首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique was developed that allows the determination of the stable carbon isotope ratio of isoprene in air. The method was used for a limited number of ambient measurements as well as laboratory studies of isoprene emitted from Velvet Bean (Mucana pruriens L. var. utilis), including the light and temperature dependence. The mean stable carbon isotope ratio ( 13C) of isoprene emitted from Velvet Bean (Mucana pruriens L. var. utilis) for all our measurements is –27.7 ± 2.0 (standard deviation for 23 data points). Our results indicate a small dependence of the stable carbon isotope ratios on leaf temperature and photosynthetic photon flux density (PPFD). The light dependence is 0.0026 ± 0.0012/( mol of photons m–2 s–1) for the studied range from 400 to 1700 mol of photons m–2 s–1. The temperature dependence is 0.16 ± 0.09/K. On average, the emitted isoprene is 2.6 ± 0.9 lighter than the leaf carbon. An uncertainty analysis of the possibility to use stable carbon isotope ratio measurements of isoprene for estimates of its mean photochemical age suggests that meaningful results can be obtained. This is supported by the results of a small number of measurements of the stable carbon isotope composition of ambient isoprene at different locations. The results range from approximately –29 to –16. They are consistent with vegetation emissions of isoprene that is slightly depleted in 13C relative to the plant material and enrichment of 13C in the atmosphere due to isotope fractionation associated with the reaction with OH-radicals. The stable carbon isotope ratio of ambient isoprene at locations directly influenced by isoprene emissions is very close to the values we found in our emission studies, whereas at sites located remote from isoprene emitting vegetation we find substantial enrichment of 13C. This suggests that stable carbon isotope ratio measurements will be a valuable, quantitative method to determine the extent of photochemical processing of isoprene in ambient air.  相似文献   

2.
The concentration, radiocarbon (14C) and stable isotope (13C and 18O) content of CO have been determined in air samples collected across Russia (about 8,500 km) and along the Ob river during the summer of 1999 to study the CO sources and sinks. An instrumented carriage on the Trans-Siberian railway and a boat on the river Ob were used as atmospheric measurement platforms. In general, CO mixing ratios, CO stable isotope ratios, as well as the abundances of 14CO over West Siberia were similar to those found at remote northern hemispheric baseline monitoring stations. Identified sources of CO along the Ob appear to be connected to methane oxidation based on an inferred δ13Csource = −36.8 ± 0.6‰, while the value for δ18Osource = 9.0 ± 1.6‰ identifies it as burning. Thus flaring in the oil and gas production can be supposed to be a source. The extreme 13C depletion and concomitant 18O enrichment for two of the boat samples unambiguously indicates contamination by CO from combustion of natural gas (inferred values δ13Csource = −40.3‰ and δ18Osource = 17.5‰). For these two samples, that have strongly elevated 14CO concentrations, the industrial area near Tomsk is identified as a source area using meteorological calculations. Along the Trans-Siberian Railroad background CO was to various degrees contaminated with CO from methane combustion (δ13Csource = −35.7 ± 6.2‰ and δ18Osource = 10.3 ± 1.8‰). The impact of industrial burning was discernable in the vicinity of Perm-Kungur.  相似文献   

3.
Atmospheric oxidation of isoprene and its oxidation products methacrolein (MACR) and methyl vinyl ketone (MVK) have an important impact on the photochemical activity in the boundary layer, in particular in forested areas. The oxidation of isoprene by OH radicals was investigated in chamber experiments conducted under tropospheric conditions in the atmosphere simulation chamber SAPHIR at the Research Center Jülich. The aim was to determine the product yield of MVK and MACR in the OH-induced isoprene oxidation and the rate constant of their reaction with OH under real atmospheric conditions. The recently published updated degradation scheme for isoprene from Geiger et al. (2003) was used to determine rate constants and product yields. The fractional yields in the isoprene peroxy radical reaction with NO were found to be 0.41±0.03 for MVK and 0.27±0.03 for MACR. The rate coefficient for MACR with OH was found to be in very good agreement with the recommended value of IUPAC Atkinson (Atkinson et al., 2005). while the rate coefficient for MVK with OH was 27% lower.  相似文献   

4.
The stable carbon isotope ratios of nonmethane hydrocarbons (NMHC) and methyl chloride emitted from biomass burning were determined by analyzing seven whole air samples collected during different phases of the burning process as part of a laboratory study of wood burning. The average of the stable carbon isotope ratios of emitted alkanes, alkenes and aromatic compounds is identical to that of the burnt fuel; more than 50% of the values are within a range of ±1.5 of thecomposition of the burnt fuel wood. Thus for the majority of NMHC emitted from biomass burning stable carbon isotope ratio of the burnt fuel a good first order approximation for the isotopic composition of the emissions. Of the more than twenty compounds we studied, only methyl chloride and ethyne differed in stable carbon isotope ratios by more than a few per mil from the composition of the fuel. Ethyne is enriched in 13C by approximately 20–30, and most of the variability can beexplained by a dependence on flame temperature. The 13C values decreaseby 0.019 /K (±0.0053/K) with increasing temperature. Methyl chloride is highly depleted in 13C, on average by25. However the results cover a wide range of nearly 30. Specifically, in two measurements with wood from Eucalyptus (Eucalyptus delegatensis) as fuel we observed the emission of extremely light methyl chloride (–68.5and–65.5). This coincides with higher than average emission ratiosfor methyl chloride (15.5 × 10–5 and 18 ×10–5 mol CH3Cl/mol CO2). These high emission ratios are consistent with the highchlorine content of the burnt fuel, although, due to the limited number of measurements, it would be premature to generalize these findings. The limited number of observations also prevents any conclusion on a systematic dependence between chlorine content of the fuel, emission ratios and stable carbon isotope ratio of methyl chloride emissions. However, our results show that a detailed understanding of the emissions of methyl chloride from chloride rich fuels is important for understanding its global budget. It is also evident that the usefulness of stable carbon isotope ratios to constrain the global budget of methyl chloride will be complicated by the very large variability of the stable carbon isotope ratio of biomass burning emissions. Nevertheless, ultimately the large fractionation may provide additional constraints for the contribution of biomass burning emissions to the atmospheric budget of methyl chloride.  相似文献   

5.
Long term (2005–2016) daily precipitation isotope data (δ18O, δD and d-excess) from Ahmedabad in semi-arid Western India are examined in light of various meteorological parameters and air parcel trajectories to identify prominent patterns in the isotopic character and discern the underlying hydrometeorological processes. One of the most prominent and systematic annual patterns is the isotopic depletion (average δ18O: − 2.5‰ in Jun–Jul; − 5.2‰ in Aug–Sept) in the second half of the Indian Summer Monsoon (ISM), which is observed in the 11 out of the 12 years of this study. Four geographically feasible causal factors have been examined if they contribute to observed late monsoon isotopic depletion. These factors are: (1) increased contribution of terrestrially recycled vapor; (2) intra-seasonal change in sea-surface, surface-air and cloud base temperatures; (3) increased rain-out fraction from marine vapor parcel; and (4) increase in relative proportion of convective rain. It is inferred from the present study that isotopic depletion in the second half of ISM is associated with: (1) increased contribution (45% from 36%) of terrestrially recycled moisture; (2) 1.9° C lower cloud base temperature; (3) increased rainout fraction due to decreased wind velocity (6.9 m/s from 8.8 m/s); and (4) an increase of 22.3% in the proportion of convective rain. Daily rain events with atypical isotopic composition (20‰ < d-excess < 0‰) are ascribed mainly to local weather perturbations causing sudden updraft of moist air facilitating terrestrial recycling of water vapor.  相似文献   

6.
The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.  相似文献   

7.
The formation of gas-phase products from the reaction of OH radicals with isoprene for low-NOx conditions ([NOx] ≤ 1010 molecule cm?3) has been studied in an atmospheric pressure flow tube (Institute for Tropospheric Research-Laminar Flow Tube, IfT-LFT) operating in the temperature range of 293–343 K and a relative humidity of < 0.5 % up to 50 %. The photolysis of H2O2 or ozone photolysis in the presence of water vapour served as the NOx-free OH radical sources. For dry conditions at 293 K, the measured yields of methyl vinyl ketone (MVK), 0.07?±?0.02, and methacrolein (MACR), 0.12?±?0.04, were in reasonable agreement with literature data. Beside the C4-carbonyls, further product signals have been attributed tentatively to glycolaldehyde, methylglyoxal, hydroxyacetone, 3-methylfuran, C5-hydroperoxyenals (HPALDs) and C5-hydroxy-hydroperoxides. A simplified, “classical” reaction mechanism without efficient HPALD production describes well the observed yield for MVK and MACR. Unexpected high MVK and MACR yields of up to 0.65 in total were measured under conditions of a relative humidity of 50 % using both OH radical sources and two different measurement techniques for organics (proton transfer reaction mass spectrometry and gas chromatography with flame ionization detector). The reaction mechanism applied is not able to describe the strong increase of MVK and MACR yields with increasing water vapour content. The signal attributed to the HPALDs showed a distinct rise of about one order of magnitude increasing the temperature from 293 K to 343 K. A rough estimate leads to a HPALD yield of 0.32 at 343 K with an uncertainty of a factor of two. The results of this study do not support a predominant formation of HPALDs under atmospheric conditions in low-NOx areas. The surprisingly high MVK and MACR yields measured for a relative humidity of 50 % and the formation of glycolaldehyde, methylglyoxal and hydroxyacetone necessitate further research.  相似文献   

8.
Data on a variety of organic gases are presented, obtained with a protontransfer mass spectrometer (PTR-MS) operated during the March 1998 LBA/CLAIREairborne measurement campaign, between 60 and 12500 m over the rainforest inSurinam (2° N–5° N, 54° W–57° W). The instrumentcan detect molecules with a proton affinity greater than water, includingalkenes, dialkenes, carbonyls, alcohols, and nitriles. Many such molecules areemitted from the rainforest (e.g., isoprene) or formed from the oxidation ofprimary emissions (e.g., methylvinylketone (MVK) and methacrolein (MACR)).From a comparison with modelled data; the variation with altitude; previouslyreported biogenic emissions and the time and location of the measurement,possible and probable identities for the significant masses encountered in therange 33–140 amu have been deduced.The main observed protonated masses, postulated identities and observedaverage boundary layer mixing ratios over the rainforest were: 33 methanol(1.1 nmol/mol); 42 acetonitrile (190 pmol/mol); 43 multiple possibilities (5.9nmol/mol), 45 acetaldehyde (1.7 nmol/mol), 47 formic acid (not quantified);59 acetone (2.9 nmol/mol), 61 acetic acid (not quantified), 63 dimethylsulphide (DMS) (289 pmol/mol), 69 isoprene (1.7 nmol/mol), 71 MVK + MACR (1.3nmol/mol), 73 methyl ethyl ketone (1.8 nmol/mol), 75 hydroxyacetone (606pmol/mol), 83 C5 isoprene hydroxy carbonylsC5H8O2, methyl furan, and cis 3-hexen-1-ol(732 pmol/mol), 87 C5 carbonyls and methacrylic acid, 95 possibly2-vinyl furan (656 pmol/mol), 97 unknown (305 pmol/mol), 99 cis hexenal (512pmol/mol) and 101 isoprene C5 hydroperoxides (575 pmol/mol). Somespecies agreed well with those derived from an isoprene only photochemicalmodel (e.g., mass 71 MVK + MACR) while others did not and were observed athigher than previously reported mixing ratios (e.g., mass 59 acetone, mass 63DMS). Monoterpenes were not detected above the detection limit of 300pmol/mol. Several species postulated are potentially important sources ofHOx in the free troposphere, e.g., methanol, acetone, methyl ethylketone, methyl vinyl ketone and methacrolein.  相似文献   

9.
We investigated the dendroclimatic potential of stable carbon (δ13C) and oxygen (δ18O) abundances in tree rings of Callitris columellaris F. Muell. Tree-ring chronologies were constructed from the central Pilbara, north-western Australia and span 1919–1999. Variation in δ18O was more strongly related to climate than δ13C; ecological and physiological factors may have dampened the climate signal in the δ13C chronology. Tree-ring δ18O was most strongly correlated with relative humidity (RH) and rainfall (r = −0.36 and −0.39) of the wettest months of the summer period, January and February. The correlation with RH reflects its effect on evaporative enrichment of leaf water. However, tree-ring δ18O may also partly reflect the variability in 18O signatures of rainfall, which are influenced by the amount of rainfall and atmospheric humidity. From the δ18O chronology, we inferred that from 1919 to 1955 summers were relatively dry and warm, but since 1955, summers in the Pilbara region have become increasingly cooler and more humid. Since 1980, conditions have been the wettest and coolest of the last 80 years. These inferred changes in climate correspond to a measured increase in rainfall since 1980 in north-western Australia associated with a greater intensity of tropical cyclones. We conclude that δ18O abundances in tree rings of C. columellaris have significant potential for reconstructing the climate of semi-arid Australia, a region for which observational climate records are sparse.  相似文献   

10.
It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund–Potsdam–Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean–atmosphere–sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between −67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO2 are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in δ13C are between 0.15 and 0.25‰. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO2 fertilisation feedback mechanism. The CO2 changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO2 record. The latter shows multi-millennial CO2 variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North.  相似文献   

11.
Measurements of the stable carbon isotope ratio in atmospheric CO2 permit a distinction between variations resulting from biospheric and oceanic exchange. In situ extraction of CO2 from Cape Grim air (41°S) for isotopic analysis commenced in 1977; however difficulties with technique reliability were experienced until 1982. Since 1982, 2.6 years of relatively consistent values have accumulated.For a preliminary assessment of the latter data, estimates of the isotopic behaviour from the global transport and inter-reservoir exchange model of Pearman and Hyson (1985) have been employed. The assessment demonstrates the precision requirements of a carbon isotope monitoring program and the relevance of the isotope measurements as a constraint on parameterization of the model.Clear evidence of the changes due to fossil fuel combustion is seen in the year-to-year differences in 13C, with the mean and standard error of the overall trend being –0.025±0.005 yr-1. A significant seasonal variation in 13C is apparent, despite considerable inter-annual variability possibly associated with the 1982/83 ENSO phenomena. The average peak-to-peak amplitude is 0.055±0.014 with a maximum on day 85±15 (approx. 26 March).There is some evidence for a complex seasonal inter-relationship between concentration and isotope ratio, both in the Cape Grim data and in Mook et al. (1983) South Pole data, but with marked differences between the stations, and with both different from the model estimates.In particular, the Cape Grim results suggest that exchange with Southern Hemisphere biosphere is the main contributor to the seasonal variation in isotope ratio at this latitude.  相似文献   

12.
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30–07:30 IST) and afternoon time (16:00–18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12° 58′ N, 77° 38′ E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of ~7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by ~2‰ compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) “polluted air” (PA) with isotopically enriched “free atmospheric air” (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.  相似文献   

13.
利用2019年8月13日—9月30日江苏省13个设区市离线监测的VOCs数据,对江苏省城区VOCs污染特征及其关键活性组分进行分析研究.结果表明,江苏省逐日VOCs的体积分数范围为8.83×10-9~45.11×10-9,表现为烷烃 > 芳香烃 > 烯烃 > 炔烃.江苏省13个设区市VOCs的体积分数为7.85×10-9~30.52×10-9,徐州市VOCs最高,这与徐州市监测点位置分布及其工业结构相关.全省13个设区市臭氧浓度处于优、良、轻度污染和中度污染时,VOCs总体积分数分别为14.96×10-9、17.96×10-9、25.85×10-9和25.11×10-9,臭氧浓度处于污染状态时的VOCs高于优、良状态,且炔烃占比随着臭氧污染程度的加重呈升高趋势,表明现阶段臭氧生成与人类活动关系密切.通过加权的方式筛选出间/对二甲苯、乙烯、甲苯、丙烯、异戊二烯、邻二甲苯等物种,它们是目前对江苏省城区影响程度较大且影响范围较广的关键活性物种.  相似文献   

14.
This two-year study investigates the relative influence of meteorological variables (precipitation amount and temperature), atmospheric circulation, air mass history, and moisture source region on Irish precipitation oxygen isotopes (δ18Op) on event and monthly timescales. Single predictor correlations reveal that on the event scale, 20% of δ18Op variability is attributable to the amount effect and 7% to the temperature effect while on the monthly timescale the North Atlantic Oscillation accounts for up to 20% of δ18Op variability and the amount and temperature effects are not significant. In comparison, multivariate linear regression reveals that the interaction of temperature and precipitation amount explains up to 40% of δ18Op variance at event and monthly timescales. Five-day kinematic back trajectories suggest that the amount-weighted mean δ18Op value of southerly- and northerly-derived events are lower by 2‰ relative to events derived from the west. Because air mass history and atmospheric circulation appear to influence δ18Op in Ireland, Irish paleo-δ18Op proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall.  相似文献   

15.
The carbon isotopic ratio of atmospheric carbon dioxide at Tsukuba,Japan   总被引:1,自引:0,他引:1  
To find out the secular and seasonal trends of the 13C value and CO2 concentration in the surface air and the determination of the 13C in the atmospheric CO2 collected at Tsukuba Science City was carried out during the period from July 1981 to October 1983. The monthly average of the 13C value of CO2 in the surface air collected at 1400 LMT ranged from -7.52 to \s-8.45 with an average of -7.96±0.25 and the CO2 concentration in the air varied from 334.5 l 1-1 to 359 l 1-1 with an average of 347.2±6.3 l 1-1. The 13C value is high in summer and low in winter and is negatively correlated with the CO2 concentration. In general, the relationship between the 13C and the CO2 concentration is explainable by a simple mixing model of two different constant carbon isotopic species but the relationship does not always follow the model. The correlation between the 13C value and the CO2 concentration is low during the plant growth season and high at other times. The observed negative deviation of the 13C value from the simple mixing model in the plant growth season is partly due to the isotopic fractionation process which takes place in the land biota.  相似文献   

16.
Improving our ability to predict the impact of climate change on the carbon (C) balance of boreal forests requires increased understanding of site-specific factors controlling detrital and soil C accumulation. Jack pine (Pinus banksiana) and black spruce (Picea mariana) stands along the Boreal Forest Transect Case Study (BFTCS) in northern Canada have similar C stocks in aboveground vegetation and large woody detritus, but thick forest floors of poorly-drained black spruce stands have much higher C stocks, comparable to living biomass. Their properties indicate hindered decomposition and N cycling, with high C/N ratios, strongly stratified and depleted δ13C and δ15N values, high concentrations of tannins and phenolics, and 13C nuclear magnetic resonance (NMR) spectra typical of poorly decomposed plant material, especially roots and mosses. The thinner jack pine forest floor appears to be dominated by lichen, with char in some samples. Differences in quantity and quality of aboveground foliar and woody litter inputs are small and unlikely to account for the contrasts in forest floor accumulation and properties. These are more likely associated with site conditions, especially soil texture and drainage, exacerbated by increases in sphagnum coverage, forest floor depth, and tannins. Small changes in environmental conditions, especially reduced moisture, could trigger large C losses through rapid decomposition of forest floor in poorly drained black spruce stands in this region.  相似文献   

17.
In recent years considerable effort has been focused on combining micrometeorological and stable isotope techniques to partition net fluxes and to study biosphere–atmosphere exchange processes. While much progress has been achieved over the last decade, some new issues are beginning to emerge as technological advances, such as laser spectroscopy, permit isotopic fluxes to be measured more easily and continuously in the field. Traditional investigations have quantified the isotopic composition of biosphere-atmosphere exchange by using the Keeling two-member mixing model (the classic Keeling plot). An alternative method, based on a new capacity to measure isotopic mixing ratios, is to determine the isotope composition of biosphere–atmosphere exchange from the ratio of flux measurements. The objective of this study was to critically evaluate these methods for quantifying the isotopic composition of ecosystem respiration (δR) over a period of three growing seasons (2003–2005) within a heterogeneous landscape consisting of C3 and C4 species. For C4 canopies, the mixing model approach produced δR values that were 4–6‰ lower (isotopically lighter) than the flux-gradient method. The analyses presented here strongly suggest that differences between flux and concentration footprint functions are the main factor influencing the inequality between the mixing model and flux-gradient approaches. A mixing model approach, which is based on the concentration footprint, can have a source area influence more than 20-fold greater than the flux footprint. These results highlight the fact that isotopic flux partitioning is susceptible to problems arising from combining signals (concentration and fluxes) that represent very different spatial scales (footprint). This problem is likely to be most pronounced within heterogeneous terrain. However, even under ideal conditions, the mismatch between concentration and flux footprints could have a detrimental impact on isotopic flux partitioning where very small differences in isotopic signals must be resolved.  相似文献   

18.
Summary ?By analyzing normalized variables, it was found that the latitudinal secular variations of the rainwater deuterium fractionation ratio δ2H, oxygen fractionation ratio δ18O, vapor pressure, and surface temperature were almost non-linear, occurred in parallel, and decreased with latitude. The rate of depletion around the equator is asymmetric and smaller to the south of 45° S than to the north of 45° N. In the east Mediterranean, the rate of change of δ18O with height was found to be −.2‰ per 100 m and that of δ2H is comparable with the dry lapse rate in the atmosphere. Analysis of the annual time series of δ2H at Alexandria has indicated that variations show sinusoidal waveform with a major cycle of two years that accounts for 68% of the total variance. Although the quasi-biannual cycle in the atmosphere has small amplitude in the lower layers of the atmosphere at East Mediterranean latitudes, the major cycle in annual series of δ2H or δ18O may be linked to the quasi-biannual oscillation in the atmosphere. It was also found that the first three Empirical Orthogonal Functions (EOF) account for 72% of the seasonal variation of δ2H and share 68% of the seasonal variation of δ18O. Share of variances of monthly EOF in the months of the year indicate that the main underlying factors that cause fractionation processes for δ2H and δ18O are similar across the east Mediterranean especially in late winter and early spring. Received May 13, 2002; revised July 8, 2002; accepted August 6, 2002  相似文献   

19.
Here we present a multi-proxy paleolimnological record from a closed-basin lake (Ebinur Lake) in northwestern China to investigate climate change in this arid region during the last 1,500 years. The 120-cm long sediment core was dated by AMS radiocarbon and 210Pb methods. The fine-grained clay sediments contain 3–17% organic matter (OM) and 9–31% carbonate, and are interrupted by multiple sand and silt layers. These sand/silt layers, having consistently low OM, were found at 700–800, 1000–1100, 1300–1400, and 1700–1750 a.d., with a time spacing of 300–400 years. We interpret that the low OM sand/silt layers were deposited during higher lake levels caused by increased river inflow from the surrounding mountains during wet climate intervals. This interpretation is supported by concurrent decreases in δ 18O and δ 13C of bulk carbonate and in carbonate content. Wet climate intervals at 700–800 a.d. and at 1700–1750 a.d. also correlate with elevated snow accumulation and low δ 18O from Guliya ice core on the NW Tibetan Plateau, both regions strongly influenced by the westerlies. This approximate 400-year periodicity of wet–dry climate oscillations appear to correlate with solar activity as shown by atmosphere 14C concentration and with paleo-moisture records in interior North America. Our results suggest that solar activities might have played a significant role in driving wet–dry climate oscillations at centennial scales in the interior of Eurasian continent.  相似文献   

20.
 Stable oxygen isotope ratios of ostracod valves in Late Glacial and Holocene sediments of core AS 92-5 from deep lake Ammersee (southern Germany) reflect variations of mean oxygen isotope ratios in past atmospheric precipitation. The record reconfirms the strong similarity of climate evolution in Europe and Greenland during the last deglaciation. For the first time in Europe, we find a 200-year-long negative δ18O-excursion, which is contemporaneous with the strongest negative δ18O-excursion in the Greenland ice around 8.2 ky before present. The 8.2 ky isotopic event on both sides of the North Atlantic ocean is interpreted as a cold period, most probably induced by a perturbation of the North Atlantic thermohaline circulation. We discuss two possible triggering mechanisms: (1) weak forcing (as proposed by Alley et al.), and (2) forcing by a strong and sudden freshwater pulse from the collapse of the Hudson Ice Dome. Received: 27 May 1997 / Accepted: 21 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号