首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from the Greenland ice sheet and continental records from Europe have indicated climatic fluctuations during the last interglacial (Eemian: Oxygen Isotope Substage 5e). Similar fluctuations have not, however, been documented previously from marine environments. Here, we show the existence of two cold events during substage 5e in two marine, benthic foraminiferal, shelf records from northwest Europe and suggest that these cooling events are a result of fluctuations in the strength of the North Atlantic surface-water circulation.  相似文献   

2.
The spread of anatomically modern humans (AMH) into Europe occurred when shifts in the North Atlantic meridional overturning circulation triggered a series of large and abrupt climate changes during the last glacial. However, the role of climate forcing in this process has remained unclear. Here we present a last glacial record that provides insight into climate-related environmental shifts in the eastern Mediterranean region, i.e. the gateway for the colonisation of Europe by AMH. We show that the environmental impact of the Heinrich Event H5 climatic deterioration c. 48 kyr ago was as extreme as that of the glacial maximum of Marine Isotope Stage (MIS) 4 when most of Europe was deserted by Neanderthals. We argue that Heinrich H5 resulted in a similar demographic vacuum so that invasive AMH populations had the opportunity to spread into Europe and occupy large parts before the Neanderthals were able to reoccupy this territory. This spread followed the resumption of the Atlantic meridional overturning circulation at the beginning of Greenland Interstadial (GIS) 12 c. 47 kyr ago that triggered an extreme and rapid shift from desert-steppe to open woodland biomes in the gateway to Europe. We conclude that the extreme environmental impact of Heinrich H5 within a situation of competitive exclusion between two closely related hominids species shifted the balance in favour of modern humans.  相似文献   

3.
王有清  姚檀栋 《冰川冻土》2002,24(5):550-558
冰芯记录中的气候变化是古气候研究中的重要组成部分. 极地、中低纬度和热带地区的冰芯记录表明, 在冰期间冰期旋回大尺度气候变化背景下, 全球经历了一系列数百年至千年时间尺度的快速气候突变事件, 诸如末次间冰期的干冷事件、末次冰期的DansgaardOeschger事件、 Heinrich事件和Younger Dryas事件等, 虽然这些穿插在冰阶中的暖湿气候事件、间冰阶中的干冷气候事件的成因、机制和影响范围还存在明显的不确定性. 主要介绍不同区域冰芯记录中末次间冰期冰期旋回这些气候突变事件发生的时间、过程和机制等的研究进展.  相似文献   

4.
Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted 10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2–3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1–2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1–2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.  相似文献   

5.
The Galicia Interior Basin (GIB; NW Iberian Peninsula) is located near a critical transition between the subtropical (temperate) and subpolar (cold) gyres of the North Atlantic. It therefore witnesses oceanographic changes driven by global climatic events. This study reports on the recent (latest Pleistocene) sedimentary, palaeoceanographic and palaeoclimatic history of the basin. We integrated analysis of deep‐sea sediment cores retrieved from an E–W transect across the GIB. The analysis indicated three types of sedimentary processes recording glacial (Marine Isotope Stage 2–4) and deglacial events: along‐slope bottom currents (forming contourite deposits), pelagic and hemipelagic sedimentation, and gravitational dislocation. Variation in depositional patterns and sedimentation rates indicate distinctive transport (along‐slope and down‐slope) and depositional processes. These in turn reflect climatic and oceanographic drivers. We interpret changes in sea level from core evidence showing changes in sediment supply. The cores exhibited conspicuous sedimentary evidence of Heinrich events (HEs). The stratigraphic intervals associated with HEs showed significant lateral variation. We suggest that the lateral variation may result from the development of an oceanographic boundary between surface water masses with different temperature and salinity parameters or changes in surface currents which may have introduced relatively warmer water into the GIB during the last glacial period.  相似文献   

6.
The present paper addresses the issue of the existence of inferred hiatus on the Shirshov Ridge in the western Bering Sea, which is represented by a sand layer allegedly produced by intensification of the bottom current at the penultimate glacial/last interglacial boundary. Intensification of current velocity near the ocean floor likely provoked washout of the light fine fraction and enrichment of the sediment with heavy coarse particles. Comparison of our and published data on the western Bering Sea and North Atlantic revealed that the sand layer in sediments of the western Bering Sea at the penultimate glacial/last interglacial boundary is related to ice rafting and serves to some extent an analog of Heinrich Event 11 in the North Atlantic.  相似文献   

7.
末次间冰期以来地球气候系统的突变   总被引:14,自引:0,他引:14  
地球气候系统的突然变化是近年来地学研究的热点。取自极地冰芯、海洋沉积物和陆地的古气候记录表明,末次间冰期以来全球经历了一系列数百年—千年时间尺度的气候突变事件,证明了在末次冰期—间冰期旋回大尺度气候变化背景下,全球气候存在较大不稳定性这一基本事实。尽管末次间冰期以来这些数百年—千年时间尺度气候突变事件的成因和影响范围还存在明显的不确定性,但已从诸如末次间冰期(MIS 5e)中期的干冷事件、末次冰期的Dansgaard-Oeschger旋回、Heinrich事件和Younger Dryas事件以及发生在全新世冰后期的一些降温事件的研究中,获得对过去130 ka来气候变化过程总体上的认识和理解。综述了近年来的主要研究成果,介绍了有关末次间冰期以来全球气候突变事件发生的时间、过程和机制等最新的研究进展。  相似文献   

8.
Sediment cores from the continental rise west of the Antarctic Peninsula and the northern Weddell and Scotia Seas were investigated for their ice-rafted debris (IRD) content by lithofacies logging and counting of particles >0.2 cm from core x-radiographs. The objective of the study was to determine if there are iceberg-rafted units similar to the Heinrich layers of the North Atlantic that might record periodic, widespread catastrophic collapse of basins within the Antarctic Ice Sheet during the Quaternary. Cores from the Antarctic Peninsula margin contain prominent IRD-rich units, with maximum IRD concentrations in oxygen isotope stages 1, 5, and 7. However, the greater concentration of IRD in interglacial stages is the result of low sedimentation rates and current winnowing, rather than regional-scale episodes of increased iceberg rafting. This is also supported by markedly lower mass accumulation rates (MAR) during interglacial periods versus glacial periods. Furthermore, thinner IRD layers within isotope stages 2–4 and 6 cannot be correlated between individual cores along the margin. This implies that the ice sheet over the Antarctic Peninsula did not undergo widespread catastrophic collapse along its western margin during the late Quaternary (isotope stages 1–7). Sediment cores from the Weddell and Scotia Seas are characterized by low IRD concentrations throughout, and the IRD signal generally appears to be of limited regional significance with few strong peaks that can be correlated between cores. Tentatively, this argues against pervasive, rapid ice-sheet collapse around the Weddell embayment over the last few glacial cycles.  相似文献   

9.
The Northern Hemisphere ice sheets decayed rapidly during deglacial phases of the ice-age cycle, producing meltwater fluxes that may have been of sufficient magnitude to perturb oceanic circulation. The continental record of ice-sheet history is more obscured during the growth and advance of the last great ice sheets, ca. 120,000–20,000 yr B.P., but ice cores tell of high-amplitude, millennial-scale climate fluctuations that prevailed throughout this period. These climatic excursions would have provoked significant fluctuation of ice-sheet margins and runoff variability whenever ice sheets extended to mid-latitudes, giving a complex pattern of freshwater delivery to the oceans. A model of continental surface hydrology is coupled with an ice-dynamics model simulating the last glacial cycle in North America. Meltwater discharged from ice sheets is either channeled down continental drainage pathways or stored temporarily in large systems of proglacial lakes that border the retreating ice-sheet margin. The coupled treatment provides quantitative estimates of the spatial and temporal patterns of freshwater flux to the continental margins. Results imply an intensified surface hydrological environment when ice sheets are present, despite a net decrease in precipitation during glacial periods. Diminished continental evaporation and high levels of meltwater production combine to give mid-latitude runoff values that are highly variable through the glacial cycle, but are two to three times in excess of modern river fluxes; drainage to the North Atlantic via the St. Lawrence, Hudson, and Mississippi River catchments averages 0.356 Sv for the period 60,000–10,000 yr B.P., compared to 0.122 Sv for the past 10,000 yr. High-amplitude meltwater pulses to the Gulf of Mexico, North Atlantic, and North Pacific occur throughout the glacial period, with ice-sheet geometry controlling intricate patterns of freshwater routing variability. Runoff from North America is staged in the final deglaciation, with a stepped sequence of pulses through the Mississippi, St. Lawrence, Arctic, and Hudson Strait drainages.  相似文献   

10.
Heinrich事件和末次冰期气候的不稳定性   总被引:10,自引:0,他引:10  
对北大西洋深海沉积物的研究表明:末次冰期北大西洋沉积物记录中有多次洋面温度降低、有孔虫含量减少、盐度降低和粗颗粒的碳酸盐碎屑快速堆积的现象,这些时间跨度上千年或几百年的气候快速波动被称为Heinrich事件[1-4],很难用古气候的米兰科维奇理论来解释。最近对末次冰期中国马兰黄土堆积的调查发现,在末次冰期之中东亚冬季风也有多次加强,它与北大西洋沉积物中的Heinrich事件对应很好,暗示着东亚季风的变迁更直接受控于北半球冰量的变化,而不是过去人们认为的东亚古季风气候变化与地球轨道变化引起太阳辐射变化直接相关。   相似文献   

11.
《Quaternary Science Reviews》2004,23(5-6):521-527
Different sea surface temperature (SST) reconstructions for the Last Glacial Maximum are applied to a hybrid-coupled climate model. The resulting oceanic states are perturbed by North Atlantic meltwater inputs in order to simulate the effect of Heinrich Events on the Atlantic thermohaline circulation (THC) and SST. The experiments show that both the Atlantic SST signature of the meltwater event and the time span of THC recovery strongly depend on the climatic background state. Data-model comparison reveals that the overall spatial signature of SST anomalies is captured much better in the glacial meltwater experiments than in an analogous experiment under present-day conditions. In particular, a breakdown of the modern THC would induce a much stronger temperature drop in high northern latitudes than did Heinrich Events during the ice age. Moreover, our results suggest that the present-day circulation can settle into a stable ‘off’ mode, whereas the glacial THC was mono-stable. Mono-stability may serve as an explanation for the recovery of the THC after Heinrich Event shutdowns during the Last Glaciation.  相似文献   

12.
Synoptically mapped faunal abundance and faunal composition data, derived from a suite of 24 Norwegian Sea cores, were used to derive sea-surface temperatures for the last glacial maximum (18,000 B.P.), the last interglacial (120,000 B.P.), and isotope stage 5a (82,000 B.P.). Surface circulation and ice cover reconstructions for these three times, deduced from the sea-surface temperatures, suggest the following conclusions: (1) During glacial periods, Norwegian Sea surface circulation formed a single, sluggish, counterclockwise gyre that was caused by wind drag on the ubiquitous sea ice cover; (2) the last interglacial was characterized by a circulation pattern similar to that of today except that the two counterclockwise gyres were displaced toward the east and were more vigorous than they are today. This circulation pattern forced the Norwegian Current into a position close to the coast of Norway and permitted formation of a strong east-west temperature gradient close to the Scandinavian landmass; (3) interglacial periods prior to 120,000 B.P. had similar climatic conditions to the 82,000 B.P. level and were characterized by a weak two-gyre circulation pattern. The southern gyre, driven by wind stress in summer months, was ice covered in winters. The northern gyre had little open water even in summers and was primarily formed by wind drag on sea ice. Atmospheric modifications resulting from these circulation patterns and sea ice conditions produced varying climatic conditions in Scandinavia during interglacials prior to the Holocene. The climate was probably warmer and moister during the last interglacial (Eemian) than it is today. Other interglacials during the last 450,000 years, but prior to the Eemian, were probably colder and drier as the Norwegian Sea was not an important source of heat and moisture.  相似文献   

13.
We reconstructed the paleoenvironmental history of surface and deep water over the last 130 kyr from oxygen and carbon isotope ratios of planktonic and benthic foraminifera in two cores (MD179-3312 and MD179-3304) from the Joetsu Basin, eastern margin of the Japan Sea. Our data showed that paleoceanographic changes such as influx of surface currents and vertical circulation were associated with global glacial–interglacial sea level change. Surface water conditions were influenced by the influx of Tsushima Current, East China Sea coastal or off-shore waters through the Tsushima Strait during interglacial or interstadial stages, and strongly affected by freshwater input during the glacial maximum. During interglacial maximums such as Marine Isotope Stages 1 and 5e, development of well-oxygenated bottom water was indicated. A density-stratified ocean with weak ventilation was inferred from the isotopic records of benthic foraminifera during the Last Glacial Maximum. Local negative excursions in carbon isotopes during deglacial or interglacial periods may suggest the dissolution of gas hydrates or methane seep activities.  相似文献   

14.
基于内蒙古东南缘西拉木伦河上游刘家店河湖相剖面的粒度、磁化率、微量元素地球化学指标,重建该区35 ka BP以来的气候演化过程。结果表明,在MIS 3晚期(35.23~25.15ka BP)研究区气候条件总体温暖湿润,并伴有区域变干的趋势;MIS 2阶段(25.15~11.13 ka BP)气候整体寒冷干燥,但叠加有短暂回暖气候事件。剖面记录的末次盛冰期(LGM)出现于22.25~18.47 ka BP,此时气候极度干冷;MIS 2阶段叠加了两个短暂气候适宜期,分别出现于18.47~16.24 ka BP和14.72~11.13 ka BP。在11.13 ka BP前后研究区进入全新世,气候变得暖湿。刘家店剖面的气候记录与周边气候记录具有可对比性,揭示了区域上东亚夏季风进退具有一致性,并认为自MIS 3晚期以来东亚夏季风受北半球太阳辐射及冰量的共同驱动。此外,刘家店剖面记录揭示的千年尺度气候变化对典型气候事件具有一定的响应,推测这些千年尺度的季风强度变化可能与北大西洋经向翻转环流(AMOC)相关。  相似文献   

15.
Modern global warming is likely to cause future melting of Earth's polar ice sheets that may result in dramatic sea-level rise. A possible collapse of the West Antarctic Ice Sheet (WAIS) alone, which is considered highly vulnerable as it is mainly based below sea level, may raise global sea level by up to 5–6 m. Despite the importance of the WAIS for changes in global sea level, its response to the glacial–interglacial cycles of the Quaternary is poorly constrained. Moreover, the geological evidence for the disintegration of the WAIS at some time within the last ca. 750 kyr, possibly during Marine Isotope Stage (MIS) 11 (424–374 ka), is ambiguous. Here we present physical properties, palaeomagnetic, geochemical and clay mineralogical data from a glaciomarine sedimentary sequence that was recovered from the West Antarctic continental margin in the Amundsen Sea and spans more than the last 1 Myr. Within the sedimentary sequence, proxies for biological productivity (such as biogenic opal and the barium/aluminum ratio) and the supply of lithogenic detritus from the West Antarctic hinterland (such as ice-rafted debris and clay minerals) exhibit cyclic fluctuations in accordance with the glacial–interglacial cycles of the Quaternary. A prominent depositional anomaly spans MIS 15–MIS 13 (621–478 ka). The proxies for biological productivity and lithogenic sediment supply indicate that this interval has the characteristics of a single, prolonged interglacial period. Even though no proxy suggests environmental conditions much different from today, we conclude that, if the WAIS collapsed during the last 800 kyr, then MIS 15–MIS 13 was the most likely time period. Apparently, the duration rather than the strength of interglacial conditions was the crucial factor for the WAIS drawdown. A comparison with various marine and terrestrial climate archives from around the world corroborates that unusual environmental conditions prevailed throughout MIS 15–MIS 13. Some of these anomalies are observed in the pelagic Southern Ocean and the South Atlantic and might originate in major ice-sheet drawdown in Antarctica, but further research is required to test this hypothesis.  相似文献   

16.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

17.
Two sites in the eastern Fram Strait, the Vestnesa Ridge and the Yermak Plateau, have been surveyed and sampled providing a depositional record over the last glacial‐interglacial cycle. The Fram Strait is the only deep‐water connection from the Arctic Ocean to the North Atlantic and contains a marine sediment record of both high latitude thermohaline flow and ice sheet interaction. On the Vestnesa Ridge, the western Svalbard margin, a sediment drift was identified in 1226 m of water. Gravity and multicores from the crest of the drift recovered turbidites and contourites. 14C dating indicates an age range of 8287 to 26 900 years BP (Early Holocene to Late Weichselian). The Yermak Plateau is characterized by slope sediments in 961 m of water. Gravity and multicores recovered contourites and hemipelagites. 14C ages were between 8615 and 46 437 years BP (Early Holocene to mid‐Weichselian). Downcore dinoflagellate cyst analyses from both sites provide a record of changing surface water conditions since the mid‐Weichselian, suggesting variable sea ice extent, productivity and polynyas present even during the Last Glacial Maximum. Four layers of ice‐rafted debris were also identified and correlated within the cores. These events occurred ca at 9, 24 to 25, 26 to 27 and 43 ka, asynchronous with Heinrich layers in the wider north‐east Atlantic and here interpreted as reflecting instability in the Svalbard/Barents Ice sheet and the northward advection of warm Atlantic water during the Late Weichselian. The activity of the ancestral West Spitsbergen Current is interpreted using mean sortable silt records from the cores. On the Vestnesa Ridge drift the modern mass accumulation rate, calculated using excess 210Pb, is 0·076 g cm?2 year?1. On the Yermak Plateau slope the modern mass accumulation rate is 0·053 g cm?2 year?1.  相似文献   

18.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

19.
Stalagmite J1 from Jintanwan Cave, Hunan, China, provides a precisely dated, decadally resolved δ18O proxy record of paleoclimatic changes associated with the East Asian monsoon from ∼29.5 to 14.7 ka and from ∼12.9 to 11.0 ka. At the time of the last glacial maximum (LGM), the East Asian summer monsoon weakened and then strengthened in response to changes in Northern Hemisphere insolation. As the ice sheets retreated the East Asian summer monsoon weakened, especially during Heinrich event H1, when atmospheric and oceanic teleconnections transferred the climatic changes around the North Atlantic to the monsoonal regions of Eastern Asia. A depositional hiatus between ∼14.7 and 12.9 ka leaves the deglacial record incomplete, but an abrupt shift in δ18O values at ∼11.5 ka marks the end of the Younger Dryas and the transition into the Holocene. Comparisons of the J1 record to other Chinese speleothem records indicate synchronous climatic changes throughout monsoonal China. Further comparisons to a speleothem record from western Asia (Socotra Island) and to Greenland ice cores support hemispherical-scale paleoclimatic change. Spectral and wavelet analyses reveal centennial- and decadal-scale periodicities that correspond to solar frequencies and to oscillations in atmospheric and oceanic circulation.  相似文献   

20.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号