首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The TW Hydrae system is perhaps the closest analog to the early solar nebula. We have used the Very Large Array to image TW Hya at wavelengths of 7 mm and 3.6 cm with resolutions of 0&farcs;1 ( approximately 5 AU) and 1&farcs;0 ( approximately 50 AU), respectively. The 7 mm emission is extended and appears dominated by a dusty disk of radius greater than 50 AU surrounding the star. The 3.6 cm emission is unresolved and likely arises from an ionized wind or gyrosynchrotron activity. The dust spectrum and spatially resolved 7 mm images of the TW Hya disk are fitted by a simple model with temperature and surface density described by radial power laws, T&parl0;r&parr0;~r-0.5 and Sigma&parl0;r&parr0;~r-1. These properties are consistent with an irradiated gaseous accretion disk of mass approximately 0.03 M middle dot in circle with an accretion rate approximately 10-8 M middle dot in circle yr-1 and viscosity parameter alpha=0.01. The estimates of mass and mass accretion rates are uncertain since the gas-to-dust ratio in the TW Hya disk may have evolved from the standard interstellar value.  相似文献   

2.
The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.  相似文献   

3.
HD 10697 is a nearby main-sequence star around which a planet candidate has recently been discovered by means of radial velocity measurements (Vogt et al.). The stellar orbit has a period of about 3 yr, the secondary minimum mass is 6.35 Jupiter masses (MJ), and the minimum semimajor axis is 0.36 mas. Using the Hipparcos data of HD 10697 together with the spectroscopic elements of Vogt et al., we found a semimajor axis of 2.1+/-0.7 mas, implying a mass of 38+/-13 MJ for the unseen companion. We therefore suggest that the secondary of HD 10697 is probably a brown dwarf, orbiting around its parent star at a distance of 2 AU.  相似文献   

4.
We describe initial results of a program to image massive newly-formed stars with sub-arc second spatial resolution. We discuss high-precision diffraction-limited size measurements at =10 m made using the 3 m Lick telescope. The point-spread function has FWHM 0.7; deconvolution yields a spatial resolution of 0.35. We find that the core component of one such object, LkH 101, is unresolved at these scales, and we are able to set a 95%-confidence upper limit of 270 AU for the diameter of the circumstellar dust shell. This places the dust at the same radial scale as a strong ionized stellar wind region seen at radio wavelengths. Our observations, when combined with published spectral observations, rule out an optically thick circumstellar disk but allow a radially thin, anisotropic distribution of dust, or alternatively an isotropic distribution of dust with a narrow range of large grain sizes.  相似文献   

5.
Most main sequence stars are binaries or higher multiplicity Systems and it appears that at birth most stars have circumstellar disks. It is commonly accepted that planetary systems arise from the material of these disks; consequently, binary and multiple systems may have a main role in planet formation. In this paper, we study the stage of planetary formation during which the particulate material is still dispersed as centimetre-to-metre sized primordial aggregates. We investigate the response of the particles, in a protoplanetary disk with radius RD = 100 AU around a solar-like star, to the gravitational field of bound perturbing companions in a moderately wide (300–1600 AU) orbit. For this purpose, we have carried out a series of simulations of coplanar hierarchical configurations using a direct integration code that models gravitational and viscous forces. The massive protoplanetary disk is around one of the components of the binary. The evolution in time of the dust sub-disk depends mainly on the nature (prograde or retrograde) of the relative revolution of the stellar companion, and on the temperature and mass of the circumstellar disk. Our results show that for binary companions near the limit of tidal truncation of the disk, the perturbation leads to an enhanced accretion rate onto the primary, decreasing the lifetime of the particles in the protoplanetary disk with respect to the case of a single star. As a consequence of an enhanced accretion rate the mass of the disk decreases faster, which leads to a longer resultant lifetime for particles in the disk. On the other hand, binary companions may induce tidal arms in the dust phase of protoplanetary disks. Spiral perturbations with m = 1 may increase in a factor 10 or more the dust surface density in the neighbourhood of the arm, facilitating the growth of the particles. Moreover, in a massive disk (0.01M⊙) the survival time of particles is significantly shorter than in a less massive nebula (0.001M⊙) and the temperature of the disk severely influences the spiral-in time of particles. The rapid evolution of the dust component found in post T Tauri stars can be explained as a result of their binary nature. Binarity may also influence the evolution of circumpulsar disks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We report the detection of extended IR emission at 10.8 and 18.2 μm around the Vega-like source HD 141569. Mid-IR imaging with OSCIR on Keck II shows emission from dust extending out to 100 AU from the B9.5 Ve star. Our modeling of the dust places an upper limit of approximately 2 μm on the diameter of the mid-IR-emitting particles if they are Mie spheres of astronomical silicates. Comparison of our mid-IR images to the near-IR (1.1 μm) NICMOS images of HD 141569 (Weinberger et al. 1999) shows that the mid-IR emission originates at smaller distances from the star than the scattered near-IR light, as also previously observed for the archetype Vega-like source beta Pictoris.  相似文献   

7.
A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope.The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk.Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.  相似文献   

8.
We present here the results of our high resolution echelle spectroscopic observations of six recently identified spectroscopic binary systems with late-type stellar components (HD 82159 (BD + 11 2052 A); HIP 63322 (BD + 39 2587); HD 160934 (RE J1738 + 611); HD 89959 (BD + 41 2078); HD 143705 (BD + 29 2752); HD 138157 (OX Ser)). The orbital solution has been obtained using precise radial velocities determined by cross-correlation with radial velocity standard stars as well as previous values reported by other authors. These multiwavelength optical observations allow us to study the chromosphere of these active binary systems using the information provided by several optical spectroscopic features (from Ca II H &; K to Ca II IRT lines) that are formed at different heights in the chromosphere. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. In addition, we have determined rotational velocities (vsin i), lithium (Li I λ 6707.8 Å) abundance, and kinematic properties (membership in representative young disk stellar kinematic groups).  相似文献   

9.
Gravitational instability of the dust layer formed after the aggregates of dust particles settle toward the midplane of a protoplanetary disk under turbulence is considered. A linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation is solved. Turbulent diffusion and the velocity dispersion of solid particles and the perturbation of gas azimuthal velocity in the layer upon the transfer of angular momentum from the dust phase due to gas drag are taken into account. Such an interaction of the particles and the gas establishes upper and lower bounds on the perturbation wavelength that renders the instability possible. The dispersion equation for the layer in the case when the ratio of surface densities of the dust phase and the gas in the layer is well above unity is obtained and solved. An approximate gravitational instability criterion, which takes the size-dependent stopping time of a particle (aggregate) in the gas into account, is derived. The following parameters of the layer instability are calculated: the wavelength range of its subsistence and the dependence of the perturbation growth rate on the perturbation wavelength in the circumsolar disk at a radial distance of 1 and 10 AU. It is demonstrated that at a distance of 1 AU, the gas–dust disk should be enriched with solids by a factor of 5–10 relative to the initial abundance as well as the particle aggregates should grow to the sizes higher than about 0.3 m in order for the instability to emerge in the layer in the available turbulence models. Such high disk enrichment and aggregate growth is not needed at a distance of 10 AU. The conditions under which this gravitational instability in the layer may be examined with no allowance made for the transfer of angular momentum from the gas in the layer to the gas in a protoplanetary disk outside the layer are discussed.  相似文献   

10.
We discuss the composition and size distribution of the dust in the coma of Comet Hale-Bopp. We do this using a model fit for the infrared emission measured by the Infrared Space Observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. Both the short wavelength (7-44 μm) and the long wavelength (44-120 μm) infrared spectrum are fitted using the same dust parameters, as well as the degree of linear polarization at twelve different wavelengths in the optical to near-infrared domains. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be equal to those observed in meteorites. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicrometer-sized. On the basis of our analysis the presence of large crystalline silicate grains in the coma can be excluded. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass (forsterite and enstatite) to reproduce the observed spectral features. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is ∼7.5%, which is significantly lower than deduced in previous studies in which the typical derived crystallinity is ∼20-30%. The implications of this low abundance of crystalline material on the possible origin and evolution of the comet are discussed. We conclude that the crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner Solar System by thermal annealing and subsequent radial mixing to the comet forming region (∼30 AU).  相似文献   

11.
New SCUBA measurements at millimetre wavelengths are presented for a sample of Vega-like stars. Six stars were detected, while sensitive upper limits were obtained for a further 11 sources. Most of the sample selected from a recent catalogue of Vega-like stars have infrared excesses similar to those of the prototype Vega-like stars α Lyr and α PsA. Their IR–submm spectral indices are steep, indicating that the submm emission from the discs is dominated by grains which are smaller than the wavelength of observation and that only small grains exist in those dusty discs. HD 98800 has an IR–submillimetre spectral index of less than two, which suggests that grains have grown to more than 0.3 mm in size. Hipparcos parallax data for HD 42137 and HD 123160 suggest that these two stars are giants rather than dwarfs, similar to the situation previously found for HD 233517. Dust masses, or upper limits, were derived for the sample; these indicate that most of the sources do not have as much dust as Herbig Ae/Be or T Tauri stars, but are likely to have dust masses comparable to those of the prototype Vega-like stars.  相似文献   

12.
The dynamical evolution of dust particles forming a circumstellar disk around Pictoris is followed by numerical simulations on a Connection Machine. The disk appears to be cleared inside a radius of about 20 AU. We integrate simultaneously the orbits of 8,000 dust particles subjected to Poynting-Robertson drag and perturbed by one alleged planet. The simulations show that a planet revolving about Pictoris at a mean distance of 20 AU with a mass of at least 2 * 10–5 central stellar mass can confine the disk by outer resonance trapping. The azimuthal density distribution of particles which shows very strong variations. appears to be stationary in a frame rotating with the planet.  相似文献   

13.
We have estimated the ages of eight late-type Vega-like stars by using standard age-dating methods for single late-type stars, e.g., location on the color-magnitude diagram, Li lambda6708 absorption, Ca ii H and K emission, X-ray luminosity, and stellar kinematic population. With the exception of the very unusual pre-main-sequence star system HD 98800, all the late-type Vega-like stars are the same age as the Hyades cluster (600-800 Myr) or older.  相似文献   

14.
《New Astronomy》2004,9(1):33-42
We obtained low resolution (R=100) mid-infrared (8–13 μm wavelengths) spectra of 8 nearby young main sequence stars with the Keck 1 telescope and Long-Wavelength Spectrometer (LWS) to search for 10 μm silicate (Si–O stretch) emission from circumstellar dust. No stars exhibited readily apparent emission: Spectra were then analyzed by least-squares fitting of a template based on a spectrum of Comet Hale-Bopp. Using this technique, we were able to constrain the level of silicate emission to a threshold 10 times below what was previously possible from space. We found one star, HD 17925, with a spectrum statistically different from its calibrator and consistent with a silicate emission peak of 7% of the photosphere at a wavelength of 10 μm. Excess emission at 60 μm from this star has already been reported.  相似文献   

15.
We use an Artificial Neural Network (ANN) to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of four double‐lined spectroscopic binary systems HD 152218, HD 143511, HD 27149, and ER Vul, we find corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by others using more traditional methods (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Precision Doppler measurements from the Keck High-Resolution Echelle Spectrograph reveal periodic Keplerian velocity variations in the stars HD 16141 and HD 46375. HD 16141 (G5 IV) has a period of 75.8 days and a velocity amplitude of 11 m s-1, yielding a companion having Msini=0.22 M(JUP) and a semimajor axis of a=0.35 AU. HD 46375 (K1 IV-V) has a period of 3.024 days and a velocity amplitude of 35 m s-1, yielding a companion with Msini=0.25 M(JUP), a semimajor axis of a=0.041 AU, and an eccentricity of 0.04 (consistent with zero). These companions contribute to the rising planet mass function toward lower masses.  相似文献   

17.
We consider gravitational instability of the dust layer in the midplane of a protoplanetary disk with turbulence and shear stresses between the gas in the disk and that in the dust layer. We solve a linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation. We take into account the gas drag of solid particles (dust aggregates), turbulent diffusion and the velocity dispersion of particles, and the perturbation of the azimuthal velocity of gas in the layer upon the transfer of angular momentum from solid particles to it and from this gas to the surrounding gas in the disk. We obtain and solve the dispersion equation for the layer with the ratio of surface densities of the dust phase and gas being well above unity. The following parameters of gravitational instability in the dust layer are calculated: the critical surface density of solid matter and the Stokes number of particles corresponding to the onset of instability, the wavelength range in which instability occurs, and the rate of its growth as a function of the perturbation wavelength in the circumsolar disk at radial distances of 1 and 10 AU. We show that at 10 AU, the maximum instability growth rate increases due to the transfer of angular momentum of gas in the layer to gas outside it, a new maximum emerges at a longer wavelength, a long-wavelength instability “tail” forms, and the critical surface density initiating instability decreases relative to that determined without the transfer of angular momentum to gas outside the layer. None of these effects are observed at 1 AU, since instability in this region probably develops faster than the transfer of angular momentum to the surrounding gаs of a protoplanetary disk occurs.  相似文献   

18.
The 17–28 μm brightness temperature of the center of the disk of Jupiter is 136 ± 4 K. Model calculations yield an effective temperature of 142 ± 4 K at the center of the disk for a helium to hydrogen ratio He/H2 of 0. This corresponds to an effective temperature of the entire disk of 136 ± 5 K. The NEB, SEB, and STeB are shown to emit an excess flux at 20 μm when compared to the neighboring zones. The hot belts were grey in color at the time of the observations and were the source of excess 5-μm flux as well (Keay et al. 1973). The relationships between 5-μm and 20-μm flux excesses and the cloud structures are discussed.  相似文献   

19.
We have carried out a search for co‐moving stellar and substellar companions around 18 exoplanet host stars with the infrared camera MAGIC at the 2.2 m Calar Alto telescope, by comparing our images with images from the all sky surveys 2MASS, POSS I and II. Four stars of the sample namely HD80606, 55 Cnc, HD46375 and BD–10°3166, are listed as binaries in the Washington Visual Double Star Catalogue (WDS). The binary nature of HD80606, 55 Cnc, and HD46375 is confirmed with both astrometry as well as photometry, thereby the proper motion of the companion of HD46375 was determined here for the first time.We derived the companion masses as well as the longterm stability regions for additional companions in these three binary systems. We can rule out further stellar companions around all stars in the sample with projected separations between 270AU and 2500AU, being sensitive to substellar companions with masses down to ∼60 MJup (S /N = 3). Furthermore we present evidence that the two components of the WDS binary BD–10°3166 are unrelated stars, i.e this system is a visual pair. The spectrophotometric distance of the primary (a K0 dwarf) is ∼67 pc, whereas the presumable secondary BD–10°3166B (a M4 to M5 dwarf) is located at a distance of 13 pc in the foreground. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We present the IR photometry of the X-ray binary XTE J1118+480 performed during seven nights in April and two nights in May–June 2000. A significant IR excess has been detected in the object, which may be due to the thermal radiation from a dust envelope/cloud. The observed energy distribution in the range 1.25–3.5 μm can be interpreted in terms of the sum of the fluxes from an accretion disk with a temperature of ~20 000 K and a dust envelope with grains heated to ~900 K. The distance to the X-ray binary estimated from the total flux from the dust envelope is no less than 0.6–3 kpc. The mean optical depth of the dust envelope for the accretion-disk radiation is about 0.06.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号