首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 986 毫秒
1.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

2.
作为最早被识别出的碱性岩石之一,煌斑岩因富含金和金刚石等矿产资源以及对理解深部地球动力学过程的重要作用而受到广泛重视,但是目前对于煌斑岩的成因还存在不同的认识。本文基于近年来对煌斑岩的研究成果,对它们的分类、特征以及岩石成因进行综述。根据国际地科联(IUGS)的分类标准,煌斑岩可以分为超镁铁质煌斑岩、钙碱性煌斑岩和碱性煌斑岩。研究发现,超镁铁质煌斑岩往往是伸展环境下岩浆作用的产物,与金伯利岩和碳酸岩有密切的成因关系;钙碱性煌斑岩通常发育在汇聚或被动大陆边缘环境,其岩石成因可能有多种机制(如基性岩浆的分异、岩浆混合以及交代富集地幔的部分熔融);碱性煌斑岩出露在离散型大陆边缘和板内构造环境,通常和碱性玄武质岩浆作用密切相关。不管岩石的形成环境和过程如何,超镁铁质煌斑岩、钙碱性煌斑岩和碱性煌斑岩被普遍认为是来自于经历了交代富集作用的地幔源区。最后,文章指出了煌斑岩研究过程中存在的一些科学问题,如富集的地幔源区存在的矿物相(金云母和角闪石)对产生钠质还是钾质岩浆的影响,控制岩浆在结晶过程中影响含水矿物斑晶形成的因素以及部分煌斑岩中碳酸岩球粒和钠长石的形成原因等。  相似文献   

3.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

4.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   

5.
Fernando de Noronha archipelago presents an older Remédios Formation with subvolcanic intrusions, belonging to two different alkaline series, the sodic (undersaturated: basanites, tephrites, essexites, tephriphonolites, phonolites), and potassic ones (mildly undersaturated to silicic, with alkali basalts, basaltic trachyandesites, trachyandesites, trachytes), and lamprophyres. The upper Quixaba Formation presents nephelinite flows and basanites. A third minor unit, São José, is constituted by basanites carrying mantle xenoliths. Magnesian olivines occur in the Remédios basanites and alkali basalts, and in nephelinites. Melilites are present as groundmass grains in melilite melanephelinites (MEM). Clinopyroxenes (cpx) are mostly salites to titaniferous salites (Remédios sodic series), grading into aegirines in the differentiated aphyric phonolites. Cpx in the lamprophyres show disequilibrium textures. In the Quixaba flows, cpx are salites, enriched in Mg (especially in MEM). Amphiboles, remarkably, are common in tephriphonolites and phonolites and in basaltic trachyandesites, sometimes with disequilibrum zoning textures, and a conspicuous phase in lamprophyres. Dark micas are present as groundmass plates in MEM, OLM and PYM (olivine and pyroxene melanephelinites), with compositional variety (enriched in Ti, Ba, Sr) depending on the composition of the parent rock; BaO can be as high as 16–19%. Feldspars crystallize as calcic plagioclases, sanidines and anorthoclases, depending on the rock types, as phenocrysts and in groundmass, both in Quixaba and Remédios rocks; they are absent in nephelinites. Nephelines are found in Remédios sodic series types and Quixaba rocks. Haüyne and noseane are rarely observed in Remédios rocks.  相似文献   

6.
山东五莲七宝山地区早白垩世的碱性侵入岩位于火山机构的中央部位,该岩体具有高Ba-Sr含量、高Nb/Ta和Zr/Hf比、低Ti/Eu比等特征,前人的研究指出其起源于岩石圈地幔。然而,该侵入体中的岩性与成分变化所反映的深部动力学过程尚未理清。本文对七宝山二长辉长岩和两类辉石二长岩开展了详细的矿物学和岩石地球化学研究,识别出钠质和钾质两类钾玄质岩石系列。该套碱性中基性侵入岩具有富碱、富轻稀土和富大离子亲石元素的特征,同时具有高的(La/Yb)N和(Gd/Yb)N值。碱性侵入岩中两类单斜辉石和两类斜长石作为再循环晶,记录了不同批次岩浆/熔体的混合,这些矿物组分和全岩成分共同约束了岩浆的起源与演化过程。结合前人的地球化学资料,本文指出七宝山碱性侵入岩的源区是曾受到沉积物交代的富集地幔,源区存在金云母脉体和角闪石脉体。上述脉体连同周围的地幔橄榄岩共同发生部分熔融,形成原生的碱性熔体。七宝山碱性侵入岩显示高的Nb/Ta和Zr/Hf比、低的Ti/Eu比,同时在微量元素蜘蛛图上呈现Ti*和Hf*的负异常,结合高稀土单斜辉石平衡熔体的属性,共同指示了碳酸盐熔体组分对该套碱性侵入岩的形成发挥了重要作用。钠质系列与钾质系列岩石反映了源区富碱矿物相类型相对贡献量的差异,即钠质为主的碱性岩反映源区角闪石的贡献更大,而钾质为主的碱性岩反映源区金云母的贡献占优势。此外,碱性侵入岩中的钾质系列具有异常高的Rb-Zr-Hf-U含量,很可能反映了源区在部分熔融过程中热液锆石熔解后形成的熔体加入到了钾质岩浆房内。本研究强调了碳酸盐熔体组分对高Nb/Ta碱性中基性的形成发挥着重要作用,亦强调了热液锆石的熔解加入导致岩浆具有高Zr-Hf-U含量的特征。  相似文献   

7.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

8.
Alkaline lamprophyre dykes from Taourirt (North Morocco) containnumerous xenoliths, ranging from alkaline pyroxenites, kaersutitites,gabbros and nepheline syenites to a calcite carbonatite. Thesilicate xenoliths and the host rocks consist of Al- and Ti-richdiopside–salite, mica or kaersutitite, ± nepheline,± plagioclase and K-feldspar, and ubiquitous apatite.Both the xenoliths and the lamprophyres are enriched in incompatibleelements. The chemical composition of the lamprophyres cannotbe accounted for by fractional crystallization alone. Moreover,the clinopyroxenes exhibit complex zoning, which requires repeatedmixing of pulses of more or less fractionated melts. The carbonatiteis a sövite cumulate with Sr-rich calcite, pyrochlore,fluorapatite, and rare salite. The Sr–Nd isotopic compositionsof the Taourirt rocks indicate a depleted mantle source, thecarbonatite having the most depleted composition, and definea linear trend similar to that of the East African carbonatites.The different rocks thus represent unrelated magmas, and thetrend is interpreted as mixing between two components with HIMUand EM1 mantle end-member signatures. An EM2 mantle componentcould also be involved for a few samples; it may correspondto hydrous metasomatized mantle of the PP–PKP (phlogopiteand phlogopite K-richterite peridotite) and MARID (mica, amphibole,rutile, ilmenite and diopside) type. KEY WORDS: alkaline magmatism; carbonatite; Morocco; REE; Sr–Nd isotopes  相似文献   

9.
Mafic microgranular enclaves, composed of diopside and rare magnesium biotite phenocrysts in a groundmass of diopside, biotite, apatite, Fe-Ti-oxides, and alkali feldspar, are associated with Neoproterozoic Piquiri potassic syenite in southern Brazil. Co-genetic mica and clinopyroxene cumulates present inclusions of pyrope-rich garnet in diopside phenocrysts. Textural evidence, as well as the chemical and mineralogical composition, suggest that enclaves crystallized from a lamprophyric magma and co-mingled with the host syenitic magma. The contrasting temperature between both magmas and the consequent chilling was important for the preservation of some early-crystallized minerals in the mafic magma. Diopside groundmass grains contain micro-inclusions of K-rich augite and phlogopite, and some clinopyroxene phenocrysts and elongate groundmass crystals have potassium-rich cores. The pyrope-rich garnet have high #mg number (67–68), with appreciable amounts of Na2O and K2O comparable to pyrope synthesized at 5 GPa. The extremely high K2O contents of K-rich augite micro-inclusions suggest non-equilibrium with the parental magma, whereas the other K-rich clinopyroxenes are similar to K-clinopyroxenes produced at 5–6 GPa. K-clinopyroxene and garnet in mafic microgranular enclaves suggest that lamprophyric magma started its crystallization at upper mantle conditions, and chilled clinopyroxenes with measurable amounts of K2O are taken as evidence that co-mingling began still at mantle pressures.  相似文献   

10.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

11.
Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studying by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45–74 wt %, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45–53 wt % SiO2) comprise the following varieties: potassic (on average 4.2 wt % K2O, 1.7 wt % Na2O, 1.0 wt % TiO2, and 0.20 wt % P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53–64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64–74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt %, 1.19 wt % on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt % (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol’shoi Semyachek, Dikii Greben’, Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.  相似文献   

12.
邱检生  刘亮  李友连 《岩石学报》2012,28(4):1044-1056
山东汤头盆地位于沂沭断裂带南段,盆地内广泛发育以粗安质岩石为主体的晚中生代火山岩,这套岩石主要可归为碱性系列,按化学组成可进一步区分为钾质和钠质二种类型。钾质火山岩的主要岩性为黑云母粗安质火山碎屑岩和潜火山岩,钠质火山岩主要为辉石粗安质潜火山岩,其中钾质火山岩是盆地内火山岩的主体。锆石LA-ICP-MS U-Pb定年获得钾质和钠质火山岩的成岩年龄分别为124.0±1.3Ma和106.4±4.0Ma,表明钠质火山岩较钾质火山岩形成晚。在化学组成上,钾质火山岩较钠质火山岩全碱含量更高,二者的K2O+Na2O含量分别为11.02%~11.37%和8.75%~8.93%。它们均富轻稀土和大离子亲石元素,但钾质火山岩较钠质火山岩稀土总量更高,且更富轻稀土,二者的∑REE值分别为360.1×10-6~417.0×10-6和232.3×10-6~291.0×10-6,(La/Yb)N比值分别为62.02~64.66和40.32~40.52。钾质火山岩的Cs、Rb、Ba、Th、U、Pb等大离子亲石元素和Zr、Hf等高场强元素均较钠质火山岩富集,但Sr、Ti的含量偏低。钾质与钠质火山岩均具有富集的Sr-Nd同位素组成特征,但钠质火山岩的ISr值偏低、而εNd(t)值偏高,二者的ISr和εNd(t)值分别为0.7107~0.7119和-15.48~-16.96,以及0.7098和-10.03。元素和Sr-Nd同位素组成的系统分析表明浅部地壳混染对火山岩地球化学特征未产生显著影响,二类火山岩地球化学特征的变异应主要受控于岩浆源区组成的不同,而不是岩浆演化过程的差异所致。二元混合模拟指示二类火山岩均最可能起源因华北克拉通下地壳拆沉而形成的富集地幔的熔融,但钠质火山岩源区含有较高比例的亏损软流圈地幔组分。根据对火山岩地质与地球化学特征的综合分析,表明郯庐断裂持续的引张促使岩石圈减薄,并诱发深部软流圈熔体上涌,这一上涌的软流圈熔体随后又与原先富集的岩石圈地幔混合,从而导致晚期的钠质火山岩源区中含有较高的亏损软流圈地幔组分。火山岩成分由钾质向钠质演化,是软流圈地幔上涌并置换原有岩石圈地幔,最终导致华北克拉通减薄的直接响应。  相似文献   

13.
The main rock-forming minerals of pyroxenites in the Krestovskaya intrusion in the Maimecha-Kotui alkaline-ultramafic province are Al- and Ti-fassaite and low-Al high-Mg diopside. Both clinopyroxene varieties bear primary inclusions of alkaline-ultramafic melts enriched in incompatible elements, F (up to 0.3–0.4 wt %), and probably also CO2. The homogenization temperatures of the inclusions are approximately equal and lie within the range of 1200–1300° C. However, the melts preserved in the diopside are undersaturated in Si and Al and richer in Fe, Ba, Sr, Na, and incompatible elements than melt inclusions in the fassaite; they are free in H2O (no more than 0.003 wt %); and are close in composition to katungite-mafurite. Melt inclusions in the fassaite are richer in Si, Mg, and Al; contain up to 0.435 wt % H2O; and compositionally approach alkaline picritoids. Melts of such composition cannot be produced by the differentiation of a single parental magma and were most probably derived from different mantle sources. Judging from the high concentrations of incompatible elements and their distribution in the melt inclusions, these sources were localized in the undepleted mantle at various depths (the picritoid melts were derived from a deeper source) and underwent different degrees of partial melting, with garnet and plagioclase remaining in the residue. The coexistence of diopside and fassaite in a single rock can be explained by the concurrent development of magmatic chambers at different depths during rifting, when this process was repeatedly reactivated and it facilitated the arrival of primitive melts derived from different mantle sources into the same magmatic chambers, in which these melts mixed and evolved. These processes probably predetermined the origin of the alkaline-ultramafic carbonatite intrusions and perhaps also the potassic series in the East African Rift.  相似文献   

14.
The northeast part of the Czech Republic (Moravia) and the adjoining part of Poland host a 100-km-long and 15- to 25-km-wide belt containing numerous isolated bodies (mainly sills) of lamprophyre of Lower Cretaceous age. The lamprophyres range from mafic (melanocratic) to evolved, feldspar-rich (mesocratic) variants. Mineralogically, they are characterized by compositionally zoned kaersutite phenocrysts, biotite and high Al–Ti salitic to diopsidic clinopyroxene. The lamprophyres are typically alkaline as shown by high contents of P2O5, TiO2, alkalies and incompatible trace elements such as light REE, Zr, Nb, Y, Ba and Sr, and by high Ti/V (>50) and chondrite-normalized (La/Yb)n (8–25) ratios. They resemble alkali basalts, basanites and nephelinites. Major element composition and trace element patterns and Nd–Sr isotopic values (εNd ca. +5.5 to +6.6 and εSr ca. –9.5 to –24.0) indicate that the lamprophyric magma was derived from a mantle source that was compositionally similar to the source of ocean island basalts with HIMU affinities and some continental extension-related alkali basaltic suites. The lamprophyres do not show any subduction imprint. They were generated in the garnet stability field by a variable degree of melting. Evolved lamprophyres were formed by clinopyroxene-dominated fractional crystallization of mafic lamprophyric magma. The lamprophyres are interpreted to have been emplaced along conduits formed during the formation of a basin/graben structure in the Early Cretaceous.  相似文献   

15.
The mafic dykes in Wadi Mandar-Wadi Um Adawi area are as follows: (1) calc-alkaline lamprophyre (i.e., kersantite and spessartite), (2) diabase, and (3) alkaline lamprophyre (i.e., camptonite). The field relations reveal that the emplacement of calc-alkaline lamprophyres preceded the diabase dykes, while alkaline lamprophyres emplaced later than the diabase dykes. Calc-alkaline are basaltic andesite, basaltic trachyandesite to basalt, while the diabase dykes and alkaline lamprophyres are basaltic in composition. These dykes are characterized by metaluminous character. Calc-alkaline lamprophyres and diabase dykes show transitional affinity from calc-alkaline to alkaline, while the alkaline lamprophyres exhibit more strong alkaline character. The mafic dykes were crystallized under temperature 1100–1150 °C and pressure 3–5 kbars in a high oxygen fugacity conditions. Fe-Ti oxides in the dykes are represented by ilmenite and Ti-magnetite. The chemistry of the sulfides hosted in those mafic dykes suggests a magmatic-hydrothermal origin for these minerals. The geochemical behavior of high field strength elements and large ion lithophile elements in these dykes excludes the derivation of diabase or alkaline lamprophyre either by partial melting or fractional crystallization from calc-alkaline lamprophyre. The parental magmatic sources of the studied dykes were generated from crustal material with addition of mantle-derived melt during the post-collisional stage. The mafic dykes in Wadi Mandar-Wadi Um Adawi area were generated from different magmatic sources by partial melting and subsequent fractional crystallization. In addition, the crustal contamination/assimilation process has a prominent role in the magmatic evolution of diabase and alkaline lamprophyre dykes.  相似文献   

16.
Bj  rn   hlander  Kjell Billstr  m  Elke H  lenius 《Lithos》1989,23(4):267-280
Field relations, mineralogy, major- and trace-element contents (including REE analyses of whole-rock samples and minerals) of three Proterozoic granites and their associated molybdenite mineralized aplites have been studied at Allebuoda, Munka and Kåtaberget in northern Sweden. The granites crystallized from melts that were not saturated with water. The mineralized potassic aplites formed by quenching of residual melts caused by sudden pressure drop, H2O saturation and vapour escape during tectonic rupturing. Leucogranites with higher Na2O/K2O ratios from Allebuoda and Munka crystallized during H2O-saturated equilibrium conditions in which the exsolved vapour could continuously migrate away. The pressure was probably 3 kbar at Munka, and somewhat lower at Allebuoda.

The granites have REE patterns characterized by LREE enrichments and negative Eu anomalies. In comparison, the potassic aplites and the more sodic leucogranites are depleted in LREE, enriched in HREE and have larger negative Eu anomalies. Allanite and monazite are the most important REE carriers in the granites. These minerals are strongly enriched in LREE, whereas fluorite and xenotime, which are more abundant in the aplites, are most enriched in HREE. Due to the strong control of accessory minerals on the REE balance, REE are of limited use in petrogenetic modelling of highly evolved granitic systems.  相似文献   


17.
陈斌  刘超群  田伟 《地学前缘》2006,13(2):140-147
太行山中生代岩浆岩的主体———石英二长岩中常见闪长质包体。无论包体还是寄主岩石中均可见斜长石具有成分和结构的不平衡现象,即斜长石具有富钙的核(An=57~65)和富钠的幔部(An=20~35),而且两者变化截然。这是壳幔岩浆发生混合作用的记录:核部代表基性岩浆中早期结晶的斜长石(或代表花岗岩中斜长石由于高温基性岩浆的注入而发生部分熔融形成的残留核?),而幔部代表从混浆中结晶的斜长石。与此类似,角闪石也发育成分环带,其核部为相对富Al和Ti的黄褐色的韭闪石,而边部为贫Al和Ti的绿色调的浅闪石。韭闪石形成于较高的温度,浅闪石形成于较低的温度,也反映了壳幔岩浆混合的过程。壳幔岩浆混合模式同样得到地球化学数据的支持,太行山中生代岩浆岩的高K2O和MgO、高分异稀土模式(和Eu异常不明显)、高Sr-Ba和富集的Sr-Nd同位素特征等均与来自富集地幔的基性岩浆的混合有关。  相似文献   

18.
单强  曾乔松  罗勇  杨武斌  张红  裘瑜卓  于学元 《岩石学报》2011,27(12):3653-3665
阿尔泰南缘康布铁堡组酸性火山岩分布在麦兹、克朗、冲呼尔以及阿舍勒等火山-沉积盆地.本文对其中的钾质流纹岩(TM1,铁木尔特地区)和钠质流纹岩(KK7,可可塔勒地区)进行了SHRIMP锆石U-Pb定年以及地球化学的研究.钾质流纹岩的年龄为400.8±8.4Ma(加权平均年龄为394.8±7.9Ma),钠质流纹岩的年龄为402.2±6Ma(加权平均年龄为396.8±5.1Ma).主元素分析结果证明研究区在时间和空间上紧密共生的高钾流纹岩和高钠流纹岩同属于高碱、高硅、低钙、过铝质的钙碱性岩系.相似的稀土元素分配模式和同样亏损高场强元素(Ti、Nb、Ta)的地球化学特征暗示二者的原始岩浆源于上地壳部分熔融.钾质流纹岩富集Rb,Ba、Pb,钠质流纹岩则富集Sr,这种元素分相富集的特征符合在岩浆液态不混溶条件下微量元素在共轭钠质熔体和钾质硅酸盐熔体中的分配原则.由此推论,本区产出的钾质流纹岩和钠质流纹岩可能是上地壳部分熔融形成的高挥发分酸性岩浆液态不混溶的产物.  相似文献   

19.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas producing the the comendites of the Sant bimodal volcanic association (Central Mongolia). The mechanisms of the formation of melts were determined. The primary melt and coexisting crystalline inclusions in quartz from three samples of comendites collected from different parts of the volcanic section were studied. Among the crystalline inclusions, sanidine, zircon, and the REE diortosilicate–chevkinite were identified. The phenocrysts of the comendites were determined to crystallize at temperatures of 880–960°C. The homogeneous glasses of melt inclusions have both trachydacite and rhyolite compositions. They are characterized by high concentrations of Zr, Nb, Rb, Y, Th and REE. Significant differences were determined in concentrations of Li and volatile component (H2O and F) in the glasses: some of the melts are enriched in these components, whereas other are depleted in them.Analysis of the composition of the glasses of the homogenized melt inclusions in quartz of comendites from the Sant bimodal association allowed us to recognize magmatic processes responsible for formation of the comendite melts. The dominant role among them belongs to crystallization differentiation of the magma, accompanied by a process of liquid immiscibility with participation of fluoride melts.  相似文献   

20.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号