首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987110000125   总被引:3,自引:0,他引:3  
<正>Carbonatites are commonly related to the accumulation of economically valuable substances such as REE.Cu,and P.The debate over the origin of carbonatites and their relationship to associated silicate rocks has been ongoing for about 45 years.Worldwide,the rocks characteristically display more geochemical enrichments in Ba,Sr and REE than sedimentary carbonate rocks.However,carbonatite's geochemical features are disputed because of secondary mineral effects.Rock-forming carbonates from carbonatites at Qinling.Panxi region,and Bayan Obo in China show REE distribution patterns ranging from LREE enrichment to flat patterns.They are characterized by a Sr content more than 10 times higher than that of secondary carbonates.The coarse- and fine-grained dolomites from Bayan Obo H8 dolomite marbles also show similar high Sr abundance,indicating that they are of igneous origin.Some carbonates in Chinese carbonatites show REE(especially HREE) contents and distribution patterns similar to those of the whole rocks.These intrusive carbonatites display lower platinum group elements and stronger fractionation between Pt and Ir relative to high-Si extrusive carbonatite.This indicates that most intrusive carbonatites may be carbonate cumulates.Maoniuping and Daluxiang in Panxi region are large REE deposits.Hydrothermal fluorite ore veins occur outside of the carbonatite bodies and are emplaced in wallrock syenite.The fiuorite in Maoniuping has Sr and Nd isotopes similar to carbonatite.The Daluxiang fiuorite shows Sr and REE compositions different from those in Maoniuping.The difference is reflected by both the carbonatites and rock-forming carbonates,indicating that REE mineralization is related to carbonatites.The cumulate processes of carbonate minerals make fractionated fluids rich in volatiles and LREE as a result of low partition coefficients for REE between carbonate and carbonatite melt and an increase from LREE to HREE.The carbonatite-derived fluid has interacted with wallrock to form REE ore veins.The amount of carbonatite dykes occurring near the Bayan Obo orebodies may support the same mineralization model,i.e.that fluids evolved from the carbonatite dykes reacted with H8 dolomite marble,and thus the different REE and isotope compositions of coarse- and fine-grained dolomite may be related to reaction processes.  相似文献   

2.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   

3.
对东秦岭地区河南嵩县一带进行地质调查,发现了一系列具有一定规模的含稀土碱性碳酸岩矿脉并在其中发现一种特殊的钡解石矿物。依据该钡解石主量元素组成,计算分子式为Ba_1._(04) Ca_0._(81)Sr_(0.14)(CO_3)_2,为锶钡解石,LA-ICP-MS分析表明其富Na、K、Mn、Pb、REE、Y等元素,稀土元素总量最高为4 080×10-6,总体表现为轻稀土元素富集、重稀土元素亏损。该矿物与常见于沉积岩中的钡解石存在显著差别。钡解石呈现出与霓辉石共生(钡解石正晶型,霓辉石围绕钡解石生长;霓辉石正晶型,钡解石围绕霓辉石生长),或与石英、方解石、磷灰石共生(它形)两种状态。早期方解石与钡解石共生,形成于碱性岩演化早期的碳酸盐与硅酸盐不混溶阶段;晚期方解石则以布丁状分布于钡解石和霓辉石中,为碳酸盐交代阶段产物。霓辉石、钾长石、钠长石、辉石、磷灰石、方解石、石英和钡解石共生的组合与已知火成碳酸岩的矿物组合相似。该区碳酸岩富集REE、Ba和Sr,与已知大型富稀土碳酸岩矿床(如牦牛坪稀土矿)特征一致。结合已发现矿脉地质特征,认为该区有较大的成矿潜力,为东秦岭地区寻找火成岩型稀土矿提供了依据。  相似文献   

4.
The Huanglongpu carbonatite-related Mo ore field is located in the Lesser Qinling Orogenic belt in the southern margin of the North China block. The ore field is composed of six deposits, Yuantou, Wengongling, Dashigou, Shijiawan, Taoyuan and Erdaohe, all of which are genetically related to carbonatite dykes except for the Shijiawan deposit which is associated with a granitic porphyry. The Yuantou carbonatite dykes intruded into Archean gneiss and other carbonatites emplaced into Mesoproterozoic volcanic and sediment rocks. The carbonatites are mainly composed of calcite and variable amounts of quartz and K-feldspar and minor molybdenite. Re–Os dating of molybdenite from the Yuantou carbonatite yields a weighted average age of 225.0 ± 7.6 Ma, consistent with the molybdenite age (221 Ma) from the Dashigou deposit. The rocks are characterized by high heavy REE (HREE) contents and consistent flat REE distribution patterns with La/Ybcn ~ 1. Quartz in the carbonatites from Yuantou and Dashigou deposits shows consistent O isotopes (8.1–10.2‰) similar to the associated calcite (7.2–9.5‰). The quartz and associated K-feldspar contain lower Zr, Hf and higher HREE abundances and negligible Eu anomaly relative to those from the granite porphyry in Shijiawan. Both minerals are primary products in the carbonatitic liquid, and not captured from the wall-rocks or crustal-derived silicate magmas, or a hydrothermal origin. Thus, the Huanglongpu carbonatitic liquids were enriched in Si and Mo, which may be produced by intensely fractional crystallization of non-silicate minerals.  相似文献   

5.
全球范围内出露的碳酸岩大多为钙质、镁质、铁质碳酸岩,少量为钠质和硅质碳酸岩,极少有富Sr碳酸岩的报道,其岩石成因、资源意义及对碳酸岩岩浆演化的指示意义尚不清楚。本次在四川省牦牛坪稀土矿区南部包子山稀土矿床的露天采坑中发现了超级富Sr的碳酸岩,其呈不规则的脉状侵入到构造角砾岩中。岩石呈紫色-淡紫色,微晶-斑状结构,斑晶主要为萤石,基质主要为菱锶矿、方解石、氟碳铈矿、氟碳钙铈矿、金云母、重晶石并含少量的金属硫化物和氧化物。全岩的微量元素分析表明,其稀土元素总量(∑REE)达3.5%~6.1%,Sr含量达19.0%~27.7%,已超过稀土矿床和锶矿床的工业品位要求。岩石中的中、重稀土元素含量占稀土元素总量的1.14%~1.77%,一些高价值稀土元素含量较高,如Pr(939×10~(-6)~1399×10~(-6))、Nd(2783×10~(-6)~3937×10~(-6))、Gd(237×10~(-6)~320×10~(-6)),因此除轻稀土元素外,中、重稀土和锶元素也具有重要的资源意义。岩石强烈富集REE、Sr、Ba,而明显亏损P、Nb、Ta、Zr、Hf元素,可能与岩浆演化过程中锆石和其它基性矿物的结晶分离有关。全岩的Sr-Nd同位素组成与牦牛坪、里庄稀土矿床的碳酸岩相似,表明它们为同源岩浆产物。笔者认为,富Sr的碳酸岩代表了碳酸岩岩浆演化晚期的产物,REE、Sr、Ba、F和S元素均在岩浆演化晚期的碳酸岩中高度富集。碳酸岩岩浆超浅成侵位至构造角砾岩中,并与下渗的大气水相遇导致岩浆的淬冷和微晶-斑状结构的形成。早期基性矿物(如霓辉石、黑云母)及碳酸盐矿物(如方解石、白云石等)的结晶分离是造成晚期碳酸岩中稀土元素富集的重要原因。富Sr碳酸岩中石英斑晶的发现和其较低的SiO_2含量表明碳酸岩岩浆演化晚期可能是硅饱和的,且这种岩浆具有很低的SiO_2溶解能力。以菱锶矿(体积分数 50%)为主要碳酸盐矿物的稀土碳酸岩可能代表了一种新的碳酸岩类型,明显不同于已知的钙质、镁质、铁质和钠质碳酸岩。  相似文献   

6.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

7.
《International Geology Review》2012,54(12):1541-1552
The Mt Vulture carbonatites are the only carbonatite occurrence in the southern Apennines. We present new trace element data for these rocks in order to evaluate the factors influencing rare earth element (REE) and other trace element fractionations and their REE grade. This study focuses on massive hyalo-alvikites from two lava flows and one dike, which have different relative abundances of silicate and carbonate (i.e. Si/Ca). These differences are also evident from CaO/(CaO + MgO + FeO(T) + MnO) and Sr/Ba ratios. The REE grade of the Mt Vulture carbonatites is very similar to that of the global average for calcio-carbonatites. R-mode factor analysis shows that most of the trace element variance reflects the relative roles of carbonate and silicate minerals in influencing trace element distributions. Silicates largely control heavy rare earth element (HREE), transition metal, Zr, and Th abundances, whereas carbonate minerals control light rare earth element (LREE), Ba, and Pb abundances. In addition, apatite influences LREE concentrations. Increasing silica contents are accompanied by decreases in (La/Yb)N and (La/Sm)N ratios and less marked LREE enrichment. In contrast, higher carbonate contents are associated with increases in (La/Yb)N and (La/Sm)N. The Si/Ca ratio has little influence on Eu anomalies and middle rare earth element (MREE) to HREE fractionations. Apatite has a negligible effect on inter-REE fractionations amongst the carbonatites.  相似文献   

8.
At Mt. Vulture volcano (Basilicata, Italy) calcite globules (5–150 μm) are hosted by silicate glass pools or veins cross-cutting amphibole-bearing, or more common spinel-bearing mantle xenoliths and xenocrysts. The carbonate globules are rounded or elongated and are composed of a mosaic of 2–20 μm crystals, with varying optical orientation. These features are consistent with formation from a quenched calciocarbonatite melt. Where in contact with carbonate amphibole has reacted to form fassaitic pyroxene. Some of these globules contain liquid/gaseous CO2 bubbles and sulphide inclusions, and are pierced by quench microphenocrysts of silicate phases. The carbonate composition varies from calcite to Mg-calcite (3.8–5.0 wt.% MgO) both within the carbonate globules and from globule to globule. Trace element contents of the carbonate, determined by LAICPMS, are similar to those of carbonatites worldwide including ΣREE up to 123 ppm. The Sr–Nd isotope ratios of the xenolith carbonate are similar to the extrusive carbonatite and silicate rocks of Mt. Vulture testifying to derivation from the same mantle source. Formation of immiscibile silicate–carbonatite liquids within mantle xenoliths occurred via disequilibrium immiscibility during their exhumation.  相似文献   

9.
The Montviel 250 Mt carbonatite-hosted REE–Nb deposit is hosted in a Paleoproterozoic alkaline suite located in the Sub-Province of Abitibi, in the Archean Province of the Superior. The alkaline intrusion consists of biotite clinopyroxenites, melano- to leucosyenites, a melteigite–ijolite–urtite series, riebeckite granite, a series of carbonatites and a carbonatite polygenic breccia. The carbonatite series includes silicocarbonatites, calciocarbonatites, rare magnesiocarbonatites, ferrocarbonatites and mixed carbonatites and are cut by a late, high-energy carbonatite polygenic breccia. Diamond drill hole assays and microscope observations indicate that Nb is hosted in pyrochlore from silicocarbonatite whereas the REE mineralization is mainly hosted in ferrocarbonatite, late mixed carbonatites and polygenic breccia, in REE-bearing carbonates and fluorocarbonate minerals. Diamond drill hole underground mapping and systematic assays have shed light on zones enriched in Nd and LREE with preferential Ba and Sr hydrothermal precipitation and zones enriched in Dy, Y and HREE displaying preferential F and P bearing hydrothermal precipitation. Petrographic observations, electron microprobe analyses, LA-ICPMS and X-ray diffraction were used to study the mineralization processes and to identify and quantify the REE-bearing burbankite–(Ce), carbocernaite–(Ce), ewaldite–(Y), huanghoite–(Nd), cordylite–(Ce), cordylite–(Nd), kukharenkoite–(Ce) and synchysite–(Ce). Most minerals are enriched in total LREE with values around 19.3 wt.%, have total MREE values around 2.2 wt.% and extremely variable total HREE values, with very high contents of Dy and Y averaging around 0.3 wt.% and 1.0 wt.%, respectively, and with total HREE reaching up to 10.0 wt.%. A paragenetic sequence is proposed that consists of: (1) a silicocarbonatite Nb stage, and (2) a calciocarbonatite stage, dominated by magmatism but accompanied by hydrothermal fluids, (3) a main ferrocarbonatite stage, dominated by episodes of Ba- and Sr-hydrothermalism and LREE mineralization, F- and P-hydrothermalism and HREE mineralization and evolved ferrocarbonatitic magmatism, (4) a renewed, mixed carbonatite magmatic stage with minor but increasing hydrothermalism, and (5) a terminal stage of fluid pressure buildup and explosion, leading to the creation of a HREE-enriched polygenic breccia. Globular melt inclusions of Ba–Cl–F (± Si–O) may indicate the presence and contribution of barium-bearing chlorofluoride melts during hydrothermal activity and mineralization of the carbonatite.  相似文献   

10.
Thermodynamic analysis of equilibria between minerals (with regard for their compositions) in carbonatites of the Chagatai complex, Uzbekistan, provides us with the possibility of estimating the oxygen fugacity at which carbonates could occur in equilibrium with elementary carbon. Isotopic studies and thermodynamic simulations show that graphite started to crystallize at 775°C and an oxygen fugacity value approximately one logarithmic unit below the QFM buffer and continued to crystallize with further cooling, simultaneously with a decrease in the Ti concentration in the equilibrium magnetite. Graphite crystallized from carbonatite melt at higher temperatures and likely precipitated from hydrothermal fluid at lower temperatures. The composition of gas in equilibrium with graphite in the C-H-O system was calculated for oxygen fugacity values evaluated for the Chagatai carbonatites. Inasmuch as the values of oxygen potential are almost identical in graphite- and diamond-bearing carbonatites, the presence of graphite in carbonatite dikes and diatremes can be regarded as a prospecting guide in exploration for diamondiferous carbonatites.  相似文献   

11.
东北伊春地区桃山古元古代花岗岩的发现   总被引:2,自引:1,他引:1  
伊春桃山花岗岩具有高硅、富碱和低钙、镁、偏铝质-过铝质特点,稀土元素配分模式以轻稀土元素略微富集且缓向右倾斜、重稀土元素较为平坦、具有铕亏损的海鸥型,富集高场强元素(HFS)Zr和Ga,亏损Ba、Sr、Eu等大离子亲石元素,与区域上晚二叠世-早侏罗世的正长-碱长花岗岩具有类似的岩石地球化学特征。花岗岩锆石CL图像表明,锆石具有明显的继承性核和新生的边,核部的稀土微量元素变化较大,而新生的锆石边部稀土微量元素较稳定,说明部分锆石的核部受到了后期热事件的影响,而边部则是溶解后再沉淀的产物,即岩浆结晶作用形成。但无论是核部还是边部,它们的微量元素特征都指示其形成于大陆地壳环境,而非洋壳环境。锆石SHRIMPU-Pb定年结果表明,继承性锆石核具有两组平均年龄,分别为2540±10Ma和2471±12Ma,新生的锆石边部平均年龄为1821±10Ma。结合上述特征,我们认为,桃山花岗岩的源岩年龄为2.54Ga,区域上构造热事件的年龄为2.47Ga,而花岗岩的结晶年龄为1.82Ga,因此,桃山花岗岩所在的地区可能为一前寒武纪的古老微陆块。  相似文献   

12.
Summary Two bimodal carbonatite complexes in Namibia of Cretaceous age are explored as to the presence and composition of a coexisting carbonatitic fluid. The Kalkfeld and Ondurakorume complexes contain both Ca- and Mg/Fe-carbonatites, composed of calcite alone or calcite with ferroan dolomite, fluorapatite and strontianite. The major element evolution in the bulk rocks from s?vites to beforsites is due to crystallization of calcite and fluorapatite. All carbonatites show a negative Y anomaly in normalised REE plots. Fractionation is accompanied by successively lower HREE contents between Tb and Yb, expressed by the ratios Nd/Ho and Ho/Lu. The evolution of this downward-facing hump goes along with decreasing Y contents in bulk rocks and minerals. All this requires an additional phase coexisting with the carbonate liquid during fractionation. Comparison between the bulk rocks and the expelled fluid shows that the latter had preferentially accumulated the HREE and Y. Further evidence for this process are hydrothermal, HREE, Y-rich fluorites in other carbonatite complexes which reflect the composition of the expelled fluid. The high strength of fluoride complexes suggests that fluoride complexing in the carbonatitic fluid is the process responsible for extracting HREE and Y from the carbonatite magma, leaving fractionated carbonatite rocks depleted in these elements. The geochemical evolution of carbonatite magmas along fractionation has therefore to be considered in a melt-mineral-fluid system. Correspondence: B. Bühn, Instituto de Geociências, Universidade de Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil  相似文献   

13.
The Yungul carbonatite dykes at Speewah in the Kimberley region of Western Australia were emplaced along a north-trending splay from the northeast-trending Greenvale Fault located at the western boundary of the Halls Creek Orogen. The Yungul carbonatite dykes intrude a thick composite sill of the Palaeoproterozoic Hart Dolerite (~1,790 Ma), consisting of tholeiitic dolerite and gabbro with its felsic differentiates that form the Yilingbun granophyres and associated granites. The carbonatite dykes consist of massive, calcite carbonatite that host very coarse, pegmatitic veins and pods of calcite, and have largely replaced (carbonatitized) and fenitized the country rock Hart Dolerite suite in a zone up to 150 m wide. Dykes of red-brown siliceous fluidized-breccia and epithermal-textured veins consisting of bladed quartz, adularia and fluorite are closely associated with the carbonatite dykes. The Yungul carbonatites are closely associated with fluorite occurrences with resources currently reported as 6.7 Mt at 24.6% CaF2. The precise age of the Yungul carbonatite is not known, although it is believed to be post early Cambrian. The total REE content of the Yungul carbonatite is low (174.0–492.8 ppm; La/Yb 2.28–10.74) and thus atypical for calciocarbonatite. Chondrite-normalized REE patterns for the carbonatite are relatively flat compared to average calciocarbonatite, and show small negative Eu anomalies. These unusual geochemical features may have been acquired from the Hart Dolerite suite during emplacement of the carbonatite, a process that involved extensive replacement and fenitization of country rocks. Carbon and oxygen isotope compositions of massive calcite carbonatite and the coarse calcite veins and pods from the carbonatite suggest a deep-seated origin. The C and O isotope compositions show an overall positive correlation that can be attributed to both magmatic and magmatic-hydrothermal processes in their evolution. The magmatic δ13C-δ18O trend is also indicative of crustal contamination and/or low-temperature water/rock exchange. The carbon isotopic compositions have δ13C values that range from about ?5.2‰ to ?6.3‰ that support a mantle-derived origin for the Yungul carbonatites and are consistent with earlier conclusions based on whole-rock geochemistry and radiogenic isotopes studies.  相似文献   

14.
我国东部苏鲁皖地区新生代碱性玄武岩中,除了含有大量地幔橄榄岩类捕虏体以外,尚含有一定数量的石榴石、普通辉石和歪长石巨晶。这些巨晶是在地幔不同深度上从玄武岩中晶出的。巨晶组合的分离结晶作用对熔体稀土元素含量有很大影响。赋存巨晶的碱性玄武岩所具有的LREE富集、HREE亏损的稀土元素分配型式是由地幔橄榄岩类部分熔融程度、石榴石巨晶和普通辉石巨晶的早期高压熔离和玄武岩的结晶分异作用等综合因素造成的。  相似文献   

15.
We present new Sr-Nd isotope compositions together with major- and trace element concentrations measured for whole rocks and mineral separate phases (apatite, biotite and calcite) from fifteen Cape Verde oceanic carbonatites (Atlantic Ocean). Trace element patterns of calcio- and magnesio-carbonatites present a strong depletion in K, Hf, Zr and Ti and an overall enrichment in Sr and REE relative to Cape Verde basalts, arguing for distinct source components between carbonatites and basalts. Sr and Nd isotopic ratios show small, but significant variations defining a binary mixing between a depleted end-member with unradiogenic Sr and radiogenic Nd values and a ‘‘enriched’’ end-member compatible with old marine carbonates. We interpret the depleted end-member as the Cape Verde oceanic lithosphere by comparison with previous studies on Cape Verde basalts. We thus propose that oceanic carbonatites are resulting from the interaction of a deep rooted mantle plume carrying a lower 4He/3He signature from the lower mantle and a carbonated metasomatized lithosphere, which by low degree melting produced carbonatite magmas. Sr-Nd compositions and trace element patterns of carbonatites argue in favor of a metasomatic agent originating from partial melting of recycled, carbonated oceanic crust. We have successfully reproduced the main geochemical features of this model using a Monte-Carlo-type simulation.  相似文献   

16.
白云鄂博地区碳酸岩脉侵位序列与稀土元素富集机制   总被引:5,自引:2,他引:3  
白云鄂博地区发育大量的火成碳酸岩脉。按照矿物组成,碳酸岩脉可分为白云石型、白云石-方解石共存型和方解石型。野外穿插关系表明,白云石型碳酸岩脉形成得早,而方解石型碳酸岩脉形成得晚。白云鄂博地区的碳酸岩浆存在由白云石型到共存型再到方解石型的先后结晶顺序和演化趋势。碳酸岩脉的主量、稀土和微量元素组成特征表明,随着碳酸岩脉中方解石矿物组分的增加,轻稀土元素的含量呈明显富集趋势,而长期的结晶分异作用正是稀土元素,尤其是轻稀土元素在晚期岩浆中强烈富集的内在机制。  相似文献   

17.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


18.
陕西省华阳川铀铌铅矿床是小秦岭成矿带中成矿特征最为独特的矿床,碳酸岩脉的破碎带是重要的成矿空间。未矿化的碳酸岩中矿物以方解石为主,其他矿物很少;发育铀矿化的碳酸岩脉中矿物种类繁多,大部分为方解石,其次为角闪石、金云母、榍石、褐帘石、铌钛铀矿、重晶石、磷灰石、石英、磁铁矿、碱性长石等矿物。碳酸岩的LREE含量异常高,δ13CV-PDB和δ18OV-SMOW值显示典型的火成碳酸岩特征。基于碳酸岩脉的Sr、Nd、Pb同位素比值(87Sr/86Sr-206Pb/204Pb、207Pb/204Pb-206Pb/204Pb-143Nd/144Nd-87Sr/86Sr)的关系图,初步判断华阳川铀铌铅碳酸岩脉是源于EMI的碱性硅酸盐-碳酸盐熔体-溶液结晶分异的产物。  相似文献   

19.
Data obtained on lamprophyres from the carbonatite–volcanic unit in the lower horizon of the Tomtor Massif indicate that the rocks and zoned diopside and kaersutite phenocrysts in them are enriched in incompatible elements more significantly than is typical of alkaline ultramafic rocks of the Maymecha–Kotui and Kola provinces. The concentrations of these elements and their indicator ratios in the cores and intermediate zones of the diopside and kaersutite phenocrysts significantly vary, and this suggests that the minerals might have crystallized from different melts. This is consistent with the earlier conclusions, which were derived from studying melt inclusions, that the phenocrysts crystallized from mixing alkaline mafic melts of sodic and potassic types and different Mg–number which were enriched in the carbonatite component. The cores of the diopside phenocrysts started to crystallize from sodic mafic magma in a magmatic chamber, while the intermediate and outermost zones of this mineral crystallized from mixed sodic–potassic mafic melts. The carbonatite component was separated from the sodic mafic melt at high temperature (>1150°C) during diopside core crystallization. The bulk compositions of the alkaline lamprophyres and of the diopside and kaersutite phenocrysts contain lower normalized concentrations of HREE than LREE. This led us to conclude that the parental sodic and potassic mafic melts were derived from an enriched mantle source material under garnet–facies parameters, as is typical of continental rifts. It is noteworthy that the potassic mafic melt was derived at greater depths and lower degrees of melting of the mantle source than the sodic melt. The iron–rich sodic melt from which the cores of the diopside phenocrysts started to crystallize was enriched in V, REE, Y, and volatile components (H2O, CO2, F, Cl, and S). The onset of carbonate–silicate liquid immiscibility was marked by the redistribution of REE and Y into the carbonatite melt. The potassic, more Mg–rich mafic melt from which the intermediate and outermost zones of the diopside phenocrysts crystallized was enriched in Ti, Nb, Zr, and REE and always remained homogeneous when this mineral crystallized.  相似文献   

20.
小秦岭碳酸岩位于华北板块南缘,其(87Sr/86Sr)i与εNd值分别介于0.70495~0.70552和-10.1~4.6之间,紧靠EM1地幔端元,但相对EM1具有低Sr和低Nd特征。Pb同位素与华北板块南缘完全不同,而是落在了南秦岭下地壳范围之内,这表明华北板块南缘下地壳或地幔已经受到南秦岭地壳物质俯冲置换的影响,即在晚三叠纪时期,秦岭地区的碰撞造山作用可能已经结束,转入伸展拉张的构造环境。并进一步论述了秦岭地区三叠纪花岗岩是在深部拉张的构造环境下形成以及具有幔源物质参与的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号