首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statistical aspects of estimating net fluxes of nutrients between a salt marsh and a tidal creek on a tidal cycle basis and an annual basis are explored. For individual tidal cycles, the instantaneous flux of a nutrient is written in a constrained linear model as a function of time. The model is rewritten as an unconstrained model, and net flux is shown to be a linear combination of the parameters of the model. Standard linear models techniques can be used to make inferences about net fluxes on a tidal cycle basis. Considering a year as a finite population of tidal cycles, annual net flux can be estimated using a regression estimator. In the case of the flux of dissolved nitrite plus nitrate, the marsh was found to be a statistically significant sink for nitrogen (in this form) from adjacent tidal creeks.  相似文献   

2.
辛沛  金光球  李凌 《水科学进展》2009,20(3):379-384
滨海盐沼是重要的陆地-海洋交界带生态系统。目前国际上存在关于盐沼的两大假设:盐沼系统输出养分和盐沼植物带状分布。为验证这两大假设,增强对盐沼湿地的了解,盐沼孔隙水流动及溶质运移研究至关重要。为模拟复杂盐沼系统孔隙水流动及溶质运移,改进了美国地质勘测局编制的SUTRA程序。基于假定的潮沟横断面物理条件,对孔隙水流动及溶质运移过程进行了模拟分析。结果表明潮沟附近孔隙水及溶质交换较快,潮水浸淹会减缓潮沟附近出现物质集结。落潮时潮沟附近有明显垂向流和水平流,远潮沟地带主要为水平流。潮沟附近土壤通气条件较好。这些模拟结果较好的吻合了潮沟附近较盐沼内部盐沼植物长势较好的现象。  相似文献   

3.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   

4.
Flume nets of various lengths and a 3-m seine were used to sample the fishes and macrocrustaceans using a flooded Louisiana salt marsh and the adjacent tidal creek. The experiment allowed for species-specific comparisons of the flooded marsh at the creek edge versus the interior. Of the 37,667 organisms collected in flume nets from January through November 1989, 89% were decapods (nine species) and 11% were fish (29 species). An additional 18,539 organisms (75% decapods and 25% fish) were collected from concurrent seine samples taken from July through November. Comparison of catches among different flume lengths and low tide versus high tide seine collections revealed distinct patterns of marsh habitat utilization. Densities of most organisms were highest within 3 m of the water’s edge, but significant numbers of marsh-resident fish species used the interior marshes. The edge marshes appeared to be used by both transient and resident species; however, the interior marshes were used primarily by marsh-resident species (Cyprinodontiformes andPalaemonetes sp.) that are excellent food sources for adult transient-species. Four zonations of marsh use are described for transients, residents, and rare species.  相似文献   

5.
In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.  相似文献   

6.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

7.
Tidal freshwater marshes are critical buffers that exist at the interface between watersheds and estuaries. Little is known about the physical dynamics of tidal freshwater marsh evolution. Over a 21-mo period, July 1995 to March 1997, measurements were made of biweekly sediment deposition at 23 locations in a 3.8-ha tidal freshwater marsh in the Bush River subestuary of the upper Chesapeake Bay. Biweekly accumulation showed high spatial and temporal variability, ranging from ?0.28 g cm?2 to 1.15 g cm?2. Spatial variability is accounted for by habitat differences including plant associations, elevation, and hydrology. Temporal variability is accounted for by interannual climate variability, the growth cycles of marsh plants, stream-marsh interactions, forest-marsh interactions, and animal activity.  相似文献   

8.
Salt marsh resilience to sea-level rise depends on marsh plain elevation, tidal range, subsurface processes, as well as surface accretion, of which suspended-sediment concentration (SSC) is a critical component. However, spatial and temporal patterns of inorganic sedimentation are poorly quantified within and across Salicornia pacifica (pickleweed)-dominated marshes. We compared vertical accretion rates and re-examined previously published suspended-sediment patterns during dry-weather periods at Seal Beach Wetlands, which is characterized by a mix of Spartina foliosa (cordgrass) and pickleweed, and for Mugu Lagoon, where cordgrass is rare. Mugu Lagoon occurs higher in the tidal frame and receives terrigenous sediment from an adjacent creek. Feldspar marker horizons were established in winter 2013–2014 to measure accretion. Accretion rates at Seal Beach Wetlands and Mugu Lagoon were 6 ± 0.5 mm/year (mean ± SE) and 2 ± 0.3 mm/year. Also, the estimated sediment flux (g/year) across the random feldspar plots was 3.5 times higher at Seal Beach Wetlands. At Mugu Lagoon, accretion was higher near creeks, although not statistically significant. Dry-weather SSC showed similar concentrations at transect locations across sites. During wet weather, however, SSC at Mugu Lagoon increased at all locations, with concentrations decaying farther than 8 m from tidal creek edge. Based on these results from Mugu Lagoon, we conclude accretion patterns are set by infrequent large flooding events in systems where there is a watershed sediment source. Higher accretion rates at Seal Beach Wetlands may be linked to lower-marsh elevations, and thus more frequent inundation, compared with Mugu Lagoon.  相似文献   

9.
Geomorphology may be an important predictor of vegetation pattern in systems where suceptibility to disturbance is unevenly distributed across the landscape. Salt marsh communities exhibit spatial pattern in vegetation at a variety of spatial scales. In coastal Georgia, the low marsh is a virtual monoculture ofSpartina alterniflora interspersed with patches of species that are more typical of the high marsh. These localized disturbances are most likely created by wrack mats, mats of dead vegetation which can compact and smother underlying vegetation creating bare patches for colonization by high marsh species. We investigated the spatial pattern of disturbed patches along a 2 km section of Dean Creek, a tidal creek at the southwestern end of Sapelo Island, Georgia, U.S. We used a discriminant model to explore the relationship between tidal creek morphology (e.g., the presence of drainage channels and creek bends) and the spatial distribution of disturbed patches. The model predicted vegetation pattern along the creek with relatively high accuracy (>70%). Areas where water movement is slowed or multidirectional (e.g., along creek bends and near drainage channels) were most susceptible to disturbance. Our findings suggest an important functional linkage between geomorphology and vegetation pattern in salt marsh communities.  相似文献   

10.
One year’s measurements of surficial sedimentation rates (1986–1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr?1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes.  相似文献   

11.
Few studies concerning tide-restricted and restoring salt marshes emphasize fishes and decapod crustaceans (nekton) despite their ecological significance. This study quantifies nekton utilization of three New England salt marshes under tide-restricted and restoring conditions (Hatches Harbor, Massachusetts; Sachuest Point and Galilee, Rhode Island). The degree of tidal restriction differed among marshes allowing for an examination of nekton utilization patterns along a gradient of tidal restriction and subsequent restoration. Based on sampling in shallow subtidal creeks and pools, nekton density and richness were significantly lower in the restricted marsh compared to the unrestricted marsh only at the most tide-restricted site (Sachuest Point). The dissimilarity in community composition between the unrestricted and restricted marsh sites increased with more pronounced tidal restriction. The increase in nekton density resulting from tidal restoration was positively related to the increase in tidal range. Species richness only increased with restoration at the most tide-restricted site; no significant change was observed at the other two sites. These patterns suggest that only severe tidal restrictions significantly reduce the habitat value of New England salt marshes for shallow subtidal nekton. This study suggests that the greatest responses by nekton, and the most dramatic shift towards a more natural nekton assemblage, will occur with restoration of severely restricted salt marshes.  相似文献   

12.
崇明东滩盐沼潮沟水动力过程观测与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2007年7月在上海崇明东滩盐沼内部采用复合测量手段进行了现场观测,对取得的盐沼水动力过程数据进行了较系统的分析。崇明东滩盐沼内部的观测及分析结果表明:(1)潮沟及盐沼表面对潮波产生严重阻尼作用,潮波传播至盐沼内部时,潮沟水位波动明显异于外海,水位上升极快,而下降慢。当潮沟有退水时,涨潮初期的当地水位上升并不是潮水进入潮沟的结果,而是流向相反的潮沟进口涨潮水和潮沟内退潮水形成的水位壅高;(2)潮波进入盐沼内部时,风具有一定作用,向岸风可抬高潮沟及盐沼内部水位,离岸风反之;(3)潮沟水流流速与潮沟水位变化率、外海潮位变化率都不存在相关关系;(4)潮沟水位低时,过流断面较小,涨潮水进入潮沟时,潮沟水一旦改变流向,就具备很高的流速并伴随流速峰值的出现。潮沟水向盐沼表面漫溢时,过流断面突变,潮沟流速出现峰值。由于潮沟退潮水位变化慢,盐沼表面水归槽时并没有产生潮沟流速峰值。根据崇明东滩观测结果,概括了盐沼水动力过程的影响因素,指出了以后研究应重视的问题。  相似文献   

13.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

14.
Tidal marsh (re)creation on formerly embanked land is increasingly executed along estuaries and coasts in Europe and the USA, either by restoring complete or by reduced tidal exchange. Ecosystem functioning and services are largely affected by the hydro-geomorphologic development of these areas. For natural marshes, the latter is known to be steered by feedbacks between tidal inundation and sediment accretion, allowing marshes to reach and maintain an equilibrium elevation relative to the mean sea level. However, for marsh restoration sites, these feedbacks may be disturbed depending on the restoration design. This was investigated by comparing the inundation-elevation change feedbacks in a natural versus restoration site with reduced tidal exchange in the Scheldt estuary (Belgium). This study analyzes long-term (9 years) datasets on elevation change and tidal inundation properties to disentangle the different mechanisms behind this elevation-inundation feedback. Moreover, subsequent changes in sediment properties that may affect this feedback were explored. In the restoration area with reduced tidal exchange, we found a different elevation-inundation feedback than on natural marshes, which is a positive feedback on initially high sites (i.e., sediment accretion leads to increasing inundation, hence causing accelerating sediment accretion rates) and a gradual silting up of the whole area. Furthermore, there is evidence for the presence of a relict consolidated sediment layer. Consequently, shallow subsidence is less likely to occur. Although short-term ecological development of the tidal marsh was not impeded, long-term habitat development may be affected by the differences in hydro-geomorphological interactions. An increase of inundation frequency on the initially high sites may cause inhibition of habitat succession or even reversed succession. Over time, the climax state of the restoration area may be different compared to natural marshes. Moreover, sediment-related ecosystem services, such as nutrient and carbon burial, may be positively influenced because of continuing sedimentation, although flood water storage potential will decrease with increasing elevation. Depending on the restoration goals, ecosystem trajectories and delivery of ecosystem services can be controlled by adaptive management of the tidal volume entering the restoration area.  相似文献   

15.
Tidal freshwater marshes are diverse habitats that differ both within and between marshes in terms of plant community composition, sediment type, marsh elevation, and nutrient status. Because our knowledge of the nitrogen (N) biogeochemistry of tidal freshwater systems is limited, it is difficult to assess how these marshes will respond to long-term progressive nutrient loading due to watershed development and urbanization. We present a process-based mass balance model of N cycling in Sweet Hall marsh, a pristine (i.e., low nutrient)Peltandra virginica-Pontederia cordata dominated tidal freshwater marsh in the York River estuary, Virginia. The model, which was based on a combination of field and literature data, revealed that N cycling in the system was largely conservative. The mineralization of organic N to NH4 + provided almost twice as much inorganic N as was needed to support marsh macrophyte and benthic microalgal primary production. Efficient utilization of porewater NH4 + by nitrifiers and other microbes resulted in low rates of tidal NH4 + export from the marsh and little accumulation of NH4 + in marsh porewaters. Inputs of N from the estuary and atmosphere were not critical in supporting marsh primary production, and served to balance N losses due to denitrification and burial. A comparison of these results with the literature suggests that the relative importance of tidal freshwater marsh N cycling processes, including plant productivity, organic matter mineralization, microbial immobilization, and coupled nitrification-denitrification, are largely independent of small changes in water column N loading. Although very high (millimolar) concentrations of dissolved inorganic N can affect processes including denitrification and plant productivity, the factors that cause the switch from efficient N recycling to a more open N cycle have not yet been identified.  相似文献   

16.
Salt marshes respond to both slowly increasing tidal inundation with sea level rise and abrupt disturbances, such as storm-induced wrack deposition. The effects of inundation pattern and wrack deposition have been studied independently but not in combination. We manipulated inundation of tidal creek water and wrack presence individually and in combination, in two neighboring communities within a Virginia high salt marsh during 1994 and 1995. The effects of these manipulations were assessed by measurements of aboveground plant biomass. Altered inundation by itself produced little response in the various categories of plant biomass measured. Wrack deposition affected all species (i.e., Juncus roemerianus, Spartina patens, and Distichlis spicata) showing a significant reduction in aboveground biomass, as expected. Recovery after wrack deposition was dependent on the species. S. patens and D. spicata recovered from wrack deposition within one growing season, while J. roemerianus did not. Because the effects of wrack deposition greatly exceeded those of experimentally increased inundation, the possible interactions between the two were masked. Increased inundation may have inhibited the colonization of bare areas by some species after the removal of wrack from an area, although statistical significance at α=0.01 was not reached. Our results confirm that wrack deposition can cause the redistribution of species within the high marsh community. Altered inundation may have a greater effect on the re-establishment of the plant community after wrack deposition than it does without wrack deposition.  相似文献   

17.
This contribution presents a new perspective on water chemistry and its relation to tidal hydrology in marsh-dominated estuaries. Results are derived from both field and modeling experiments. A heuristic model based on a tidally-averaged advection-dispersion equation is used in conjunction with source-sink terms (for benthic, marsh surface, and open-water exchanges) to make predictions of nutrient concentrations in the water column. Spring-neap tidal contrasts are associated with significant changes in water-column chemistry for a variety of nutrients sampled during the growing season in the Parker River estuary (Massachusetts). For ammonium, phosphate, nitrate plus nitrite, total dissolved N, and total dissolved P, concentrations are significantly lower during spring tides (marshes flooded) than during neap tides (marshes unflooded). Model results indicate that physical changes and open-water processing are insufficient to produce the observed effect, and that explicit biogeochemical processing on marsh surfaces is required. Field observations of changes in nutrient to nutrient ratios with the onset of marsh inundation also support this conclusion. As tides progress from the neap to spring condition, a “spectrum” of trajectories emerges in salinity-nutrient plots developed from both observational datasets and model output. Care must therefore be exercised in designing sampling programs for water chemistry in marsh-dominated ecosystems and in interpreting the resulting mixing diagrams.  相似文献   

18.
Stratigraphic records from sediment cores collected in a freshwater tidal marsh and in the estuary upstream and downstream from the marsh were used to determine the accumulation of nutrients and trace metals over long time periods. Analysis of pollen and seeds show that the high marsh has formed only within the past 100 yr, following increased sedimentation rates in the area. Variations in nutrient and trace metal accumulations over several decades show that pollutants from agricultural runoff and wastewater discharge are stored to a greater extent in high-marsh than in low-marsh sediments. Greater accumulation rates in the high marsh are probably related to its greater sedimentary organic carbon concentration.  相似文献   

19.

We examined fish assemblages in tidal salt marsh creeks in Delaware Bay in order to evaluate their response to treatment forPhragmites removal following initial treatment in 1996. In Alloway Crrek, a tributary to Delaware Bay, reference creeks draining marsh of untreatedPhragmites or naturally occurringSpartina were compared with creeks in marshes treated forPhragmites removal. These reference and treated creeks occur in close proximity and share many characteristics including salinity, temperature, dissolved oxygen, and turbidity, although creeks inPhragmites sites differed slightly in bathymetry. We analyzed a time series of otter trawl collections (22 monthly sample periods from 1999 to 2001) for differences in juvenile fish assemblage among creeks with different vegetation history. Periodically, young-of-the-year (YOY) and age 1+ white perch (Morone americana), YOY spot (Leiostomus xanthurus), YOY Atlantic menhaden (Brevoortia tyrannus), and other species were relatively more abundant atPhragmites sites, but other dominant species were preiodically abundant at all sites. Among-treatment differences based on principal response curves analysis accounted for about 19% of the total species variation, but differences varied widely among sample periods and there is little or no indication of a trend over the 3-yr period. Larger collections were often associated with subtidal structure, which was more common atPhragmites sites and potentially represents a sampling artifact. Assemblages of creeks with differing vegetation history differ weakly but recognizably, suggesting slow or little response to treatment, at least based on otter trawl collections in subtidal marsh creeks.

  相似文献   

20.
We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium–SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6–14 cm of marsh submergence in response to historical sea-level acceleration, and 3–4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号