. Comparison of bathymetry data showed that the volume of the bank increased by about 10×107 m3 during the 20th century, indicating that the bank was acting as a sediment sink for some of the sand transiting alongshore in the coastal zone. Several lines of evidence show that the bank also represented a major sediment source for the prograding tidal flat, supplying significant amounts of sand to the accreting upper beach. Simulation of wave propagation using the SWAN wave model (Booij et al., 1999) suggests that the onshore movement of the sand bank resulted in a decrease of wave energy in the nearshore zone, leading to more dissipative conditions. Such conditions would have increased nearshore sediment supply, favoring aeolian dune development on the upper beach and shoreline progradation. Our results suggest that the onshore migration of nearshore sand banks may represent one of the most important, and possibly the primary mechanism responsible for supplying marine sand to beaches and coastal dunes in this macrotidal coastal environment.  相似文献   

18.
Eight shallow water Posidonia oceanica meadows were sampled in June 1999 along 300 km of the Ligurian coast and were compared through shoot density and lepidochronology. The growth of the seagrass was examined in the light of climate fluctuations and local stresses, colonisation by alien, invasive alga Caulerpa taxifolia, and effects of the oil spill from the tanker "Haven", and other anthropogenic impacts. Both shoot density and lepidochronology pointed to a generalised state of regression of all the meadows. The analysis of long-term growth curves of the rhizomes showed a positive trend parallel to the increase of air temperature. Two main groups of meadows were individuated on the basis of growth curve similarity. The first included four meadows, namely Ventimiglia, Imperia, Noli and Prelo, that were characterised by average values of rhizome growth of 8-9.1 mmyear(-1) and shoot density greater than 200 shootsm(-2). Although the Imperia meadow was the only one where the alien invasive alga C. taxifolia was found, it did not show differences for rhizome growth in comparison to the other meadows. The second group was formed by meadows that had suffered past anthropogenic impacts: Arenzano and Monterosso al Mare. They showed higher rhizome growth rates (9.4-10.6 mmyear(-1)) and shoot densities between 200 and 100 shootsm(-2). At Arenzano, where "Haven" oil was stranded in April 1991, no rhizome older than 8 years was found, thus confirming the shoot mortality induced by the oil spill event. The two last meadows exhibited growth curves very different from all the others: Portovenere, is a shallow meadow where P. oceanica merely survives in an extremely degraded situation with highest rhizome growth rate (12 mmyear(-1)), the other, Riva Trigoso, is the only meadow implanted on rock and had the lowest growth rates (7.1 mm year(-1)).  相似文献   

19.
The Anxious Bay beach litter clearance is the longest running annual survey of ocean-based litter in Australia. It's remoteness from centres of human population and location (with respect to prevailing winds and currents) make it an ideal place for monitoring ocean or ship-based litter in Australia's southern oceans and particularly, the Great Australian Bight. Over the 1991-1999 period, a large but gradual decline in the amount of beach washed litter was recorded (with minor peaks recorded during the 1992 and 1994 surveys). Beach washed litter decreased by approximately 86%, from 344 kg recorded in 1991 (13.2 kg/km) to 49 kg in 1999 (i.e. 1.9 kg/km), reaching a maximum of 390 kg in 1992 (or 15 kg/km of beach). However, a sharp increase in litter was recorded in 2000 (i.e. 252 kg or 9.7 kg/km). This increase in litter yield in 2000 is probably due to stronger than average onshore surface flow (or Ekman Transport) in the western Eyre Peninsula and Bight region. Prior to the survey in 2000, the results appeared to indicate that ocean litter on Anxious Bay beach was beginning to level out at around 50-70 kg/year (i.e. 2-3 kg/km). As the beach surveys involve the assumption that the beach is completely cleared of litter, this may represent a baseline level for ocean-based litter in the region. The yields and type of litter collected from the annual survey indicates that the majority of litter washed ashore originates from commercial fishing activities within the Great Australian Bight. Most of the fishing-related litter was directly sourced to the Southern Rock Lobster Fishery (i.e. bait buckets, baskets, pots), the Great Australian Bight Trawl Fishery (i.e. codends, trawl nets) and the Southern Shark Fishery (i.e. monofilament gillnets and longlines). Between 1994 and 1999, large reductions were observed in the amount of bait straps (77% reduction), lobster bait baskets/buckets (86% reduction), nets/ropes (62% reduction) and floats/buoys (83% reduction). Significantly, fishing-related litter in the Bight has reduced at a slower rate than domestic litter. While the level of glass and soft plastics on the beach have both reduced by almost 93% (i.e. 103-7 kg and 119-8 kg, respectively), the level of hard plastics, has diminished at a slower rate, with reductions of only 75% (i.e. 122-30 kg). Some fisheries (i.e. rock lobster, Southern Shark Fishery) have shown marked reductions in fishing-related litter. This is probably due, to some extent, to significant reductions in fishing effort in the region, although this requires further investigation. The information from the Anxious Bay beach litter survey is crucial in monitoring trends in ocean litter in Australia's southern oceans and compliance with international litter regulations. While fishing-related litter remains the major source of ship-based or ocean litter in Australia's southern oceans, the continued reduction in ship-based litter since 1991 supports increasing compliance to MARPOL (Annex V) by commercial fisheries and shipping in the Great Australian Bight. While Australia participates in marine debris monitoring programs in the Antarctic (under CCAMLR), there is currently no national program or management framework to assess, manage and monitor ocean-based litter along Australia's coasts, and monitor compliance with MARPOL. Apart from the commitments under CCAMLR for Antarctic (and sub-Antarctic) marine environments, there are no other regional programs, guidelines or monitoring protocols or to assess and manage ocean litter in the Southern Ocean.  相似文献   

20.
Recent work at three contrasting sites in England and Wales has shown characteristics atypical of those frequently reported elsewhere. These differences are:
  • (a) Taking each entire beach system there is no uniform trend of erosion or accretion, nor a progressive variation in beach elevation or volume alongshore, from one survey to the next. However, for Swansea Bay the ‘long-term’ (i. e. 18 months) range in profile height along that stretch of coast where the alignment of the beach is normal to the direction of wave approach, correlates well with computed wave energy derived from relevant offshore wave directions.
  • (b) While beach variability is greatest during the ‘winter’ (i. e. storm) period there is no overall tendency for a drawdown of sediment from the intertidal zone at that time. Response times are relatively short. Thus high beach levels need not necessarily be associated with ‘summer’ conditions.
  • (c) Although in Swansea Bay there is a tendency for the beach height to fluctuate least at mid-tide level this is not true of the other two sites. In no area does sediment eroded from the upper exposed part of the beach regularly appear to be deposited on the lower exposed part, or vice versa.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号