首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
New challenges for adaptive optics: extremely large telescopes   总被引:1,自引:0,他引:1  
The performance of an adaptive optics (AO) system on a 100-m diameter ground-based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60 per cent is achieved at 0.5 μm with a limiting magnitude of the AO guide source near R   magnitude~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use three or four reference sources and up to three deformable mirrors, which increase up to 8-fold the corrected field size (up to 60 arcsec at 0.5 μm). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50 per cent with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint ( R ~22) NGS for low-order correction, which results in a sky coverage of 40 per cent at the Galactic poles in the visible.  相似文献   

2.
We introduce a novel concept to sense the wavefront for adaptive optics purposes in astronomy using a conventional laser beacon. The concept we describe involves treating the light scattered in the mesospheric sodium layer as if it comes from multiple rings located at infinity. Such a concept resembles an inverse Bessel beam and is particularly suitable for multi-conjugated adaptive optics on extremely large telescopes. In fact, as the sensing process uses light apparently coming from infinity, some problems linked to the finite distance and vertical extent of the guide source are solved. Since such a technique is able to sense a wavefront solely in the radial direction, we propose furthermore a novel wavefront sensor by combining the inverse Bessel beam approach with the recently introduced z -invariant technique for a pseudo-infinite guide star sensor.  相似文献   

3.
All of the extremely large telescopes (ELTs) will utilize sodium laser guide star (LGS) adaptive optics (AO) systems. Most of these telescopes plan to use the Shack-Hartmann approach for wavefront sensing. In these AO systems, the laser spots in subapertures at the edge of the pupil will suffer from spot elongation due to the 10 km extent of the sodium layer and the large separation from the projection laser. This spot elongation will severely degrade the performance of standard geometry wavefront sensing systems. In this paper, we present a CCD with custom pixel morphology that aligns the pixels of each subaperture with the radial extension of the LGS spot. This CCD design will give better performance than a standard geometry CCDs for continuous wave lasers. In addition, this CCD design is optimal for a pulsed sodium laser. The pixel geometry enables each subaperture to follow a laser pulse traversing the sodium layer, providing optimal sampling of a limited number of detected photons. In addition to novel pixel layout, this CCD will also incorporate experimental JFET sense amplifiers and use CMOS design approaches to simplify the routing of biases, clocks and video output. This CCD will attain photon-noise limited performance at high frame rates, and is being incorporated in the plans for the Thirty Meter Telescope (TMT).  相似文献   

4.
基于激光信标发射和接收共光路系统中探测器受杂散光影响的关键问题,设计了一种新型转盘式机械快门装置,对光信号进行高频率开关控制,从而对自适应光学系统的波前探测器起到彻底保护作用.设计时,分析了瑞利信标的采样厚度以及快门开关与脉冲激光器的发射、探测器探测时间的时序控制.  相似文献   

5.
用于自适应光学系统的激光引导星   总被引:2,自引:0,他引:2  
自适应光学系统应用于天文观测时应满足一些技术要求,其中的关键技术之一是自适应光学系统为了对畸变的光波进行采样,需要在其很小的等晕角内有足够的信标强度。激光引导星,即人造信标,就是解决这种问题的方法之一。特别是在观测天文暗目标时,其自身的光强度不能为有探测提供信息,激光引导星就蛤得非常重要。根据国际上的最新进展对激光引导星技术给予了介绍。重点介绍了激光引导星的局限性,对近几年提出的对激光引导星可能的  相似文献   

6.
基于激光信标发射和接收共光路系统中探测器受杂散光影响的关键问题,设计了一种新型转盘式机械快门装置,对光信号进行高频率开关控制,从而对自适应光学系统的波前探测器起到彻底保护作用。设计时,分析了瑞利信标的采样厚度以及快门开关与脉冲激光器的发射、探测器探测时间的时序控制。  相似文献   

7.
In order to increase the corrected field of view of an adaptive optics (AO) system, several deformable mirrors (DM) have to be placed in the conjugate planes of the dominant turbulent layers (multi-conjugate adaptive optics,MCAO (Beckers, 1988)).The performance of MCAO systems depends on the quality of thewavefront sensing ofthe individual layers and on the number of corrected modes in eachindividual layer as in single layer AO systems. In addition, the increase in corrected field of view depends on the number of guide stars providing information about theturbulence over a sufficiently large area in each turbulent layer. In this article, we investigate these points and provide formulae for calculating the increased field of view with a new approach using the spatial correlation functions of the appliedpolynomials (e.g. Zernike). We also present a new scheme of measuring the individual wavefront distortion of each of the dominantlayers with a Shack-Hartmann-Curvature Sensor using gradientinformation as well as scintillation. An example for the performance of a two layer MCAO system is given for the 3.5-m telescope of the Calar Alto Observatory, Spain, using ameasured Cn 2-profile. The corrected field of view in K-band(2.2 m) can be as large as 3 arcmin with a Strehl ratio above 60%.  相似文献   

8.
In this paper, we present simulation results of a ground-layer correction adaptive optics system (GLAO), based on four laser guide stars and a single deformable mirror. The goal is to achieve a seeing improvement over an 8-arcmin field of view, in the near-infrared (from 1.06 to 2.2 μm). We show results on the scaling of this system (number of subapertures, frame rates), and the required number of tip-tilt stars. We investigate the use for GLAO of both sodium and Rayleigh guide stars. We also show that if the lasers can be repositioned, the performance of the adaptive optics can be tailored to the astronomical observations.  相似文献   

9.
The optimal performance of adaptive optics systems can only be maintainedif the wavefront reference is bright and compact.Experience has shown that both of these important criteria are remarkablydifficult to achieve with laser guide stars. This contribution gives an account of the methods by which ALFAattempts to reach them.First, the production of a high quality, high power laser beam isdescribed.However, this quality is unavoidably compromised along the path to thelaunch telescope.In order to rectify this, a new set of diagnostic tools which monitorthe quality of the out-going beam has been installed, and these arealso described.Lastly, we outline a number of possible modifications on which we areworking.If successful, these may allow a substantial improvement in the beamquality.  相似文献   

10.
Multi-conjugate adaptive optics(MCAO),consisting of several deformable mirrors(DMs),can significantly increase the adaptive optics(AO)correction field of view.Current MCAO can be realized by either star-oriented or layer-oriented approaches.For solar AO,ground-layer adaptive optics(GLAO)can be viewed as an extreme case of layer-oriented MCAO in which the DM is conjugated to the ground,while solar tomography adaptive optics(TAO)that we proposed recently can be viewed as star-oriented MCAO with only one DM.Solar GLAO and TAO use the same hardware as conventional solar AO,and therefore it will be important to see which method can deliver better performance.In this article,we compare the performance of solar GLAO and TAO by using end-to-end numerical simulation software.Numerical simulations of TAO and GLAO with different numbers of guide stars are conducted.Our results show that TAO and GLAO produce the same performance if the DM is conjugated to the ground,but TAO can only generate better performance when the DM is conjugated to the best height.This result has important application in existing one-DM solar AO systems.  相似文献   

11.
We use laser guide star adaptive optics (LGS/AO) on the 10 m Keck II telescope to obtain high spatial resolution images of young massive clusters (YMCs) in NGC1569 and M82. These data probe YMC structure and the relation of the YMCs to the ambient field star population. The higher resolution of Keck LGS/AO relative to Hubble Space Telescope/NICMOS in the near-infrared enables us to examine whether YMCs are monolithic or hierarchical assemblies. The new integral-field spectrometer OSIRIS operating behind LGS/AO can trace the distribution of massive evolved stars within a cluster and reveal the nature of mass segregation.  相似文献   

12.
We describe a novel concept for high-resolution wavefront sensing based on the optical differentiation wavefront sensor (OD). It keeps the advantages of high resolution, adjustable dynamic range, ability to work with polychromatic sources and, in addition, it achieves good performance in wavefront reconstruction when the field is perturbed by scintillation. Moreover, this new concept can be used as multi-object wavefront sensor in multiconjugate adaptive optics systems. It is able to provide high resolution and high sampling operation, which is of great interest for the projected extreme adaptive optics systems for large telescopes.  相似文献   

13.
Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth’s turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.  相似文献   

14.
The adaptive optics system ALFA differs in some aspects from systems like ADONIS and PUEO which have delivered scientific results since years. Interchangeable lenslet arrays with different numbers of subapertures and a deformable mirror with many more actuators than the number of corrected modesresult in some peculiarities in the calibration of the system and the reconstruction of incident wavefronts.We describe the design of ALFA's optics and its modal control architecture with a focus on a comparative study of the performance of different mode sets used to correct the wavefront aberrations. An outlook on our plans to improve and simplify the use of ALFA is given.The last section is dedicated to issues related to observing with ALFA in its present state. Expected Strehl ratios for different seeing conditions and guide star magnitudes are summarized in a table. AO observations in general, direct imaging and doing spectroscopywith ALFA in particular are discussed.  相似文献   

15.
A method for producing a laser guide star wavefront sensor for adaptive optics with reduced focal anisoplanatism is presented. A theoretical analysis and numerical simulations have been carried out and the results are presented. The technique, named Sky-Projected Laser Array Shack–Hartmann (SPLASH), is shown to suffer considerably less from focal anisoplanatism than a conventional laser guide star system. The method is potentially suitable for large telescope apertures (∼8 m), and possibly for extremely large telescopes.  相似文献   

16.
I discuss the potential of integral-field spectroscopy (IFS) with adaptive optics in the study of the outflows from evolved stars of different masses.With IFS, detailed 3-D spatio-kinematical models of the outflows can be built, providing excellent observational datasets to be confronted with the existing dynamical theories. In addition, if multi-epoch observations are able to resolve the apparent expansion of the nebulae in the plane of the sky, then their dynamics can be further constrained, and other basic quantities like the distance via the expansion parallax, can be determined. The kind of results that can be obtained are illustrated by recent HST and VLT observations of the ring nebula around the symbiotic nova He 2-147.Given the present capabilities of the OASIS integral-field spectrograph of the Isaac Newton Group of Telescopes (ING), classical novae ejecta are the most appealing targets for such kind of studies, provided that its AO system NAOMI is complemented with the forthcoming laser guide star system GLAS.IFS+AO is also a powerful technique to detect faint ionized nebulae around bright stars, like for instance the outflows from luminous blue variables.  相似文献   

17.
We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) architecture will provide uniform, diffraction-limited performance in the J, H and K bands over 17–30 arcsec diameter fields with 50 per cent sky coverage at the galactic pole, as is required to support TMT science cases. The NFIRAOS and LGSF subsystems completed successful preliminary and conceptual design reviews, respectively, in the latter part of 2011. We also report on progress in AO component prototyping, control algorithm development, and system performance analysis, and conclude with an outline of some possible future AO systems for TMT.  相似文献   

18.
Sodium laser guide stars (LGSs) are elongated sources due to the thickness and the finite distance of the sodium layer. The fluctuations of the sodium layer altitude and atom density profile induce errors on centroid measurements of elongated spots, and generate spurious optical aberrations in closed-loop adaptive optics (AO) systems. According to an analytical model and experimental results obtained with the University of Victoria LGS bench demonstrator, one of the main origins of these aberrations, referred to as LGS aberrations, is not the centre-of-gravity (CoG) algorithm itself, but the thresholding applied on the pixels of the image prior to computing the spot centroids. A new thresholding method, termed 'radial thresholding', is presented here, cancelling out most of the LGS aberrations without altering the centroid measurement accuracy.  相似文献   

19.
Integral field spectrographs are major instruments with which to study the mechanisms involved in the formation and the evolution of early galaxies. When combined with multi-object spectroscopy, those spectrographs can behave as machines used to derive physical parameters of galaxies during their formation process. Up to now, there has been only one available spectrograph with multiple integral field units, i.e. FLAMES/GIRAFFE on the European Southern Observatory (ESO) Very Large Telescope (VLT). However, current ground-based instruments suffer from a degradation of their spatial resolution due to atmospheric turbulence. In this article we describe the performance of FALCON, an original concept of a new-generation multi-object integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.25 arcsec) and high spectral resolution  ( R > 5000)  in the J and H bands over a wide field of view  (10 × 10 arcmin2)  in the VLT Nasmyth focal plane. However, instead of correcting the whole field, FALCON will use multi-object adaptive optics (MOAO) to perform the adaptive optics correction locally on each scientific target. This requires us then to use atmospheric tomography in order to use suitable natural guide stars for wavefront sensing. We will show that merging MOAO and atmospheric tomography allows us to determine the internal kinematics of distant galaxies up to z ≈ 2 with a sky coverage of 50 per cent, even for objects observed near the Galactic pole. The application of such a concept to extremely large telescopes seems therefore to be a very promising way to study galaxy evolution from z = 1 to redshifts as high as z = 7.  相似文献   

20.
波前检测是天文望远镜自适应光学中的重要环节。四棱锥作为一种新型的波前检测元件,与其他传统的波前传感器相比,具有较高的灵敏度。特别是对于光干涉或拼接镜面望远镜而言,四棱锥波前传感器能够被用来检测子望远镜或子镜面之间的相对光程差,从而为干涉(或共相)的实现提供有效的检测信号。在分析四棱锥波前检测原理的基础上,阐述了单孔径条件下波前倾斜检测及双孔径干涉条件下相对光程差检测的软件仿真设计和阶段性成果,并简述了下一阶段的研究计划。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号