首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Primary production of the northern Barents Sea   总被引:7,自引:0,他引:7  
The majority of the arctic waters are only seasonally ice covered; the northern Barents Sea, where freezing starts at 80 to 81°N in September, is one such area. In March, the ice cover reaches its greatest extension (74-75°N). Melting is particularly rapid in June and July, and by August the Barents Sea may be ice free. The pelagic productive season is rather short, 3 to 3.5 months in the northern part of the Barents Sea (north of the Polar Front, 75°N), and is able to sustain an open water production during only half of this time when a substantial part of the area is free of ice. Ice algal production starts in March and terminates during the rapid melting season in June and July, thus equalling the pelagic production season in duration.
This paper presents the first in situ measurements of both pelagic and ice-related production in the northern Barents Sea: pelagic production in summer after melting has started and more open water has become accessible, and ice production in spring before the ice cover melts. Judged by the developmental stage of the plankton populations, the northern Barents Sea consists of several sub-areas with different phytoplankton situations. Estimates of both daily and annual carbon production have been based on in situ measurements. Although there are few sampling stations (6 phytoplankton stations and 8 ice-algae stations), the measurements represent both pelagic bloom and non-bloom conditions and ice algal day and night production. The annual production in ice was estimated to 5.3 g Cm-2, compared to the pelagic production of 25 to 30 g Cm-2 south of Kvitøya and 12 to 15 g Cm-2 further north. According to these estimates ice production thus constitutes 16% to 22% of the total primary production of the northern Barents Sea, depending on the extent of ice-free areas.  相似文献   

2.
Uptake rates of NH4+, NO3 and dissolved organic nitrogen (urea) were measured in phytoplankton and in ice algae in the Barents Sea using a 15N-technique. NO3 was the most important nitrogen source for the ice algae (f-ratio = 0.92). The in situ irradiances in the subsurface chlorophyll maximum and in the ice algal communities were low. The in situ NO3 uptake rate in the ice algal communities was light-limited The in situ NO3 and NH4 uptake rates in the subsurface chlorophyll maximum were at times light-limited. It is hypothesised that NH4+ may accumulate in low light in the bottom of the euphotic zone and inhibit the in situ NO3 uptake rate.  相似文献   

3.
A series of sensitivity analyses using dielectric, mixture and microwave scattering models is presented. Data from the Seasonal Sea Ice Monitoring and Modeling Site (SIMMS) in 1990 and 1991 are used to initialize the models. The objective of the research is to investigate the role of various geophysical and electrical properties in specifying the total relative scattering cross section (ρ') of snow covered first-year sea ice during the spring period.
The seasonal transition period from the Winter SAR scattering season to Early Melt was shown to signal a transition in dielectric properties which caused the snow volume to become a factor in the microwave scattering process. The effect of the thermal insulation of a snow cover on sea ice was shown to be significant for both ε' and ε'. Higher atmospheric temperatures caused proportionally greater changes in the dielectric properties of the sea ice at the base of the snow cover. Model ρ0 was computed for a range of sensor, sensor-earth geometry, and geophysical properties. In the Winter season the surface roughness terms (ohand L) were shown to have a significant impact on ρ0 when the ice surface was the primary scattering mechanism. Once the snow cover began to warm and water was available in a liquid phase, the ice surface became masked because of the decrease in microwave penetration depths. During this period the water volume variable dominated ρ0, both from its impact on ρv0, and due to its control over the dielectric mismatch created at the air/snow interface.  相似文献   

4.
海冰生物群落是北极生态系统的重要组成部分,在北冰洋初级生产和碳循环中扮演着重要角色。本文利用荧光显微分析技术对2012年度夏季采集于北冰洋中心区的浮冰生物群落进行了分析,结果显示:柱总生物量平均为105.85±53.41 mgC •m-2,其中细菌占生物量的47.2%,而后依次是硅藻(26.7%),鞭毛虫(18.2%),鞭毛藻(6.9%)和纤毛虫(1.0%)。最高纬站位(123°43.454′E 87°39.598′N)出现冰底鞭毛藻藻华现象,生物量可达329.6 μg C•L-1,该站位生物群落处于硅藻藻华后期,海冰上层存在较大程度的融冰作用,底部冰芯营养盐N/P比较高,可能形成有利于鞭毛藻生长的小生境。与已有研究结果的对比表明,近年来夏季北极海冰的快速融化对浮冰生物群落结构产生了明显影响,异养类群生物量升高,细菌取代硅藻成为优势类群。  相似文献   

5.
To examine algae populations, three expeditions (in March 2001, April 2002 and February 2003) were conducted in the Guba Chupa (Chupa Estuary; north-western White Sea), and one cruise was carried out in the open part of the White Sea in April 2003 and in the northern part of the Barents Sea in July 2001. Sea ice algae and phytoplankton composition and abundance and the content of sediment traps under the land-fast ice in the White Sea and annual and multi-year pack ice in the Barents Sea were investigated. The community in land-fast sea ice was dominated by pennate diatoms and its composition was more closely related to that of the underlying sediments than was the community of the pack ice, which was dominated by flagellates, dinoflagellates and centric diatoms. Algae were far more abundant in land-fast ice: motile benthic and ice-benthic species found favourable conditions in the ice. The pack ice community was more closely related to that of the surrounding water. It originated from plankton incorporation during sea ice formation and during seawater flood events. An additional source for ice colonization may be multi-year ice. Algae may be released from the ice during brine drainage or sea ice melting. Many sea ice algae developed spores before the ice melt. These algae were observed in the above-bottom sediment traps all year around. Three possible fates of ice algae can be distinguished: 1) suspension in the water column, 2) sinking to the bottom and 3) ingestion by herbivores in the ice, at the ice-water interface or in the water column.  相似文献   

6.
Dynamics of plankton growth in the Barents Sea: model studies   总被引:2,自引:0,他引:2  
1-D and 3-D models of plankton production in the Barents Sea are described and a few simulations presented. The 1-D model has two compartments for phytoplankton (diatoms and P. pouchelii) , three for limiting nutrients (nitrate, ammonia and silicic acid), and one compartment called "sinking phytoplankton". This model is coupled to a submodel of the important herbivores in the area and calculates the vertical distribution in a water column. Simulations with the 3-D model indicate a total annual primary production of 90-120g C m−2 yr−1 in Atlantic Water and 20-50g C m−2 yr−1 in Arctic Water, depending on the persistence of the ice cover during the summer.
The 3-D model takes current velocities, vertical mixing, ice cover, and temperature from a 3-D hydrodynamical model. Input data are atmospheric wind, solar radiation, and sensible as well as latent heat flux for the year 1983. The model produces a dynamic picture of the spatial distribution of phytoplankton throughout the spring and summer. Integrated primary production from March to July indicates that the most productive area is Spitsbcrgenbanken and the western entrance to the Barents Sea. i.e. on the northern slope of Tromsøflaket.  相似文献   

7.
More than 250 radiocarbon dates of lacustrine algae and marine shells afford a chronology for Ross Sea drift in eastern Taylor Valley. Dates of algae that lived in ice-dammed Glacial Lake Washburn show that grounded Ross Sea ice blocked the mouth of Taylor Valley between 8340 and 23,800 14C yr bp . Ross Sea ice was at its maximum position at the Hjorth Hill moraine between 12,700 and 14,600 14C yr bp and was within 500m distance of this position as late as 10,794 14C yr bp . The implication is that the flow line of the Ross Sea ice sheet which extended around northern Ross Island and across McMurdo Sound to Taylor Valley must have remained intact, and hence that a grounded ice sheet must have existed east of Ross Island as late as 8340 14C yr bp . Evidence from ice-dammed lakes in Taylor Valley and from shells from McMurdo Sound suggests grounding-line retreat from the vicinity of Ross Island between 6500 and 8340 14C yr bp . If this is correct, then most recession to the present-day grounding line on the Siple Coast took place subsequently in the absence of significant deglacial sea-level rise. Rising sea level may have triggered internal mechanisms within the ice sheet that led to retreat, but did not in itself drive continued ice-sheet recession. Ice retreat, once set in motion, continued in the absence of sea-level forcing. If correct, this hypothesis implies that the grounding line could continue to recede into the interior reservoir of the West Antarctic Ice Sheet.  相似文献   

8.
10 m and 2.3 m ice cores were obtained on Austre Brøggerbreen, Spitsbergen in Svalbard (78°53 ' N, 11°56 ' E, 450 m a.s.l.) in September 1994 and in March 1995, respectively. Stratigraphy, bulk density, pH, electrical conductivity, and major ions were obtained from the core samples.
The chemical effect of meltwater percolation through snow/ice is examined. Good correlation between Cl and Na+ was obtained. The ratio of Cl to Na+ was 1.14 which was nearly the same value as in bulk sea water. However, the variation of Cl/Na+ shows that higher ratio occured in the bubble-free ice. Furthermore the Cl ions remain in higher concentration than SO 4 2− or Na+ ions.  相似文献   

9.
Phytoplankton in the south-western Kara Sea: composition and distribution   总被引:1,自引:0,他引:1  
The taxonomic composition and spatial distribution of pelagic algae were studied in the south-western Kara Sea in August-September 1981. In the north-western and easternmost regions of the study area the phytoplankton community, dominated by neritic diatoms and autotrophic dinoflagellates, was at the late spring bloom stage of the seasonal succession. In the central deep-water zone of the sea, there was a predominance of heterotrophic dinoflagellates from the genera Protoperidinium and Dinophysis , and the autotrophic compartment of the algal community was clearly in a stage of decline. The distribution of the phytoplankton assemblages followed closely the major routes of receding marginal ice zones. Three stages of the seasonal succession were established for the area of interest: (1) early spring (ice edge) bloom of arcto-boreal neritic diatoms; (2) late spring bloom of neritic diatoms and autotrophic dinoflagellates, fuelled by continental run-off; and (3) summer minimum with a predominance of heterotrophic dinoflagellates, followed by autumnal decline of the phytoplankton community.  相似文献   

10.
何剑锋  陈波 《极地研究》1995,7(4):56-67
从1992年4月至12月对东南极中山站近岸当年冰生物量及其环境因子进行了观测。冰底有色层出现在4月下旬和11月下旬,集中于冰底2~3cm,叶绿素a最高含量分别为88.3mg/m3和2810mg/m3,相应的冰藻数量分别为3.5×106和1.21×108个/升。柱总叶绿素a含量的季节性变化极为显著,尤其是以春季的大幅度快速增值为特征,变化范围为1.17~59.7mg/m2,冰藻生物量主要分布在冰底,冬季期间则集中在冰底或冰的中上层。藻类优势种较为单一,秋季优势种为Nitzschialecointei、N.barkleyi和N.cylindrus;春季优势种为Amphiprorakjelmani,Berkeleyarutilans和N.lecointei。中山站近岸冰藻生物量的垂直分布和季节变化以及春季优势种的组成与东南极其它固冰区具有较强的相似性,与亚南极固冰区差异较大。  相似文献   

11.
The identification of surge activity is important in assessing the duration of the active and quiescent phases of the surge cycle of Svalbard glaciers. Satellite and aerial photographic images are used to identify and describe the form and flow of Perseibreen, a valley glacier of 59 km2 on the east coast of Spitsbergen. Heavy surface crevassing and a steep ice front, indicative of surge activity, were first observed on Perseibreen in April 2002. Examination of high resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery confirmed this surge activity. Perseibreen retreated by almost 750 m between 1961 and 1990. Between 1990 and the summer of 2000, Perseibreen switched from retreat and its front began to advance. Rapid advance was underway during the period June 2000 to May 2001, with terminus advance at over 400 m yr−1. Between May and August 2001 the rate increased to over 750 m yr−1. The observed crevasse orientation indicates that ice was in longitudinal tension, suggesting the down-glacier transfer of mass. Ice surface velocities, derived from image correlation between ASTER images, were 2-2.5 m d−1 between May and August 2001. The glacier was flowing at a relatively uniform speed with sharp velocity gradients located close to its lateral margins, a velocity structure typical of ice masses in the active phase of the surge cycle. The stress regime is extensional throughout and the surge appears to be initiated low on the glacier. This is similar to the active-phase dynamics of other Svalbard tidewater glaciers. Perseibreen has probably been inactive since at least 1870, a period of about 130 years to the present surge which defines a minimum length for the quiescent phase.  相似文献   

12.
Hydrographic and current measurements obtained during the Norwegian Antarctic Research Expedition 1978/79 to the southern Weddell Sea are presented. Cold, dense Ice Shelf Water circulating under the floating ice shelves is observed to leave the shelf as a concentrated bottom flow. From moored current metres this discharge is estimated at 0.7 106 m3/s at -2.0°C (one year average) and with no appreciable seasonal variation. This contribution to the Weddell Sea Bottom Water is clearly identified through extreme temperature gradients at our deepest stations (below 2500 m). The core of Weddell Deep Water shows a considerable (T ∼ 0.5°C) warming up since 1977, presumably due to the lack of polynya activity in the intervening period. Measurements in the coastal current at the ice shelf (70°S, 2°W) show step structures which are probably due to cooling and melting at the vertical ice barrier. Slight supercooling due to circulation under the ice shelf is also seen. The net effect of the ice shelf boundary seems to be a deep reaching cooling and freshening of the coastal current providing the low salinity, freezing point Eastern Shelf Water. This process is considered a preconditioning which enhances production of the saline Western Shelf Water which in turn is transformed to Ice Shelf Water.  相似文献   

13.
<正> Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

14.
Pigment budgets use chlorophyll a and phaeopigment standing stock in combination with their photo-oxidation and sedimentation rates in the euphotic zone to estimate phytoplankton growth and grazing by micro- and macrozooplankton. Using this approach, average phytoplankton growth in the euphotic zone of the Barents Sea was estimated at 0.17 and 0.14 d−1 during spring of 1987 and 0.018 and 0.036 d−1 during late- and postbloom conditions in summer of 1988. Spring growth was 65% lower than the estimates from radiocarbon incorporation, supporting a 33% pigment loss during grazing. Macrozooplankton grazing and cell sinking were the main loss terms for phytoplankton during spring while microzooplankton grazing was dominant in summer.
In contrast to tropical and temperate waters, Arctic waters are characterized by a high phaeopigment: chlorophyll a ratio in the seston. Photooxidation rates of phaeopigments at in situ temperatures (0 ± 1°C) are lower than in temperate waters and vary by a factor of 2 for individual forms (0.009 to 0.018 m−2mol−1). The phaeopigment fraction in both the suspended and sedimenting material was composed of seven main compounds that were isolated using high-performance liquid chromatography and characterized by spectral analysis. The most abundant phaeopigment in the sediment traps, a phaeo-phorbide-like molecule of intermediate polarity (phaeophorbide a3), peaked in abundance in the water column below the 1% isolume for PAR (60-80 m) and showed the highest rate of photooxidation. This phaeopigment was least abundant in the seston when phytoplankton was dominated by prymnesiophytcs but increased its abundance in plankton dominated by diatoms. This distribution suggests that larger grazers feeding on diatoms are the main producers of this phaeopigment.  相似文献   

15.
Sagitta elegans var. arctica , the dominant and locally abundant chaetognath in the Barents sea, was collected from the upper 50 m in Arctic water masses during an ice edge bloom in early summer 1983. In situ sampling was made along a transect at discrete depths with a 375 μm mesh net mounted on a plankton pump. Prey composition and feeding rate were estimated from gut content analyses on preserved specimens combined with data on digestion times from previous studies. No diel variations were found in feeding activity. The diet reflected the composition of available prey in the zooplankton and consisted mainly of nauplii, small copepods (early stages of Calanus, Pseudocalanus, Oithona ) and appendicularians. Prey usually occurred as a single item in the gut.
Mean prey body width related to chaetognath head width yielded a power curve, with a large amount of scatter, showing that chaetognaths in the Barents Sea can use a wide spectrum of prey sizes. Similarly, maximum prey body width was related to chaetognath head width as a power curve, reflecting the existence of an upper prey size limitation due to the chaetognath mouth size. The highest abundance of S. elegans (5 specimens m−3), and the most intense feeding activity, were found within or beneath the maximum zooplankton biomass. Further, distribution and feeding were affected by light intensity, salinity, and the population structure of 5. elegans var. arctica.
Estimated feeding rates ranged between 0.30 and 1.05 prey items per chaetognath day−1. This corresponds to an ingestion of 8-54 μg AFDW day−1, and a consumption of 0.08–0.22% of the zooplankton standing stock day−1. From these rates, the calculated yearly ingestion by S. elegans var. arctica was 3% of the annually secondary production.  相似文献   

16.
Three heat flow values for south-west England are presented. Two of the sites, Geevor and South Crofty, are operating tin mines on the northern contacts of the Land's End and Carnmenellis Granites, respectively, while the third, Wilsey Down, is a stratigraphical borehole 5 km north of the Bodmin Moor Granite. After applying topographic corrections values of 128·6 mW m-2 (3·07 μ cal cm-2 s-1) for Geevor, 128·9 mW m-2 (3·08 (A cal cm-2 s-1) for South Crofty and 67·3 mW cm-2 (1·61 cal cm-2 s-1) for Wilsey Down, were determined. The value at Wilsey Down is shown to be consistent with that for an environment in which the Hercynian orogeny was the last significant thermal event. An additional heat source term must clearly be involved at Geevor and South Crofty to account for the unusually high values at these sites. Radiogenic heat production has been determined on granites from these sites and in spite of the fact that it is high it does not fully account for the measured heat flow. A compilation of underground temperature measurements made in the nineteenth century suggests that high heat flow is a general feature of the mineralized belt. At least part of this can be explained in terms of hot spring activity recorded widely throughout the area but the ultimate cause remains to be evaluated.  相似文献   

17.
We examined the stability of fast ice areas in western and northern Spitsbergen, the area north of Nordaustlandet, the bays and sounds of Hinlopen Stretet and the large area in the northern part of Storfjorden. NOAA satellite imagery from 1974 and 1988 and NOAA (AVHRR) imagery from 1980-87 were used to determine the dates of freeze-up and break-up. The number of days of fast ice present before the nominal birth date of ringed seal pups were computed for all major bays and fjords. Ice thickness was then computed from these data. Known prime breeding habitat in Svalbard is found in areas near glacier fronts in protected fjords and bays, where densities of birth lairs are 5.46 km−2, corresponding to a ringed seal female density of 2.6 km−2. Most of the ringed seal breeding habitat in Svalbard, however, consists of flat fjord ice where snow accumulation is rarely deep enough to permit birth lair construction. In these areas pups are often born in the open. Based on breathing hole densities, the density of adult females in the flat ice areas in the breeding period was estimated to 0.98 km−2. A preliminary estimate is that approximately 19,500 pups could be born annually in the fast ice of Svalbard. Annual recruitment could be quite variable given the unpredictable nature of the fast ice areas and the high predation mortality on newborn pups. Discrepancies between our calculated ringed seal production and numbers of seals required to feed the large polar bear population in the area signal cause for management concern.  相似文献   

18.
Development of Arctic sea-ice organisms under graded snow cover   总被引:5,自引:0,他引:5  
In 1988, the short-term response of sea-ice organisms to manipulated changes in snow cover (no snow cover, natural snow cover, natural snow cover + black foil) was investigated in one ice floe located in the East Greenland Current northwest of Svalbard over a period of three weeks. Autotrophic organisms (flagellates and diatoms) were concentrated in the lowermost 30 cm of the floe. In the field without snow cover, the highest diatom concentrations were observed, consisting nearly entirely of pennate forms, together with a maximum bacterial abundance. The community of larger protozoa and smaller metazoa was dominated by ciliates. Under natural conditions the flora consisted of both flagellates and diatoms, while turbellaria were the dominating animals. In the darkened field, the organism concentrations decreased with time. The results indicate that brine drainage, induced by changes in ice temperature, can reduce concentrations of ice organisms over short time scales.  相似文献   

19.
Carbon fluxes in the Arctic Ocean—potential impact by climate change   总被引:1,自引:0,他引:1  
Because of its ice cover the central Arctic Ocean has not been considered as a sink of atmospheric carbon dioxide. With recent observations of decreasing ice cover there is the potential for an increased air–sea carbon dioxide flux. Though the sensitivity of the carbon fluxes to a climate change can at present only be speculated, we know the responses to some of the forcing, including: melting of the sea ice cover make the air–sea flux operate towards equilibrium; increased temperature of the surface water will decrease the solubility and thus the air-sea flux; and an open ocean might increase primary production through better utilization of the nutrients.
The potential change in air-sea CO2 fluxes caused by different forcing as a result of climate change is quantified based on measured data. If the sea ice melts, the top 100 m water column of the Eurasian Basin has, with the present conditions, a potential to take up close to 50 g C m−2. The freshening of the surface water caused by a sea ice melt will increase the CO2 solubility corresponding to an uptake of ∼ g C m−2, while a temperature increase of 1°C in the same waters will out-gas 8 g C m−2, and a utilization of all phosphate will increase primary production by 75 g C m−2.  相似文献   

20.
利用2012年9月1—6日采自马卡诺夫海盆3个站位和楚科奇深海平原1个站位的分层浮游动物样品,研究了浮游动物在0—1 000 m水层的垂直分布以及地理差异。结果表明,浮游动物在上层分布密集而在深层比较稀少。4个站位在0—50 m、50—100 m和100—200 m水层的平均丰度分别为265.0、360.7和231.2 ind·m-3,而在200—500 m和500—1 000 m的丰度只有64.4和36.9 ind·m-3。在数量上占优势的种类中,植食性为主的拟长腹剑水蚤(Oithona similis)、北极哲水蚤(Calanus glacialis)和极北哲水蚤(Calanus hyperboreus)集中在200 m以浅的水层。虽然在200m以下杂食性种类矮小微哲水蚤(Microcalanus pygmaeus)、隆剑水蚤(Oncaea spp.)和细长长腹水蚤(Metridia longa)的丰度明显降低,但是占浮游动物总丰度的比例却明显更高。两个调查海区浮游动物种类组成相似,但是楚科奇深海平原大型桡足类极北哲水蚤的丰度较高,而小型桡足类丰度较低?垂直分布上差异主要在于500—1 000 m水层,马卡诺夫海盆站位丰度为22.7—92.6 ind·m-3,而楚科奇深海平原只有1.6 ind·m-3。深海区浮游动物丰度的地理差异说明生物泵的作用存在空间异质性。类似地理差异产生的原因在于楚科奇深海平原存在数量较多的极北哲水蚤,它们在春季融冰前就上升到表层摄食冰藻,显著降低了有机物的垂直通量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号